
 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track E. Rescorla

Expires: August 18, 2014 RTFM

 J. Hildebrand

 Cisco

 February 14, 2014

JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-21

Abstract

JSON Web Encryption (JWE) represents encrypted content using JavaScript Object Notation
(JSON) based data structures. Cryptographic algorithms and identifiers for use with this
specification are described in the separate JSON Web Algorithms (JWA) specification and IANA
registries defined by that specification. Related digital signature and MAC capabilities are
described in the separate JSON Web Signature (JWS) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on August 18, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Notational Conventions
2. Terminology
3. JSON Web Encryption (JWE) Overview
 3.1. Example JWE
4. JWE Header
 4.1. Registered Header Parameter Names
 4.1.1. "alg" (Algorithm) Header Parameter
 4.1.2. "enc" (Encryption Algorithm) Header Parameter
 4.1.3. "zip" (Compression Algorithm) Header Parameter

 4.1.3. "zip" (Compression Algorithm) Header Parameter
 4.1.4. "jku" (JWK Set URL) Header Parameter
 4.1.5. "jwk" (JSON Web Key) Header Parameter
 4.1.6. "kid" (Key ID) Header Parameter
 4.1.7. "x5u" (X.509 URL) Header Parameter
 4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter
 4.1.9. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter
 4.1.10. "typ" (Type) Header Parameter
 4.1.11. "cty" (Content Type) Header Parameter
 4.1.12. "crit" (Critical) Header Parameter
 4.2. Public Header Parameter Names
 4.3. Private Header Parameter Names
5. Producing and Consuming JWEs
 5.1. Message Encryption
 5.2. Message Decryption
 5.3. String Comparison Rules
6. Key Identification
7. Serializations
 7.1. JWE Compact Serialization
 7.2. JWE JSON Serialization
8. TLS Requirements
9. Distinguishing between JWS and JWE Objects
10. IANA Considerations
 10.1. JSON Web Signature and Encryption Header Parameters Registration
 10.1.1. Registry Contents
11. Security Considerations
12. References
 12.1. Normative References
 12.2. Informative References
Appendix A. JWE Examples
 A.1. Example JWE using RSAES OAEP and AES GCM
 A.1.1. JWE Header
 A.1.2. Content Encryption Key (CEK)
 A.1.3. Key Encryption
 A.1.4. Initialization Vector
 A.1.5. Additional Authenticated Data
 A.1.6. Content Encryption
 A.1.7. Complete Representation
 A.1.8. Validation
 A.2. Example JWE using RSAES-PKCS1-V1_5 and
AES_128_CBC_HMAC_SHA_256
 A.2.1. JWE Header
 A.2.2. Content Encryption Key (CEK)
 A.2.3. Key Encryption
 A.2.4. Initialization Vector
 A.2.5. Additional Authenticated Data
 A.2.6. Content Encryption
 A.2.7. Complete Representation
 A.2.8. Validation
 A.3. Example JWE using AES Key Wrap and AES_128_CBC_HMAC_SHA_256
 A.3.1. JWE Header
 A.3.2. Content Encryption Key (CEK)
 A.3.3. Key Encryption
 A.3.4. Initialization Vector
 A.3.5. Additional Authenticated Data
 A.3.6. Content Encryption
 A.3.7. Complete Representation
 A.3.8. Validation
 A.4. Example JWE using JWE JSON Serialization
 A.4.1. JWE Per-Recipient Unprotected Headers
 A.4.2. JWE Protected Header
 A.4.3. JWE Unprotected Header
 A.4.4. Complete JWE Header Values
 A.4.5. Additional Authenticated Data
 A.4.6. Content Encryption
 A.4.7. Complete JWE JSON Serialization Representation
Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation
 B.1. Extract MAC_KEY and ENC_KEY from Key
 B.2. Encrypt Plaintext to Create Ciphertext

 TOC

 TOC

 TOC

 B.2. Encrypt Plaintext to Create Ciphertext
 B.3. 64 Bit Big Endian Representation of AAD Length
 B.4. Initialization Vector Value
 B.5. Create Input to HMAC Computation
 B.6. Compute HMAC Value
 B.7. Truncate HMAC Value to Create Authentication Tag
Appendix C. Acknowledgements
Appendix D. Document History
§ Authors' Addresses

1. Introduction

JSON Web Encryption (JWE) represents encrypted content using JavaScript Object Notation
(JSON) based data structures. The JWE cryptographic
mechanisms encrypt and provide integrity protection for an arbitrary sequence of octets.

Two closely related serializations for JWE objects are defined. The JWE Compact Serialization is
a compact, URL-safe representation intended for space constrained environments such as
HTTP Authorization headers and URI query parameters. The JWE JSON Serialization
represents JWE objects as JSON objects and enables the same content to be encrypted to
multiple parties. Both share the same cryptographic underpinnings.

Cryptographic algorithms and identifiers for use with this specification are described in the
separate JSON Web Algorithms (JWA) specification and IANA registries defined by that
specification. Related digital signature and MAC capabilities are described in the separate
JSON Web Signature (JWS) specification.

Names defined by this specification are short because a core goal is for the resulting
representations to be compact.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels

. If these words are used without being spelled in uppercase then they are to be
interpreted with their normal natural language meanings.

BASE64URL(OCTETS) denotes the base64url encoding of OCTETS, per .

UTF8(STRING) denotes the octets of the UTF-8 representation of STRING.

ASCII(STRING) denotes the octets of the ASCII representation of STRING.

The concatenation of two values A and B is denoted as A || B.

2. Terminology

These terms defined by the JSON Web Signature (JWS) specification are incorporated
into this specification: "JSON Web Signature (JWS)", "Base64url Encoding", "Collision-Resistant
Name", and "StringOrURI".

These terms are defined for use by this specification:

JSON Web Encryption (JWE)
A data structure representing an encrypted and integrity protected message.

Authenticated Encryption with Associated Data (AEAD)
An AEAD algorithm is one that encrypts the Plaintext, allows Additional
Authenticated Data to be specified, and provides an integrated content integrity
check over the Ciphertext and Additional Authenticated Data. AEAD algorithms
accept two inputs, the Plaintext and the Additional Authenticated Data value, and

[I‑D.ietf‑json‑rfc4627bis]

[JWA]

[JWS]

[RFC2119]

Section 2

[RFC3629]

[USASCII]

[JWS]

accept two inputs, the Plaintext and the Additional Authenticated Data value, and
produce two outputs, the Ciphertext and the Authentication Tag value. AES
Galois/Counter Mode (GCM) is one such algorithm.

Plaintext
The sequence of octets to be encrypted -- a.k.a., the message. The plaintext can
contain an arbitrary sequence of octets.

Ciphertext
An encrypted representation of the Plaintext.

Additional Authenticated Data (AAD)
An input to an AEAD operation that is integrity protected but not encrypted.

Authentication Tag
An output of an AEAD operation that ensures the integrity of the Ciphertext and
the Additional Authenticated Data. Note that some algorithms may not use an
Authentication Tag, in which case this value is the empty octet sequence.

Content Encryption Key (CEK)
A symmetric key for the AEAD algorithm used to encrypt the Plaintext for the
recipient to produce the Ciphertext and the Authentication Tag.

JWE Header
JSON object containing the parameters describing the cryptographic operations
and parameters employed. The JWE Header members are the union of the
members of the JWE Protected Header, the JWE Shared Unprotected Header, and
the JWE Per-Recipient Unprotected Header. The members of the JWE Header are
Header Parameters.

JWE Encrypted Key
Encrypted Content Encryption Key (CEK) value. Note that for some algorithms, the
JWE Encrypted Key value is specified as being the empty octet sequence.

JWE Initialization Vector
Initialization Vector value used when encrypting the plaintext. Note that some
algorithms may not use an Initialization Vector, in which case this value is the
empty octet sequence.

JWE AAD
Additional value to be integrity protected by the authenticated encryption
operation. This can only be present when using the JWE JSON Serialization. (Note
that this can also be achieved when using either serialization by including the AAD
value as an integrity protected Header Parameter value, but at the cost of the
value being double base64url encoded.)

JWE Ciphertext
Ciphertext value resulting from authenticated encryption of the plaintext with
additional associated data.

JWE Authentication Tag
Authentication Tag value resulting from authenticated encryption of the plaintext
with additional associated data.

Header Parameter
A name/value pair that is member of the JWE Header.

JWE Protected Header
JSON object that contains the JWE Header Parameters that are integrity protected
by the authenticated encryption operation. These parameters apply to all
recipients of the JWE. For the JWE Compact Serialization, this comprises the entire
JWE Header. For the JWE JSON Serialization, this is one component of the JWE
Header.

JWE Shared Unprotected Header
JSON object that contains the JWE Header Parameters that apply to all recipients
of the JWE that are not integrity protected. This can only be present when using the
JWE JSON Serialization.

JWE Per-Recipient Unprotected Header
JSON object that contains JWE Header Parameters that apply to a single recipient
of the JWE. These Header Parameter values are not integrity protected. This can
only be present when using the JWE JSON Serialization.

JWE Compact Serialization
A representation of the JWE as a compact, URL-safe string.

JWE JSON Serialization
A representation of the JWE as a JSON object. The JWE JSON Serialization enables
the same content to be encrypted to multiple parties. This representation is
neither optimized for compactness nor URL-safe.

Key Management Mode
A method of determining the Content Encryption Key (CEK) value to use. Each
algorithm used for determining the CEK value uses a specific Key Management
Mode. Key Management Modes employed by this specification are Key Encryption,
Key Wrapping, Direct Key Agreement, Key Agreement with Key Wrapping, and

 TOC

Key Wrapping, Direct Key Agreement, Key Agreement with Key Wrapping, and
Direct Encryption.

Key Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using an asymmetric encryption algorithm.

Key Wrapping
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using a symmetric key wrapping algorithm.

Direct Key Agreement
A Key Management Mode in which a key agreement algorithm is used to agree
upon the Content Encryption Key (CEK) value.

Key Agreement with Key Wrapping
A Key Management Mode in which a key agreement algorithm is used to agree
upon a symmetric key used to encrypt the Content Encryption Key (CEK) value to
the intended recipient using a symmetric key wrapping algorithm.

Direct Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value used is
the secret symmetric key value shared between the parties.

3. JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and base64url encoding. A JWE
represents these logical values:

JWE Header
JSON object containing the parameters describing the cryptographic operations
and parameters employed. The JWE Header members are the union of the
members of the JWE Protected Header, the JWE Shared Unprotected Header, and
the JWE Per-Recipient Unprotected Header, as described below.

JWE Encrypted Key
Encrypted Content Encryption Key (CEK) value.

JWE Initialization Vector
Initialization Vector value used when encrypting the plaintext.

JWE AAD
Additional value to be integrity protected by the authenticated encryption
operation.

JWE Ciphertext
Ciphertext value resulting from authenticated encryption of the plaintext with
additional associated data.

JWE Authentication Tag
Authentication Tag value resulting from authenticated encryption of the plaintext
with additional associated data.

The JWE Header represents the combination of these logical values:

JWE Protected Header
JSON object that contains the JWE Header Parameters that are integrity protected
by the authenticated encryption operation. These parameters apply to all
recipients of the JWE.

JWE Shared Unprotected Header
JSON object that contains the JWE Header Parameters that apply to all recipients
of the JWE that are not integrity protected.

JWE Per-Recipient Unprotected Header
JSON object that contains JWE Header Parameters that apply to a single recipient
of the JWE. These Header Parameter values are not integrity protected.

This document defines two serializations for JWE objects: a compact, URL-safe serialization
called the JWE Compact Serialization and a JSON serialization called the JWE JSON
Serialization. In both serializations, the JWE Protected Header, JWE Encrypted Key, JWE
Initialization Vector, JWE Ciphertext, and JWE Authentication Tag are base64url encoded for
transmission, since JSON lacks a way to directly represent octet sequences. When present,
the JWE AAD is also base64url encoded for transmission.

In the JWE Compact Serialization, no JWE Shared Unprotected Header or JWE Per-Recipient
Unprotected Header are used. In this case, the JWE Header and the JWE Protected Header
are the same.

 TOC

In the JWE Compact Serialization, a JWE object is represented as the combination of these five
string values,

BASE64URL(UTF8(JWE Protected Header)),

BASE64URL(JWE Encrypted Key),

BASE64URL(JWE Initialization Vector),

BASE64URL(JWE Ciphertext), and

BASE64URL(JWE Authentication Tag),

concatenated in that order, with the five strings being separated by four period ('.')
characters.

In the JWE JSON Serialization, one or more of the JWE Protected Header, JWE Shared
Unprotected Header, and JWE Per-Recipient Unprotected Header MUST be present. In this
case, the members of the JWE Header are the combination of the members of the JWE
Protected Header, JWE Shared Unprotected Header, and JWE Per-Recipient Unprotected
Header values that are present.

In the JWE JSON Serialization, a JWE object is represented as the combination of these eight
values,

BASE64URL(UTF8(JWE Protected Header)),

JWE Shared Unprotected Header,

JWE Per-Recipient Unprotected Header,

BASE64URL(JWE Encrypted Key),

BASE64URL(JWE Initialization Vector),

BASE64URL(JWE Ciphertext),

BASE64URL(JWE Authentication Tag), and

BASE64URL(JWE AAD),

with the six base64url encoding result strings and the two unprotected JSON object values
being represented as members within a JSON object. The inclusion of some of these values is
OPTIONAL. The JWE JSON Serialization can also encrypt the plaintext to multiple recipients.
See for more information about the JWE JSON Serialization.

JWE utilizes authenticated encryption to ensure the confidentiality and integrity of the
Plaintext and the integrity of the JWE Protected Header and the JWE AAD.

3.1. Example JWE

This example encrypts the plaintext "The true sign of intelligence is not knowledge but
imagination." to the recipient using RSAES OAEP for key encryption and AES GCM for content
encryption.

The following example JWE Protected Header declares that:

the Content Encryption Key is encrypted to the recipient using the RSAES OAEP
algorithm to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES GCM algorithm with a 256 bit key to
produce the Ciphertext.

 {"alg":"RSA-OAEP","enc":"A256GCM"}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected Header)) gives this
value:

Section 7.2

 TOC

 TOC

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ

The remaining steps to finish creating this JWE are:

Generate a random Content Encryption Key (CEK).
Encrypt the CEK with the recipient's public key using the RSAES OAEP algorithm
to produce the JWE Encrypted Key.
Base64url encode the JWE Encrypted Key.
Generate a random JWE Initialization Vector.
Base64url encode the JWE Initialization Vector.
Let the Additional Authenticated Data encryption parameter be
ASCII(BASE64URL(UTF8(JWE Protected Header))).
Encrypt the Plaintext with AES GCM using the CEK as the encryption key, the JWE
Initialization Vector, and the Additional Authenticated Data value, requesting a
128 bit Authentication Tag output.
Base64url encode the Ciphertext.
Base64url encode the Authentication Tag.
Assemble the final representation: The Compact Serialization of this result is the
string BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE
Encrypted Key) || '.' || BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE
Ciphertext) || '.' || BASE64URL(JWE Authentication Tag).

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
 OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
 ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
 Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
 mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
 1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
 6UklfCpIMfIjf7iGdXKHzg.
 48V1_ALb6US04U3b.
 5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
 SdiwkIr3ajwQzaBtQD_A.
 XFBoMYUZodetZdvTiFvSkQ

See for the complete details of computing this JWE. See other parts of
 for additional examples.

4. JWE Header

The members of the JSON object(s) representing the JWE Header describe the encryption
applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter
names within the JWE Header MUST be unique; recipients MUST either reject JWEs with
duplicate Header Parameter names or use a JSON parser that returns only the lexically last
duplicate member name, as specified in Section 15.12 (The JSON Object) of ECMAScript 5.1

.

Implementations are required to understand the specific Header Parameters defined by this
specification that are designated as "MUST be understood" and process them in the manner
defined in this specification. All other Header Parameters defined by this specification that
are not so designated MUST be ignored when not understood. Unless listed as a critical
Header Parameter, per , all Header Parameters not defined by this
specification MUST be ignored when not understood.

There are three classes of Header Parameter names: Registered Header Parameter names,
Public Header Parameter names, and Private Header Parameter names.

Appendix A.1
Appendix A

[ECMAScript]

Section 4.1.12

 TOC

 TOC

 TOC

 TOC

 TOC

4.1. Registered Header Parameter Names

The following Header Parameter names are registered in the IANA JSON Web Signature and
Encryption Header Parameters registry defined in , with meanings as defined below.

As indicated by the common registry, JWSs and JWEs share a common Header Parameter
space; when a parameter is used by both specifications, its usage must be compatible
between the specifications.

4.1.1. "alg" (Algorithm) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the alg Header
Parameter defined in Section 4.1.1 of , except that the Header Parameter identifies the
cryptographic algorithm used to encrypt or determine the value of the Content Encryption
Key (CEK). The encrypted content is not usable if the alg value does not represent a
supported algorithm, or if the recipient does not have a key that can be used with that
algorithm.

A list of defined alg values for this use can be found in the IANA JSON Web Signature and
Encryption Algorithms registry defined in ; the initial contents of this registry are the
values defined in Section 4.1 of the JSON Web Algorithms (JWA) specification.

4.1.2. "enc" (Encryption Algorithm) Header Parameter

The enc (encryption algorithm) Header Parameter identifies the content encryption algorithm
used to encrypt the Plaintext to produce the Ciphertext. This algorithm MUST be an AEAD
algorithm with a specified key length. The recipient MUST reject the JWE if the enc value does
not represent a supported algorithm. enc values should either be registered in the IANA
JSON Web Signature and Encryption Algorithms registry defined in or be a value that
contains a Collision-Resistant Name. The enc value is a case-sensitive string containing a
StringOrURI value. This Header Parameter MUST be present and MUST be understood and
processed by implementations.

A list of defined enc values for this use can be found in the IANA JSON Web Signature and
Encryption Algorithms registry defined in ; the initial contents of this registry are the
values defined in Section 5.1 of the JSON Web Algorithms (JWA) specification.

4.1.3. "zip" (Compression Algorithm) Header Parameter

The zip (compression algorithm) applied to the Plaintext before encryption, if any. The zip
value defined by this specification is:

DEF - Compression with the DEFLATE algorithm

Other values MAY be used. Compression algorithm values can be registered in the IANA JSON
Web Encryption Compression Algorithm registry defined in . The zip value is a case-
sensitive string. If no zip parameter is present, no compression is applied to the Plaintext
before encryption. This Header Parameter MUST be integrity protected, and therefore MUST
occur only within the JWE Protected Header, when used. Use of this Header Parameter is
OPTIONAL. This Header Parameter MUST be understood and processed by implementations.

4.1.4. "jku" (JWK Set URL) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the jku Header
Parameter defined in Section 4.1.2 of , except that the JWK Set resource contains the

[JWS]

[JWS]

[JWA]
[JWA]

[JWA]

[JWA]
[JWA]

[RFC1951]

[JWA]

[JWS]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

Parameter defined in Section 4.1.2 of , except that the JWK Set resource contains the
public key to which the JWE was encrypted; this can be used to determine the private key
needed to decrypt the JWE.

4.1.5. "jwk" (JSON Web Key) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the jwk Header
Parameter defined in Section 4.1.3 of , except that the key is the public key to which
the JWE was encrypted; this can be used to determine the private key needed to decrypt the
JWE.

4.1.6. "kid" (Key ID) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the kid Header
Parameter defined in Section 4.1.4 of , except that the key hint references the public
key to which the JWE was encrypted; this can be used to determine the private key needed to
decrypt the JWE. This parameter allows originators to explicitly signal a change of key to JWE
recipients.

4.1.7. "x5u" (X.509 URL) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the x5u Header
Parameter defined in Section 4.1.5 of , except that the X.509 public key certificate or
certificate chain contains the public key to which the JWE was encrypted; this can
be used to determine the private key needed to decrypt the JWE.

4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the x5c Header
Parameter defined in Section 4.1.6 of , except that the X.509 public key certificate or
certificate chain contains the public key to which the JWE was encrypted; this can
be used to determine the private key needed to decrypt the JWE.

See Appendix B of for an example x5c value.

4.1.9. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the x5t Header
Parameter defined in Section 4.1.7 of , except that certificate referenced by the
thumbprint contains the public key to which the JWE was encrypted; this can be used to
determine the private key needed to decrypt the JWE.

4.1.10. "typ" (Type) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the typ Header
Parameter defined in Section 4.1.8 of , except that the type is of this complete JWE
object.

4.1.11. "cty" (Content Type) Header Parameter

[JWS]

[JWS]

[JWS]

[JWS]
[RFC5280]

[JWS]
[RFC5280]

[JWS]

[JWS]

[JWS]

 TOC

 TOC

 TOC

 TOC

 TOC

This parameter has the same meaning, syntax, and processing rules as the cty Header
Parameter defined in Section 4.1.9 of , except that the type is of the secured content
(the payload).

4.1.12. "crit" (Critical) Header Parameter

This parameter has the same meaning, syntax, and processing rules as the crit Header
Parameter defined in Section 4.1.10 of , except that JWE Header Parameters are being
referred to, rather than JWS Header Parameters.

4.2. Public Header Parameter Names

Additional Header Parameter names can be defined by those using JWEs. However, in order
to prevent collisions, any new Header Parameter name should either be registered in the
IANA JSON Web Signature and Encryption Header Parameters registry defined in or be
a Public Name: a value that contains a Collision-Resistant Name. In each case, the definer of
the name or value needs to take reasonable precautions to make sure they are in control of
the part of the namespace they use to define the Header Parameter name.

New Header Parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

4.3. Private Header Parameter Names

A producer and consumer of a JWE may agree to use Header Parameter names that are
Private Names: names that are not Registered Header Parameter names or
Public Header Parameter names . Unlike Public Header Parameter names,
Private Header Parameter names are subject to collision and should be used with caution.

5. Producing and Consuming JWEs

5.1. Message Encryption

The message encryption process is as follows. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Determine the Key Management Mode employed by the algorithm used to
determine the Content Encryption Key (CEK) value. (This is the algorithm
recorded in the alg (algorithm) Header Parameter of the resulting JWE.)

2. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, generate a random Content Encryption Key (CEK) value. See

 [RFC4086] for considerations on generating random values. The CEK MUST
have a length equal to that required for the content encryption algorithm.

3. When Direct Key Agreement or Key Agreement with Key Wrapping are employed,
use the key agreement algorithm to compute the value of the agreed upon key.
When Direct Key Agreement is employed, let the Content Encryption Key (CEK)
be the agreed upon key. When Key Agreement with Key Wrapping is employed,
the agreed upon key will be used to wrap the CEK.

4. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, encrypt the CEK to the recipient and let the result be the JWE
Encrypted Key.

5. When Direct Key Agreement or Direct Encryption are employed, let the JWE
Encrypted Key be the empty octet sequence.

[JWS]

[JWS]

[JWS]

Section 4.1
Section 4.2

RFC
4086

 TOC

Encrypted Key be the empty octet sequence.
6. When Direct Encryption is employed, let the Content Encryption Key (CEK) be the

shared symmetric key.
7. Compute the encoded key value BASE64URL(JWE Encrypted Key).
8. If the JWE JSON Serialization is being used, repeat this process (steps 1-7) for

each recipient.
9. Generate a random JWE Initialization Vector of the correct size for the content

encryption algorithm (if required for the algorithm); otherwise, let the JWE
Initialization Vector be the empty octet sequence.

10. Compute the encoded initialization vector value BASE64URL(JWE Initialization
Vector).

11. If a zip parameter was included, compress the Plaintext using the specified
compression algorithm.

12. Serialize the (compressed) Plaintext into an octet sequence M.
13. Create the JSON object(s) containing the desired set of Header Parameters,

which together comprise the JWE Header: the JWE Protected Header, and if the
JWE JSON Serialization is being used, the JWE Shared Unprotected Header and
the JWE Per-Recipient Unprotected Header.

14. Compute the Encoded Protected Header value BASE64URL(UTF8(JWE Protected
Header)). If the JWE Protected Header is not present (which can only happen
when using the JWE JSON Serialization and no protected member is present),
let this value be the empty string.

15. Let the Additional Authenticated Data encryption parameter be ASCII(Encoded
Protected Header). However if a JWE AAD value is present (which can only be the
case when using the JWE JSON Serialization), instead let the Additional
Authenticated Data encryption parameter be ASCII(Encoded Protected Header ||
'.' || BASE64URL(JWE AAD)).

16. Encrypt M using the CEK, the JWE Initialization Vector, and the Additional
Authenticated Data value using the specified content encryption algorithm to
create the JWE Ciphertext value and the JWE Authentication Tag (which is the
Authentication Tag output from the encryption operation).

17. Compute the encoded ciphertext value BASE64URL(JWE Ciphertext).
18. Compute the encoded authentication tag value BASE64URL(JWE Authentication

Tag).
19. The five encoded values are used in both the JWE Compact Serialization and the

JWE JSON Serialization representations.
20. If a JWE AAD value is present, compute the encoded AAD value BASE64URL(JWE

AAD).
21. Create the desired serialized output. The Compact Serialization of this result is

the string BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE
Encrypted Key) || '.' || BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE
Ciphertext) || '.' || BASE64URL(JWE Authentication Tag). The JWE JSON
Serialization is described in .

5.2. Message Decryption

The message decryption process is the reverse of the encryption process. The order of the
steps is not significant in cases where there are no dependencies between the inputs and
outputs of the steps. If any of these steps fails, the encrypted content cannot be validated.

It is an application decision which recipients' encrypted content must successfully validate for
the JWE to be accepted. In some cases, encrypted content for all recipients must successfully
validate or the JWE will be rejected. In other cases, only the encrypted content for a single
recipient needs to be successfully validated. However, in all cases, the encrypted content for
at least one recipient MUST successfully validate or the JWE MUST be rejected.

1. Parse the JWE representation to extract the serialized values for the components
of the JWE -- when using the JWE Compact Serialization, the base64url encoded
representations of the JWE Protected Header, the JWE Encrypted Key, the JWE
Initialization Vector, the JWE Ciphertext, and the JWE Authentication Tag, and
when using the JWE JSON Serialization, also the base64url encoded
representation of the JWE AAD and the unencoded JWE Shared Unprotected
Header and JWE Per-Recipient Unprotected Header values. When using the JWE
Compact Serialization, the JWE Protected Header, the JWE Encrypted Key, the JWE
Initialization Vector, the JWE Ciphertext, and the JWE Authentication Tag are
represented as base64url encoded values in that order, separated by four period

Section 7.2

represented as base64url encoded values in that order, separated by four period
('.') characters. The JWE JSON Serialization is described in .

2. The encoded representations of the JWE Protected Header, the JWE Encrypted
Key, the JWE Initialization Vector, the JWE Ciphertext, the JWE Authentication Tag,
and the JWE AAD MUST be successfully base64url decoded following the
restriction that no padding characters have been used.

3. The octet sequence resulting from decoding the encoded JWE Protected Header
MUST be a UTF-8 encoded representation of a completely valid JSON object
conforming to , which is the JWE Protected Header.

4. If using the JWE Compact Serialization, let the JWE Header be the JWE Protected
Header; otherwise, when using the JWE JSON Serialization, let the JWE Header be
the union of the members of the JWE Protected Header, the JWE Shared
Unprotected Header and the corresponding JWE Per-Recipient Unprotected
Header, all of which must be completely valid JSON objects.

5. The resulting JWE Header MUST NOT contain duplicate Header Parameter
names. When using the JWE JSON Serialization, this restriction includes that the
same Header Parameter name also MUST NOT occur in distinct JSON object
values that together comprise the JWE Header.

6. Verify that the implementation understands and can process all fields that it is
required to support, whether required by this specification, by the algorithms
being used, or by the crit Header Parameter value, and that the values of
those parameters are also understood and supported.

7. Determine the Key Management Mode employed by the algorithm specified by
the alg (algorithm) Header Parameter.

8. Verify that the JWE uses a key known to the recipient.
9. When Direct Key Agreement or Key Agreement with Key Wrapping are employed,

use the key agreement algorithm to compute the value of the agreed upon key.
When Direct Key Agreement is employed, let the Content Encryption Key (CEK)
be the agreed upon key. When Key Agreement with Key Wrapping is employed,
the agreed upon key will be used to decrypt the JWE Encrypted Key.

10. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, decrypt the JWE Encrypted Key to produce the Content Encryption Key
(CEK). The CEK MUST have a length equal to that required for the content
encryption algorithm. Note that when there are multiple recipients, each
recipient will only be able decrypt any JWE Encrypted Key values that were
encrypted to a key in that recipient's possession. It is therefore normal to only be
able to decrypt one of the per-recipient JWE Encrypted Key values to obtain the
CEK value. To mitigate the attacks described in [RFC3218], the
recipient MUST NOT distinguish between format, padding, and length errors of
encrypted keys. It is strongly recommended, in the event of receiving an
improperly formatted key, that the receiver substitute a randomly generated
CEK and proceed to the next step, to mitigate timing attacks.

11. When Direct Key Agreement or Direct Encryption are employed, verify that the
JWE Encrypted Key value is empty octet sequence.

12. When Direct Encryption is employed, let the Content Encryption Key (CEK) be the
shared symmetric key.

13. If the JWE JSON Serialization is being used, repeat this process (steps 4-12) for
each recipient contained in the representation until the CEK value has been
determined.

14. Compute the Encoded Protected Header value BASE64URL(UTF8(JWE Protected
Header)). If the JWE Protected Header is not present (which can only happen
when using the JWE JSON Serialization and no protected member is present),
let this value be the empty string.

15. Let the Additional Authenticated Data encryption parameter be ASCII(Encoded
Protected Header). However if a JWE AAD value is present (which can only be the
case when using the JWE JSON Serialization), instead let the Additional
Authenticated Data encryption parameter be ASCII(Encoded Protected Header ||
'.' || BASE64URL(JWE AAD)).

16. Decrypt the JWE Ciphertext using the CEK, the JWE Initialization Vector, the
Additional Authenticated Data value, and the JWE Authentication Tag (which is
the Authentication Tag input to the calculation) using the specified content
encryption algorithm, returning the decrypted plaintext and validating the JWE
Authentication Tag in the manner specified for the algorithm, rejecting the input
without emitting any decrypted output if the JWE Authentication Tag is incorrect.

17. If a zip parameter was included, uncompress the decrypted plaintext using the
specified compression algorithm.

18. If all the previous steps succeeded, output the resulting Plaintext.

Section 7.2

[I‑D.ietf‑json‑rfc4627bis]

RFC 3218

 TOC

 TOC

 TOC

 TOC

 TOC

5.3. String Comparison Rules

The string comparison rules for this specification are the same as those defined in Section
5.3 of .

6. Key Identification

The key identification methods for this specification are the same as those defined in Section
6 of , except that the key being identified is the public key to which the JWE was
encrypted.

7. Serializations

JWE objects use one of two serializations, the JWE Compact Serialization or the JWE JSON
Serialization. Applications using this specification need to specify what serialization and
serialization features are used for that application. For instance, applications might specify
that only the JWE JSON Serialization is used, that only JWE JSON Serialization support for a
single recipient is used, or that support for multiple recipients is used. JWE implementations
only need to implement the features needed for the applications they are designed to
support.

7.1. JWE Compact Serialization

The JWE Compact Serialization represents encrypted content as a compact URL-safe string.
This string is BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE Encrypted Key)
|| '.' || BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' ||
BASE64URL(JWE Authentication Tag). Only one recipient is supported by the JWE Compact
Serialization and it provides no syntax to represent JWE Shared Unprotected Header, JWE Per-
Recipient Unprotected Header, or JWE AAD values.

7.2. JWE JSON Serialization

The JWE JSON Serialization represents encrypted content as a JSON object. Content using the
JWE JSON Serialization can be encrypted to more than one recipient. This representation is
neither optimized for compactness nor URL-safe.

The following members are defined for use in top-level JSON objects used for the JWE JSON
Serialization:

protected
The protected member MUST be present and contain the value
BASE64URL(UTF8(JWE Protected Header)) when the JWE Protected Header value is
non-empty; otherwise, it MUST be absent. These Header Parameter values are
integrity protected.

unprotected
The unprotected member MUST be present and contain the value JWE Shared
Unprotected Header when the JWE Shared Unprotected Header value is non-
empty; otherwise, it MUST be absent. This value is represented as an unencoded
JSON object, rather than as a string. These Header Parameter values are not
integrity protected.

iv
The iv member MUST be present and contain the value BASE64URL(JWE
Initialization Vector) when the JWE Initialization Vector value is non-empty;
otherwise, it MUST be absent.

[JWS]

[JWS]

otherwise, it MUST be absent.
aad

The aad member MUST be present and contain the value BASE64URL(JWE AAD))
when the JWE AAD value is non-empty; otherwise, it MUST be absent. A JWE AAD
value can be included to supply a base64url encoded value to be integrity
protected but not encrypted.

ciphertext
The ciphertext member MUST be present and contain the value
BASE64URL(JWE Ciphertext).

tag
The tag member MUST be present and contain the value BASE64URL(JWE
Authentication Tag) when the JWE Authentication Tag value is non-empty;
otherwise, it MUST be absent.

recipients
The recipients member value MUST be an array of JSON objects. Each object
contains information specific to a single recipient. This member MUST be present,
even if the array elements contain only the empty JSON object {} (which can
happen when all Header Parameter values are shared between all recipients and
when no encrypted key is used, such as when doing Direct Encryption).

The following members are defined for use in the JSON objects that are elements of the
recipients array:

header
The header member MUST be present and contain the value JWE Per-Recipient
Unprotected Header when the JWE Per-Recipient Unprotected Header value is non-
empty; otherwise, it MUST be absent. This value is represented as an unencoded
JSON object, rather than as a string. These Header Parameter values are not
integrity protected.

encrypted_key
The encrypted_key member MUST be present and contain the value
BASE64URL(JWE Encrypted Key) when the JWE Encrypted Key value is non-empty;
otherwise, it MUST be absent.

At least one of the header, protected, and unprotected members MUST be present so
that alg and enc Header Parameter values are conveyed for each recipient computation.

Additional members can be present in both the JSON objects defined above; if not
understood by implementations encountering them, they MUST be ignored.

Some Header Parameters, including the alg parameter, can be shared among all recipient
computations. Header Parameters in the JWE Protected Header and JWE Shared Unprotected
Header values are shared among all recipients.

The Header Parameter values used when creating or validating per-recipient Ciphertext and
Authentication Tag values are the union of the three sets of Header Parameter values that
may be present: (1) the JWE Protected Header represented in the protected member, (2)
the JWE Shared Unprotected Header represented in the unprotected member, and (3) the
JWE Per-Recipient Unprotected Header represented in the header member of the recipient's
array element. The union of these sets of Header Parameters comprises the JWE Header. The
Header Parameter names in the three locations MUST be disjoint.

Each JWE Encrypted Key value is computed using the parameters of the corresponding JWE
Header value in the same manner as for the JWE Compact Serialization. This has the
desirable property that each JWE Encrypted Key value in the recipients array is identical to
the value that would have been computed for the same parameter in the JWE Compact
Serialization. Likewise, the JWE Ciphertext and JWE Authentication Tag values match those
produced for the JWE Compact Serialization, provided that the JWE Protected Header value
(which represents the integrity-protected Header Parameter values) matches that used in
the JWE Compact Serialization.

All recipients use the same JWE Protected Header, JWE Initialization Vector, JWE Ciphertext,
and JWE Authentication Tag values, when present, resulting in potentially significant space
savings if the message is large. Therefore, all Header Parameters that specify the treatment
of the Plaintext value MUST be the same for all recipients. This primarily means that the enc
(encryption algorithm) Header Parameter value in the JWE Header for each recipient and any
parameters of that algorithm MUST be the same.

 TOC

 TOC

 TOC

 TOC

In summary, the syntax of a JWE using the JWE JSON Serialization is as follows:

 {"protected":"<integrity-protected shared header contents>",
 "unprotected":<non-integrity-protected shared header contents>,
 "recipients":[
 {"header":<per-recipient unprotected header 1 contents>,
 "encrypted_key":"<encrypted key 1 contents>"},
 ...
 {"header":<per-recipient unprotected header N contents>,
 "encrypted_key":"<encrypted key N contents>"}],
 "aad":"<additional authenticated data contents>",
 "iv":"<initialization vector contents>",
 "ciphertext":"<ciphertext contents>",
 "tag":"<authentication tag contents>"
 }

See for an example of computing a JWE using the JWE JSON Serialization.

8. TLS Requirements

The TLS requirements for this specification are the same as those defined in Section 8 of
.

9. Distinguishing between JWS and JWE Objects

There are several ways of distinguishing whether an object is a JWS or JWE object. All these
methods will yield the same result for all legal input values; they may yield different results
for malformed inputs.

If the object is using the JWS Compact Serialization or the JWE Compact
Serialization, the number of base64url encoded segments separated by period
('.') characters differs for JWSs and JWEs. JWSs have three segments separated
by two period ('.') characters. JWEs have five segments separated by four period
('.') characters.
If the object is using the JWS JSON Serialization or the JWE JSON Serialization, the
members used will be different. JWSs have a signatures member and JWEs do
not. JWEs have a recipients member and JWSs do not.
A JWS Header can be distinguished from a JWE header by examining the alg
(algorithm) Header Parameter value. If the value represents a digital signature
or MAC algorithm, or is the value none, it is for a JWS; if it represents a Key
Encryption, Key Wrapping, Direct Key Agreement, Key Agreement with Key
Wrapping, or Direct Encryption algorithm, it is for a JWE. (Extracting the alg value
to examine is straightforward when using the JWS Compact Serialization or the
JWE Compact Serialization and may be more difficult when using the JWS JSON
Serialization or the JWE JSON Serialization.)
A JWS Header can also be distinguished from a JWE header by determining
whether an enc (encryption algorithm) member exists. If the enc member exists,
it is a JWE; otherwise, it is a JWS.

10. IANA Considerations

10.1. JSON Web Signature and Encryption Header Parameters Registration

This specification registers the Header Parameter names defined in in the IANA

Appendix A.4

[JWS]

Section 4.1

 TOC

This specification registers the Header Parameter names defined in in the IANA
JSON Web Signature and Encryption Header Parameters registry defined in .

10.1.1. Registry Contents

Header Parameter Name: alg
Header Parameter Description: Algorithm
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: enc
Header Parameter Description: Encryption Algorithm
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: zip
Header Parameter Description: Compression Algorithm
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: jku
Header Parameter Description: JWK Set URL
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: jwk
Header Parameter Description: JSON Web Key
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification document(s): of [[this document]]

Header Parameter Name: kid
Header Parameter Description: Key ID
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: x5u
Header Parameter Description: X.509 URL
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: x5c
Header Parameter Description: X.509 Certificate Chain
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: x5t
Header Parameter Description: X.509 Certificate SHA-1 Thumbprint
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: typ
Header Parameter Description: Type
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: cty

Section 4.1
[JWS]

Section 4.1.1

Section 4.1.2

Section 4.1.3

Section 4.1.4

Section 4.1.5

Section 4.1.6

Section 4.1.7

Section 4.1.8

Section 4.1.9

Section 4.1.10

 TOC

 TOC

 TOC

Header Parameter Description: Content Type
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: crit
Header Parameter Description: Critical
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

11. Security Considerations

All of the security issues faced by any cryptographic application must be faced by a
JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric
keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of security considerations is
beyond the scope of this document.

All the security considerations in the JWS specification also apply to this specification.
Likewise, all the security considerations in
[W3C.CR‑xmlenc‑core1‑20120313] also apply, other than those that are XML specific.

When decrypting, particular care must be taken not to allow the JWE recipient to be used as
an oracle for decrypting messages. [RFC3218] should be consulted for specific
countermeasures to attacks on RSAES-PKCS1-V1_5. An attacker might modify the contents
of the alg parameter from RSA-OAEP to RSA1_5 in order to generate a formatting error that
can be detected and used to recover the CEK even if RSAES OAEP was used to encrypt the
CEK. It is therefore particularly important to report all formatting errors to the CEK, Additional
Authenticated Data, or ciphertext as a single error when the encrypted content is rejected.

Additionally, this type of attack can be prevented by the use of "key tainting". This method
restricts the use of a key to a limited set of algorithms -- usually one. This means, for
instance, that if the key is marked as being for RSA-OAEP only, any attempt to decrypt a
message using the RSA1_5 algorithm with that key would fail immediately due to invalid use
of the key.

12. References

12.1. Normative References

[ECMAScript] Ecma International, “ECMAScript Language Specification, 5.1 Edition,” ECMA 262, June 2011 (HTML, PDF).

[I-D.ietf-json-
rfc4627bis]

Bray, T., “The JSON Data Interchange Format,” draft-ietf-json-rfc4627bis-10 (work in progress),
December 2013 (TXT).

[JWA] Jones, M., “JSON Web Algorithms (JWA),” draft-ietf-jose-json-web-algorithms (work in progress),
February 2014 (HTML).

[JWK] Jones, M., “JSON Web Key (JWK),” draft-ietf-jose-json-web-key (work in progress), February 2014 (HTML).

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” draft-ietf-jose-json-web-signature
(work in progress), February 2014 (HTML).

[RFC1951] Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3,” RFC 1951, May 1996 (TXT,
PS, PDF).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[USASCII] American National Standards Institute, “Coded Character Set -- 7-bit American Standard Code for Information
Interchange,” ANSI X3.4, 1986.

Section 4.1.11

Section 4.1.12

XML Encryption 1.1

RFC 3218

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
http://tools.ietf.org/html/draft-ietf-json-rfc4627bis-10
http://www.ietf.org/internet-drafts/draft-ietf-json-rfc4627bis-10.txt
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
mailto:ghost@aladdin.com
http://tools.ietf.org/html/rfc1951
http://www.rfc-editor.org/rfc/rfc1951.txt
http://www.rfc-editor.org/rfc/rfc1951.ps
http://www.rfc-editor.org/rfc/rfc1951.pdf
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt

 TOC

 TOC

 TOC

 TOC

 TOC

12.2. Informative References

[I-D.mcgrew-aead-
aes-cbc-hmac-sha2]

McGrew, D. and K. Paterson, “Authenticated Encryption with AES-CBC and HMAC-SHA ,” draft-
mcgrew-aead-aes-cbc-hmac-sha2-01 (work in progress), October 2012 (TXT).

[I-D.rescorla-jsms] Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work
in progress), March 2011 (TXT).

[JSE] Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.

[RFC3218] Rescorla, E., “Preventing the Million Message Attack on Cryptographic Message Syntax,”
RFC 3218, January 2002 (TXT).

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106,
RFC 4086, June 2005 (TXT).

[RFC5652] Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT).

[W3C.CR-xmlenc-
core1-20120313]

Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch, “XML Encryption Syntax and Processing Version
1.1,” World Wide Web Consortium CR CR-xmlenc-core1-20120313, March 2012 (HTML).

Appendix A. JWE Examples

This section provides examples of JWE computations.

A.1. Example JWE using RSAES OAEP and AES GCM

This example encrypts the plaintext "The true sign of intelligence is not knowledge but
imagination." to the recipient using RSAES OAEP for key encryption and AES GCM for content
encryption. The representation of this plaintext is:

[84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32, 111, 102, 32, 105, 110,
116, 101, 108, 108, 105, 103, 101, 110, 99, 101, 32, 105, 115, 32, 110, 111, 116, 32, 107,
110, 111, 119, 108, 101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105, 110, 97,
116, 105, 111, 110, 46]

A.1.1. JWE Header

The following example JWE Protected Header declares that:

the Content Encryption Key is encrypted to the recipient using the RSAES OAEP
algorithm to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES GCM algorithm with a 256 bit key to
produce the Ciphertext.

 {"alg":"RSA-OAEP","enc":"A256GCM"}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected Header)) gives this
value:

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ

A.1.2. Content Encryption Key (CEK)

Generate a 256 bit random Content Encryption Key (CEK). In this example, the value is:

[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154, 212, 246, 138, 7, 110, 91,
112, 46, 34, 105, 47, 130, 203, 46, 122, 234, 64, 252]

http://tools.ietf.org/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-01
http://www.ietf.org/internet-drafts/draft-mcgrew-aead-aes-cbc-hmac-sha2-01.txt
http://tools.ietf.org/html/draft-rescorla-jsms-00
http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt
http://jsonenc.info/enc/1.0/
http://tools.ietf.org/html/rfc3218
http://www.rfc-editor.org/rfc/rfc3218.txt
http://tools.ietf.org/html/rfc4086
http://www.rfc-editor.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc5652
http://www.rfc-editor.org/rfc/rfc5652.txt
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313

 TOC

 TOC

A.1.3. Key Encryption

Encrypt the CEK with the recipient's public key using the RSAES OAEP algorithm to produce
the JWE Encrypted Key. This example uses the RSA key represented in JSON Web Key
format below (with line breaks for display purposes only):

 {"kty":"RSA",
 "n":"oahUIoWw0K0usKNuOR6H4wkf4oBUXHTxRvgb48E-BVvxkeDNjbC4he8rUW
 cJoZmds2h7M70imEVhRU5djINXtqllXI4DFqcI1DgjT9LewND8MW2Krf3S
 psk_ZkoFnilakGygTwpZ3uesH-PFABNIUYpOiN15dsQRkgr0vEhxN92i2a
 sbOenSZeyaxziK72UwxrrKoExv6kc5twXTq4h-QChLOln0_mtUZwfsRaMS
 tPs6mS6XrgxnxbWhojf663tuEQueGC-FCMfra36C9knDFGzKsNa7LZK2dj
 YgyD3JR_MB_4NUJW_TqOQtwHYbxevoJArm-L5StowjzGy-_bq6Gw",
 "e":"AQAB",
 "d":"kLdtIj6GbDks_ApCSTYQtelcNttlKiOyPzMrXHeI-yk1F7-kpDxY4-WY5N
 WV5KntaEeXS1j82E375xxhWMHXyvjYecPT9fpwR_M9gV8n9Hrh2anTpTD9
 3Dt62ypW3yDsJzBnTnrYu1iwWRgBKrEYY46qAZIrA2xAwnm2X7uGR1hghk
 qDp0Vqj3kbSCz1XyfCs6_LehBwtxHIyh8Ripy40p24moOAbgxVw3rxT_vl
 t3UVe4WO3JkJOzlpUf-KTVI2Ptgm-dARxTEtE-id-4OJr0h-K-VFs3VSnd
 VTIznSxfyrj8ILL6MG_Uv8YAu7VILSB3lOW085-4qE3DzgrTjgyQ"
 }

The resulting JWE Encrypted Key value is:

[56, 163, 154, 192, 58, 53, 222, 4, 105, 218, 136, 218, 29, 94, 203, 22, 150, 92, 129, 94, 211,
232, 53, 89, 41, 60, 138, 56, 196, 216, 82, 98, 168, 76, 37, 73, 70, 7, 36, 8, 191, 100, 136,
196, 244, 220, 145, 158, 138, 155, 4, 117, 141, 230, 199, 247, 173, 45, 182, 214, 74, 177,
107, 211, 153, 11, 205, 196, 171, 226, 162, 128, 171, 182, 13, 237, 239, 99, 193, 4, 91, 219,
121, 223, 107, 167, 61, 119, 228, 173, 156, 137, 134, 200, 80, 219, 74, 253, 56, 185, 91, 177,
34, 158, 89, 154, 205, 96, 55, 18, 138, 43, 96, 218, 215, 128, 124, 75, 138, 243, 85, 25, 109,
117, 140, 26, 155, 249, 67, 167, 149, 231, 100, 6, 41, 65, 214, 251, 232, 87, 72, 40, 182, 149,
154, 168, 31, 193, 126, 215, 89, 28, 111, 219, 125, 182, 139, 235, 195, 197, 23, 234, 55, 58,
63, 180, 68, 202, 206, 149, 75, 205, 248, 176, 67, 39, 178, 60, 98, 193, 32, 238, 122, 96, 158,
222, 57, 183, 111, 210, 55, 188, 215, 206, 180, 166, 150, 166, 106, 250, 55, 229, 72, 40, 69,
214, 216, 104, 23, 40, 135, 212, 28, 127, 41, 80, 175, 174, 168, 115, 171, 197, 89, 116, 92,
103, 246, 83, 216, 182, 176, 84, 37, 147, 35, 45, 219, 172, 99, 226, 233, 73, 37, 124, 42, 72,
49, 242, 35, 127, 184, 134, 117, 114, 135, 206]

Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives this value (with line
breaks for display purposes only):

 OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
 ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
 Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
 mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
 1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
 6UklfCpIMfIjf7iGdXKHzg

A.1.4. Initialization Vector

Generate a random 96 bit JWE Initialization Vector. In this example, the value is:

[227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219]

Encoding this JWE Initialization Vector as BASE64URL(JWE Initialization Vector) gives this
value:

 48V1_ALb6US04U3b

[JWK]

 TOC

 TOC

 TOC

 TOC

A.1.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be ASCII(BASE64URL(UTF8(JWE
Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 116, 84, 48, 70, 70, 85, 67,
73, 115, 73, 109, 86, 117, 89, 121, 73, 54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105,
102, 81]

A.1.6. Content Encryption

Encrypt the Plaintext with AES GCM using the CEK as the encryption key, the JWE Initialization
Vector, and the Additional Authenticated Data value above, requesting a 128 bit
Authentication Tag output. The resulting Ciphertext is:

[229, 236, 166, 241, 53, 191, 115, 196, 174, 43, 73, 109, 39, 122, 233, 96, 140, 206, 120, 52,
51, 237, 48, 11, 190, 219, 186, 80, 111, 104, 50, 142, 47, 167, 59, 61, 181, 127, 196, 21, 40,
82, 242, 32, 123, 143, 168, 226, 73, 216, 176, 144, 138, 247, 106, 60, 16, 205, 160, 109, 64,
63, 192]

The resulting Authentication Tag value is:

[92, 80, 104, 49, 133, 25, 161, 215, 173, 101, 219, 211, 136, 91, 210, 145]

Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this value (with line breaks
for display purposes only):

 5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
 SdiwkIr3ajwQzaBtQD_A

Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication Tag) gives this value:

 XFBoMYUZodetZdvTiFvSkQ

A.1.7. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the string
BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE Encrypted Key) || '.' ||
BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' ||
BASE64URL(JWE Authentication Tag).

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
 OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
 ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
 Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
 mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
 1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
 6UklfCpIMfIjf7iGdXKHzg.
 48V1_ALb6US04U3b.
 5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
 SdiwkIr3ajwQzaBtQD_A.
 XFBoMYUZodetZdvTiFvSkQ

 TOC

 TOC

 TOC

 TOC

 TOC

A.1.8. Validation

This example illustrates the process of creating a JWE with RSAES OAEP for key encryption
and AES GCM for content encryption. These results can be used to validate JWE decryption
implementations for these algorithms. Note that since the RSAES OAEP computation
includes random values, the encryption results above will not be completely reproducible.
However, since the AES GCM computation is deterministic, the JWE Encrypted Ciphertext
values will be the same for all encryptions performed using these inputs.

A.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256

This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES-
PKCS1-V1_5 for key encryption and AES_128_CBC_HMAC_SHA_256 for content encryption.
The representation of this plaintext is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

A.2.1. JWE Header

The following example JWE Protected Header declares that:

the Content Encryption Key is encrypted to the recipient using the RSAES-
PKCS1-V1_5 algorithm to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256 algorithm to
produce the Ciphertext.

 {"alg":"RSA1_5","enc":"A128CBC-HS256"}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected Header)) gives this
value:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

A.2.2. Content Encryption Key (CEK)

Generate a 256 bit random Content Encryption Key (CEK). In this example, the key value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

A.2.3. Key Encryption

Encrypt the CEK with the recipient's public key using the RSAES-PKCS1-V1_5 algorithm to
produce the JWE Encrypted Key. This example uses the RSA key represented in JSON Web Key

 format below (with line breaks for display purposes only):

 {"kty":"RSA",
 "n":"sXchDaQebHnPiGvyDOAT4saGEUetSyo9MKLOoWFsueri23bOdgWp4Dy1Wl
 UzewbgBHod5pcM9H95GQRV3JDXboIRROSBigeC5yjU1hGzHHyXss8UDpre
 cbAYxknTcQkhslANGRUZmdTOQ5qTRsLAt6BTYuyvVRdhS8exSZEy_c4gs_
 7svlJJQ4H9_NxsiIoLwAEk7-Q3UXERGYw_75IDrGA84-lA_-Ct4eTlXHBI
 Y2EaV7t7LjJaynVJCpkv4LKjTTAumiGUIuQhrNhZLuF_RJLqHpM2kgWFLU

[JWK]

 TOC

 TOC

 TOC

 7-VTdL1VbC2tejvcI2BlMkEpk1BzBZI0KQB0GaDWFLN-aEAw3vRw",
 "e":"AQAB",
 "d":"VFCWOqXr8nvZNyaaJLXdnNPXZKRaWCjkU5Q2egQQpTBMwhprMzWzpR8Sxq
 1OPThh_J6MUD8Z35wky9b8eEO0pwNS8xlh1lOFRRBoNqDIKVOku0aZb-ry
 nq8cxjDTLZQ6Fz7jSjR1Klop-YKaUHc9GsEofQqYruPhzSA-QgajZGPbE_
 0ZaVDJHfyd7UUBUKunFMScbflYAAOYJqVIVwaYR5zWEEceUjNnTNo_CVSj
 -VvXLO5VZfCUAVLgW4dpf1SrtZjSt34YLsRarSb127reG_DUwg9Ch-Kyvj
 T1SkHgUWRVGcyly7uvVGRSDwsXypdrNinPA4jlhoNdizK2zF2CWQ"
 }

The resulting JWE Encrypted Key value is:

[80, 104, 72, 58, 11, 130, 236, 139, 132, 189, 255, 205, 61, 86, 151, 176, 99, 40, 44, 233,
176, 189, 205, 70, 202, 169, 72, 40, 226, 181, 156, 223, 120, 156, 115, 232, 150, 209, 145,
133, 104, 112, 237, 156, 116, 250, 65, 102, 212, 210, 103, 240, 177, 61, 93, 40, 71, 231, 223,
226, 240, 157, 15, 31, 150, 89, 200, 215, 198, 203, 108, 70, 117, 66, 212, 238, 193, 205, 23,
161, 169, 218, 243, 203, 128, 214, 127, 253, 215, 139, 43, 17, 135, 103, 179, 220, 28, 2, 212,
206, 131, 158, 128, 66, 62, 240, 78, 186, 141, 125, 132, 227, 60, 137, 43, 31, 152, 199, 54,
72, 34, 212, 115, 11, 152, 101, 70, 42, 219, 233, 142, 66, 151, 250, 126, 146, 141, 216, 190,
73, 50, 177, 146, 5, 52, 247, 28, 197, 21, 59, 170, 247, 181, 89, 131, 241, 169, 182, 246, 99,
15, 36, 102, 166, 182, 172, 197, 136, 230, 120, 60, 58, 219, 243, 149, 94, 222, 150, 154, 194,
110, 227, 225, 112, 39, 89, 233, 112, 207, 211, 241, 124, 174, 69, 221, 179, 107, 196, 225,
127, 167, 112, 226, 12, 242, 16, 24, 28, 120, 182, 244, 213, 244, 153, 194, 162, 69, 160, 244,
248, 63, 165, 141, 4, 207, 249, 193, 79, 131, 0, 169, 233, 127, 167, 101, 151, 125, 56, 112,
111, 248, 29, 232, 90, 29, 147, 110, 169, 146, 114, 165, 204, 71, 136, 41, 252]

Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives this value (with line
breaks for display purposes only):

 UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm
 1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
 HALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIF
 NPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPhcCdZ6XDP0_F8
 rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPgwCp6X-nZZd9OHBv
 -B3oWh2TbqmScqXMR4gp_A

A.2.4. Initialization Vector

Generate a random 128 bit JWE Initialization Vector. In this example, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

Encoding this JWE Initialization Vector as BASE64URL(JWE Initialization Vector) gives this
value:

 AxY8DCtDaGlsbGljb3RoZQ

A.2.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be ASCII(BASE64URL(UTF8(JWE
Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 120, 88, 122, 85, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48]

A.2.6. Content Encryption

 TOC

 TOC

 TOC

Encrypt the Plaintext with AES_128_CBC_HMAC_SHA_256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from are detailed in . The
resulting Ciphertext is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

The resulting Authentication Tag value is:

[246, 17, 244, 190, 4, 95, 98, 3, 231, 0, 115, 157, 242, 203, 100, 191]

Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this value:

 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY

Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication Tag) gives this value:

 9hH0vgRfYgPnAHOd8stkvw

A.2.7. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the string
BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE Encrypted Key) || '.' ||
BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' ||
BASE64URL(JWE Authentication Tag).

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
 UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm
 1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
 HALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIF
 NPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPhcCdZ6XDP0_F8
 rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPgwCp6X-nZZd9OHBv
 -B3oWh2TbqmScqXMR4gp_A.
 AxY8DCtDaGlsbGljb3RoZQ.
 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY.
 9hH0vgRfYgPnAHOd8stkvw

A.2.8. Validation

This example illustrates the process of creating a JWE with RSAES-PKCS1-V1_5 for key
encryption and AES_CBC_HMAC_SHA2 for content encryption. These results can be used to
validate JWE decryption implementations for these algorithms. Note that since the RSAES-
PKCS1-V1_5 computation includes random values, the encryption results above will not be
completely reproducible. However, since the AES CBC computation is deterministic, the JWE
Encrypted Ciphertext values will be the same for all encryptions performed using these
inputs.

A.3. Example JWE using AES Key Wrap and AES_128_CBC_HMAC_SHA_256

This example encrypts the plaintext "Live long and prosper." to the recipient using AES Key
Wrap for key encryption and AES GCM for content encryption. The representation of this
plaintext is:

Appendix A.3 Appendix B

 TOC

 TOC

 TOC

 TOC

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

A.3.1. JWE Header

The following example JWE Protected Header declares that:

the Content Encryption Key is encrypted to the recipient using the AES Key Wrap
algorithm with a 128 bit key to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256 algorithm to
produce the Ciphertext.

 {"alg":"A128KW","enc":"A128CBC-HS256"}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected Header)) gives this
value:

 eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

A.3.2. Content Encryption Key (CEK)

Generate a 256 bit random Content Encryption Key (CEK). In this example, the value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

A.3.3. Key Encryption

Encrypt the CEK with the shared symmetric key using the AES Key Wrap algorithm to produce
the JWE Encrypted Key. This example uses the symmetric key represented in JSON Web Key

 format below:

 {"kty":"oct",
 "k":"GawgguFyGrWKav7AX4VKUg"
 }

The resulting JWE Encrypted Key value is:

[232, 160, 123, 211, 183, 76, 245, 132, 200, 128, 123, 75, 190, 216, 22, 67, 201, 138, 193,
186, 9, 91, 122, 31, 246, 90, 28, 139, 57, 3, 76, 124, 193, 11, 98, 37, 173, 61, 104, 57]

Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives this value:

 6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ

A.3.4. Initialization Vector

Generate a random 128 bit JWE Initialization Vector. In this example, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

[JWK]

 TOC

 TOC

 TOC

 TOC

Encoding this JWE Initialization Vector as BASE64URL(JWE Initialization Vector) gives this
value:

 AxY8DCtDaGlsbGljb3RoZQ

A.3.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be ASCII(BASE64URL(UTF8(JWE
Protected Header))). This value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48]

A.3.6. Content Encryption

Encrypt the Plaintext with AES_128_CBC_HMAC_SHA_256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from this example are detailed in . The
resulting Ciphertext is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

The resulting Authentication Tag value is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38, 194, 85]

Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this value:

 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY

Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication Tag) gives this value:

 U0m_YmjN04DJvceFICbCVQ

A.3.7. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the string
BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE Encrypted Key) || '.' ||
BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' ||
BASE64URL(JWE Authentication Tag).

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
 6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ.
 AxY8DCtDaGlsbGljb3RoZQ.
 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY.
 U0m_YmjN04DJvceFICbCVQ

A.3.8. Validation

Appendix B

 TOC

 TOC

 TOC

 TOC

This example illustrates the process of creating a JWE with AES Key Wrap for key encryption
and AES GCM for content encryption. These results can be used to validate JWE decryption
implementations for these algorithms. Also, since both the AES Key Wrap and AES GCM
computations are deterministic, the resulting JWE value will be the same for all encryptions
performed using these inputs. Since the computation is reproducible, these results can also
be used to validate JWE encryption implementations for these algorithms.

A.4. Example JWE using JWE JSON Serialization

This section contains an example using the JWE JSON Serialization. This example
demonstrates the capability for encrypting the same plaintext to multiple recipients.

Two recipients are present in this example. The algorithm and key used for the first recipient
are the same as that used in . The algorithm and key used for the second
recipient are the same as that used in . The resulting JWE Encrypted Key
values are therefore the same; those computations are not repeated here.

The Plaintext, the Content Encryption Key (CEK), Initialization Vector, and JWE Protected
Header are shared by all recipients (which must be the case, since the Ciphertext and
Authentication Tag are also shared).

A.4.1. JWE Per-Recipient Unprotected Headers

The first recipient uses the RSAES-PKCS1-V1_5 algorithm to encrypt the Content Encryption
Key (CEK). The second uses AES Key Wrap to encrypt the CEK. Key ID values are supplied for
both keys. The two per-recipient header values used to represent these algorithms and Key
IDs are:

 {"alg":"RSA1_5","kid":"2011-04-29"}

and

 {"alg":"A128KW","kid":"7"}

A.4.2. JWE Protected Header

The Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256 algorithm to produce
the common JWE Ciphertext and JWE Authentication Tag values. The JWE Protected Header
value representing this is:

 {"enc":"A128CBC-HS256"}

Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected Header)) gives this
value:

 eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

A.4.3. JWE Unprotected Header

This JWE uses the jku Header Parameter to reference a JWK Set. This is represented in the

Appendix A.2
Appendix A.3

 TOC

 TOC

 TOC

This JWE uses the jku Header Parameter to reference a JWK Set. This is represented in the
following JWE Unprotected Header value as:

 {"jku":"https://server.example.com/keys.jwks"}

A.4.4. Complete JWE Header Values

Combining the per-recipient, protected, and unprotected header values supplied, the JWE
Header values used for the first and second recipient respectively are:

 {"alg":"RSA1_5",
 "kid":"2011-04-29",
 "enc":"A128CBC-HS256",
 "jku":"https://server.example.com/keys.jwks"}

and

 {"alg":"A128KW",
 "kid":"7",
 "enc":"A128CBC-HS256",
 "jku":"https://server.example.com/keys.jwks"}

A.4.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be ASCII(BASE64URL(UTF8(JWE
Protected Header))). This value is:

[101, 121, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85,
104, 84, 77, 106, 85, 50, 73, 110, 48]

A.4.6. Content Encryption

Encrypt the Plaintext with AES_128_CBC_HMAC_SHA_256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from are detailed in . The
resulting Ciphertext is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

The resulting Authentication Tag value is:

[51, 63, 149, 60, 252, 148, 225, 25, 92, 185, 139, 245, 35, 2, 47, 207]

Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this value:

 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY

Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication Tag) gives this value:

 Mz-VPPyU4RlcuYv1IwIvzw

Appendix A.3 Appendix B

 TOC

 TOC

 TOC

A.4.7. Complete JWE JSON Serialization Representation

The complete JSON Web Encryption JSON Serialization for these values is as follows (with line
breaks for display purposes only):

 {"protected":
 "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "unprotected":
 {"jku":"https://server.example.com/keys.jwks"},
 "recipients":[
 {"header":
 {"alg":"RSA1_5"},
 "encrypted_key":
 "UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-
 kFm1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKx
 GHZ7PcHALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3
 YvkkysZIFNPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPh
 cCdZ6XDP0_F8rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPg
 wCp6X-nZZd9OHBv-B3oWh2TbqmScqXMR4gp_A"},
 {"header":
 {"alg":"A128KW"},
 "encrypted_key":
 "6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ"}],
 "iv":
 "AxY8DCtDaGlsbGljb3RoZQ",
 "ciphertext":
 "KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",
 "tag":
 "Mz-VPPyU4RlcuYv1IwIvzw"
 }

Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation

This example shows the steps in the AES_128_CBC_HMAC_SHA_256 authenticated
encryption computation using the values from the example in . As described
where this algorithm is defined in Sections 4.8 and 4.8.3 of JWA, the AES_CBC_HMAC_SHA2
family of algorithms are implemented using Advanced Encryption Standard (AES) in Cipher
Block Chaining (CBC) mode with PKCS #5 padding to perform the encryption and an HMAC
SHA-2 function to perform the integrity calculation - in this case, HMAC SHA-256.

B.1. Extract MAC_KEY and ENC_KEY from Key

The 256 bit AES_128_CBC_HMAC_SHA_256 key K used in this example is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

Use the first 128 bits of this key as the HMAC SHA-256 key MAC_KEY, which is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206]

Use the last 128 bits of this key as the AES CBC key ENC_KEY, which is:

[107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

Note that the MAC key comes before the encryption key in the input key K; this is in the
opposite order of the algorithm names in the identifiers "AES_128_CBC_HMAC_SHA_256"
and A128CBC-HS256.

Appendix A.3

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

B.2. Encrypt Plaintext to Create Ciphertext

Encrypt the Plaintext with AES in Cipher Block Chaining (CBC) mode using PKCS #5 padding
using the ENC_KEY above. The Plaintext in this example is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

The encryption result is as follows, which is the Ciphertext output:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

B.3. 64 Bit Big Endian Representation of AAD Length

The Additional Authenticated Data (AAD) in this example is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48]

This AAD is 51 bytes long, which is 408 bits long. The octet string AL, which is the number of
bits in AAD expressed as a big endian 64 bit unsigned integer is:

[0, 0, 0, 0, 0, 0, 1, 152]

B.4. Initialization Vector Value

The Initialization Vector value used in this example is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

B.5. Create Input to HMAC Computation

Concatenate the AAD, the Initialization Vector, the Ciphertext, and the AL value. The result of
this concatenation is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48, 3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101, 40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102, 0, 0, 0, 0, 0, 0, 1, 152]

B.6. Compute HMAC Value

Compute the HMAC SHA-256 of the concatenated value above. This result M is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38, 194, 85, 9, 84, 229, 201,
219, 135, 44, 252, 145, 102, 179, 140, 105, 86, 229, 116]

B.7. Truncate HMAC Value to Create Authentication Tag

Use the first half (128 bits) of the HMAC output M as the Authentication Tag output T. This
truncated value is:

 TOC

 TOC

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38, 194, 85]

Appendix C. Acknowledgements

Solutions for encrypting JSON content were also explored by [JSE]
and [I‑D.rescorla‑jsms], both of which significantly
influenced this draft. This draft attempts to explicitly reuse as many of the relevant concepts
from [W3C.CR‑xmlenc‑core1‑20120313] and [RFC5652] as
possible, while utilizing simple, compact JSON-based data structures.

Special thanks are due to John Bradley and Nat Sakimura for the discussions that helped
inform the content of this specification and to Eric Rescorla and Joe Hildebrand for allowing
the reuse of text from in this document.

Thanks to Axel Nennker, Emmanuel Raviart, Brian Campbell, and Edmund Jay for validating
the examples in this specification.

This specification is the work of the JOSE Working Group, which includes dozens of active and
dedicated participants. In particular, the following individuals contributed ideas, feedback, and
wording that influenced this specification:

Richard Barnes, John Bradley, Brian Campbell, Breno de Medeiros, Dick Hardt, Jeff Hodges,
Edmund Jay, James Manger, Matt Miller, Tony Nadalin, Axel Nennker, Emmanuel Raviart, Nat
Sakimura, Jim Schaad, Hannes Tschofenig, and Sean Turner.

Jim Schaad and Karen O'Donoghue chaired the JOSE working group and Sean Turner and
Stephen Farrell served as Security area directors during the creation of this specification.

Appendix D. Document History

[[to be removed by the RFC Editor before publication as an RFC]]

-21

Changed some references from being normative to informative, addressing
issue #90.
Applied review comments to the JSON Serialization section, addressing issue
#178.

-20

Made terminology definitions more consistent, addressing issue #165.
Restructured the JSON Serialization section to call out the parameters used in
hanging lists, addressing issue #178.
Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis, addressing issue
#90.

-19

Reordered the key selection parameters.

-18

Updated the mandatory-to-implement (MTI) language to say that applications
using this specification need to specify what serialization and serialization
features are used for that application, addressing issue #176.
Changes to address editorial and minor issues #89, #135, #165, #174, #175,
#177, #179, and #180.
Used Header Parameter Description registry field.

-17

Refined the typ and cty definitions to always be MIME Media Types, with the
omission of "application/" prefixes recommended for brevity, addressing issue

JSON Simple Encryption
JavaScript Message Security Format

XML Encryption 1.1 RFC 5652

[I‑D.rescorla‑jsms]

omission of "application/" prefixes recommended for brevity, addressing issue
#50.
Updated the mandatory-to-implement (MTI) language to say that general-
purpose implementations must implement the single recipient case for both
serializations whereas special-purpose implementations can implement just one
serialization if that meets the needs of the use cases the implementation is
designed for, addressing issue #176.
Explicitly named all the logical components of a JWE and defined the processing
rules and serializations in terms of those components, addressing issues #60,
#61, and #62.
Replaced verbose repetitive phases such as "base64url encode the octets of the
UTF-8 representation of X" with mathematical notation such as
"BASE64URL(UTF8(X))".
Header Parameters and processing rules occurring in both JWS and JWE are now
referenced in JWS by JWE, rather than duplicated, addressing issue #57.
Terms used in multiple documents are now defined in one place and
incorporated by reference. Some lightly used or obvious terms were also
removed. This addresses issue #58.

-16

Changes to address editorial and minor issues #163, #168, #169, #170, #172,
and #173.

-15

Clarified that it is an application decision which recipients' encrypted content
must successfully validate for the JWE to be accepted, addressing issue #35.
Changes to address editorial issues #34, #164, and #169.

-14

Clarified that the protected, unprotected, header, iv, tag, and
encrypted_key parameters are to be omitted in the JWE JSON Serialization
when their values would be empty. Stated that the recipients array must
always be present.

-13

Added an aad (Additional Authenticated Data) member for the JWE JSON
Serialization, enabling Additional Authenticated Data to be supplied that is not
double base64url encoded, addressing issue #29.

-12

Clarified that the typ and cty header parameters are used in an application-
specific manner and have no effect upon the JWE processing.
Replaced the MIME types application/jwe+json and application/jwe with
application/jose+json and application/jose.
Stated that recipients MUST either reject JWEs with duplicate Header Parameter
Names or use a JSON parser that returns only the lexically last duplicate
member name.
Moved the epk, apu, and apv Header Parameter definitions to be with the
algorithm descriptions that use them.
Added a Serializations section with parallel treatment of the JWE Compact
Serialization and the JWE JSON Serialization and also moved the former
Implementation Considerations content there.
Restored use of the term "AEAD".
Changed terminology from "block encryption" to "content encryption".

-11

Added Key Identification section.
Removed the Encrypted Key value from the AAD computation since it is already
effectively integrity protected by the encryption process. The AAD value now only
contains the representation of the JWE Encrypted Header.
For the JWE JSON Serialization, enable Header Parameter values to be specified
in any of three parameters: the protected member that is integrity protected
and shared among all recipients, the unprotected member that is not integrity

protected and shared among all recipients, and the header member that is not
integrity protected and specific to a particular recipient. (This does not affect the
JWE Compact Serialization, in which all Header Parameter values are in a single
integrity protected JWE Header value.)
Shortened the names authentication_tag to tag and
initialization_vector to iv in the JWE JSON Serialization, addressing issue
#20.
Removed apv (agreement PartyVInfo) since it is no longer used.
Removed suggested compact serialization for multiple recipients.
Changed the MIME type name application/jwe-js to
application/jwe+json, addressing issue #22.
Tightened the description of the crit (critical) header parameter.

-10

Changed the JWE processing rules for multiple recipients so that a single AAD
value contains the header parameters and encrypted key values for all the
recipients, enabling AES GCM to be safely used for multiple recipients.
Added an appendix suggesting a possible compact serialization for JWEs with
multiple recipients.

-09

Added JWE JSON Serialization, as specified by draft-jones-jose-jwe-json-
serialization-04.
Registered application/jwe-js MIME type and JWE-JS typ header parameter
value.
Defined that the default action for header parameters that are not understood is
to ignore them unless specifically designated as "MUST be understood" or
included in the new crit (critical) header parameter list. This addressed issue
#6.
Corrected x5c description. This addressed issue #12.
Changed from using the term "byte" to "octet" when referring to 8 bit values.
Added Key Management Mode definitions to terminology section and used the
defined terms to provide clearer key management instructions. This addressed
issue #5.
Added text about preventing the recipient from behaving as an oracle during
decryption, especially when using RSAES-PKCS1-V1_5.
Changed from using the term "Integrity Value" to "Authentication Tag".
Changed member name from integrity_value to authentication_tag in
the JWE JSON Serialization.
Removed Initialization Vector from the AAD value since it is already integrity
protected by all of the authenticated encryption algorithms specified in the JWA
specification.
Replaced A128CBC+HS256 and A256CBC+HS512 with A128CBC-HS256 and
A256CBC-HS512. The new algorithms perform the same cryptographic
computations as , but with the
Initialization Vector and Authentication Tag values remaining separate from the
Ciphertext value in the output representation. Also deleted the header
parameters epu (encryption PartyUInfo) and epv (encryption PartyVInfo), since
they are no longer used.

-08

Replaced uses of the term "AEAD" with "Authenticated Encryption", since the
term AEAD in the RFC 5116 sense implied the use of a particular data
representation, rather than just referring to the class of algorithms that perform
authenticated encryption with associated data.
Applied editorial improvements suggested by Jeff Hodges and Hannes
Tschofenig. Many of these simplified the terminology used.
Clarified statements of the form "This header parameter is OPTIONAL" to "Use of
this header parameter is OPTIONAL".
Added a Header Parameter Usage Location(s) field to the IANA JSON Web
Signature and Encryption Header Parameters registry.
Added seriesInfo information to Internet Draft references.

-07

[I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2]

Added a data length prefix to PartyUInfo and PartyVInfo values.
Updated values for example AES CBC calculations.
Made several local editorial changes to clean up loose ends left over from to the
decision to only support block encryption methods providing integrity. One of
these changes was to explicitly state that the enc (encryption method) algorithm
must be an Authenticated Encryption algorithm with a specified key length.

-06

Removed the int and kdf parameters and defined the new composite
Authenticated Encryption algorithms A128CBC+HS256 and A256CBC+HS512 to
replace the former uses of AES CBC, which required the use of separate integrity
and key derivation functions.
Included additional values in the Concat KDF calculation -- the desired output
size and the algorithm value, and optionally PartyUInfo and PartyVInfo values.
Added the optional header parameters apu (agreement PartyUInfo), apv
(agreement PartyVInfo), epu (encryption PartyUInfo), and epv (encryption
PartyVInfo). Updated the KDF examples accordingly.
Promoted Initialization Vector from being a header parameter to being a top-
level JWE element. This saves approximately 16 bytes in the compact
serialization, which is a significant savings for some use cases. Promoting the
Initialization Vector out of the header also avoids repeating this shared value in
the JSON serialization.
Changed x5c (X.509 Certificate Chain) representation from being a single string
to being an array of strings, each containing a single base64 encoded DER
certificate value, representing elements of the certificate chain.
Added an AES Key Wrap example.
Reordered the encryption steps so CMK creation is first, when required.
Correct statements in examples about which algorithms produce reproducible
results.

-05

Support both direct encryption using a shared or agreed upon symmetric key,
and the use of a shared or agreed upon symmetric key to key wrap the CMK.
Added statement that "StringOrURI values are compared as case-sensitive
strings with no transformations or canonicalizations applied".
Updated open issues.
Indented artwork elements to better distinguish them from the body text.

-04

Refer to the registries as the primary sources of defined values and then
secondarily reference the sections defining the initial contents of the registries.
Normatively reference [W3C.CR‑xmlenc‑core1‑20120313]
for its security considerations.
Reference draft-jones-jose-jwe-json-serialization instead of draft-jones-json-web-
encryption-json-serialization.
Described additional open issues.
Applied editorial suggestions.

-03

Added the kdf (key derivation function) header parameter to provide crypto
agility for key derivation. The default KDF remains the Concat KDF with the SHA-
256 digest function.
Reordered encryption steps so that the Encoded JWE Header is always created
before it is needed as an input to the Authenticated Encryption "additional
authenticated data" parameter.
Added the cty (content type) header parameter for declaring type information
about the secured content, as opposed to the typ (type) header parameter,
which declares type information about this object.
Moved description of how to determine whether a header is for a JWS or a JWE
from the JWT spec to the JWE spec.
Added complete encryption examples for both Authenticated Encryption and
non-Authenticated Encryption algorithms.
Added complete key derivation examples.

XML Encryption 1.1

 TOC

Added complete key derivation examples.
Added "Collision Resistant Namespace" to the terminology section.
Reference ITU.X690.1994 for DER encoding.
Added Registry Contents sections to populate registry values.
Numerous editorial improvements.

-02

When using Authenticated Encryption algorithms (such as AES GCM), use the
"additional authenticated data" parameter to provide integrity for the header,
encrypted key, and ciphertext and use the resulting "authentication tag" value as
the JWE Authentication Tag.
Defined KDF output key sizes.
Generalized text to allow key agreement to be employed as an alternative to key
wrapping or key encryption.
Changed compression algorithm from gzip to DEFLATE.
Clarified that it is an error when a kid value is included and no matching key is
found.
Clarified that JWEs with duplicate Header Parameter Names MUST be rejected.
Clarified the relationship between typ header parameter values and MIME types.
Registered application/jwe MIME type and "JWE" typ header parameter value.
Simplified JWK terminology to get replace the "JWK Key Object" and "JWK
Container Object" terms with simply "JSON Web Key (JWK)" and "JSON Web Key
Set (JWK Set)" and to eliminate potential confusion between single keys and sets
of keys. As part of this change, the Header Parameter Name for a public key
value was changed from jpk (JSON Public Key) to jwk (JSON Web Key).
Added suggestion on defining additional header parameters such as x5t#S256
in the future for certificate thumbprints using hash algorithms other than SHA-1.
Specify RFC 2818 server identity validation, rather than RFC 6125 (paralleling the
same decision in the OAuth specs).
Generalized language to refer to Message Authentication Codes (MACs) rather
than Hash-based Message Authentication Codes (HMACs) unless in a context
specific to HMAC algorithms.
Reformatted to give each header parameter its own section heading.

-01

Added an integrity check for non-Authenticated Encryption algorithms.
Added jpk and x5c header parameters for including JWK public keys and X.509
certificate chains directly in the header.
Clarified that this specification is defining the JWE Compact Serialization.
Referenced the new JWE-JS spec, which defines the JWE JSON Serialization.
Added text "New header parameters should be introduced sparingly since an
implementation that does not understand a parameter MUST reject the JWE".
Clarified that the order of the encryption and decryption steps is not significant in
cases where there are no dependencies between the inputs and outputs of the
steps.
Made other editorial improvements suggested by JOSE working group
participants.

-00

Created the initial IETF draft based upon draft-jones-json-web-encryption-02 with
no normative changes.
Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 Eric Rescorla
 RTFM, Inc.

Email: ekr@rtfm.com

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ekr@rtfm.com

 Joe Hildebrand
 Cisco Systems, Inc.

Email: jhildebr@cisco.com

mailto:jhildebr@cisco.com

	JSON Web Encryption (JWE) draft-ietf-jose-json-web-encryption-21
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	3. JSON Web Encryption (JWE) Overview
	3.1. Example JWE
	4. JWE Header
	4.1. Registered Header Parameter Names
	4.1.1. "alg" (Algorithm) Header Parameter
	4.1.2. "enc" (Encryption Algorithm) Header Parameter
	4.1.3. "zip" (Compression Algorithm) Header Parameter
	4.1.4. "jku" (JWK Set URL) Header Parameter
	4.1.5. "jwk" (JSON Web Key) Header Parameter
	4.1.6. "kid" (Key ID) Header Parameter
	4.1.7. "x5u" (X.509 URL) Header Parameter
	4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter
	4.1.9. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter
	4.1.10. "typ" (Type) Header Parameter
	4.1.11. "cty" (Content Type) Header Parameter
	4.1.12. "crit" (Critical) Header Parameter
	4.2. Public Header Parameter Names
	4.3. Private Header Parameter Names
	5. Producing and Consuming JWEs
	5.1. Message Encryption
	5.2. Message Decryption
	5.3. String Comparison Rules
	6. Key Identification
	7. Serializations
	7.1. JWE Compact Serialization
	7.2. JWE JSON Serialization
	8. TLS Requirements
	9. Distinguishing between JWS and JWE Objects
	10. IANA Considerations
	10.1. JSON Web Signature and Encryption Header Parameters Registration
	10.1.1. Registry Contents
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References
	Appendix A. JWE Examples
	A.1. Example JWE using RSAES OAEP and AES GCM
	A.1.1. JWE Header
	A.1.2. Content Encryption Key (CEK)
	A.1.3. Key Encryption
	A.1.4. Initialization Vector
	A.1.5. Additional Authenticated Data
	A.1.6. Content Encryption
	A.1.7. Complete Representation
	A.1.8. Validation
	A.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256
	A.2.1. JWE Header
	A.2.2. Content Encryption Key (CEK)
	A.2.3. Key Encryption
	A.2.4. Initialization Vector
	A.2.5. Additional Authenticated Data
	A.2.6. Content Encryption
	A.2.7. Complete Representation
	A.2.8. Validation
	A.3. Example JWE using AES Key Wrap and AES_128_CBC_HMAC_SHA_256
	A.3.1. JWE Header
	A.3.2. Content Encryption Key (CEK)
	A.3.3. Key Encryption
	A.3.4. Initialization Vector
	A.3.5. Additional Authenticated Data
	A.3.6. Content Encryption
	A.3.7. Complete Representation
	A.3.8. Validation
	A.4. Example JWE using JWE JSON Serialization
	A.4.1. JWE Per-Recipient Unprotected Headers
	A.4.2. JWE Protected Header
	A.4.3. JWE Unprotected Header
	A.4.4. Complete JWE Header Values
	A.4.5. Additional Authenticated Data
	A.4.6. Content Encryption
	A.4.7. Complete JWE JSON Serialization Representation
	Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation
	B.1. Extract MAC_KEY and ENC_KEY from Key
	B.2. Encrypt Plaintext to Create Ciphertext
	B.3. 64 Bit Big Endian Representation of AAD Length
	B.4. Initialization Vector Value
	B.5. Create Input to HMAC Computation
	B.6. Compute HMAC Value
	B.7. Truncate HMAC Value to Create Authentication Tag
	Appendix C. Acknowledgements
	Appendix D. Document History
	Authors' Addresses

