Network Working Group J. Rosenberg
Request for Comments: 4235 Cisco Systems
Category: Standards Track H. Schulzrinne

Columbia University
R. Mahy, Ed.
SIP Edge LLC
November 2005

An INVITE-Initiated Dialog Event Package for the
Session Initiation Protocol (SIP)

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards'™ (STD 01) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document defines a dialog event package for the SIP Events
architecture, along with a data format used in notifications for this

package.

The dialog package allows users to subscribe to another

user and to receive notification of the changes in state of INVITE-
initiated dialog usages in which the subscribed-to user is involved.

Table of Contents

R o oo Yo LT oo 3
22 I~ 1111 10 o T)/ 4
3. Dialog Event Package e 4
3.1. Event Package Name 4
3.2. Event Package Parameters 4
3.3. SUBSCRIBE BOOEES ...ttt e e e e e e e e e e 5
3.4. Subscription Duration et a e a e e 6
3.5. NOTIFY BOOIES ..ottt e e e e e e e 6
3.6. Notifier Processing of SUBSCRIBE Requests 7
3.7. Notifier Generation of NOTIFY Requests_ _..... 8
3.7.1. The Dialog State Machine 8

3.7.2. Applying the State Machine 11

Rosenberg, et al. Standards Track [Page 1]

RFC 4235 Dialog Package November 2005

3.8. Subscriber Processing of NOTIFY Requests 12

3.9. Handling of Forked Requests i aaaaaaaaan-- 12

3.10. Rate of Notificationsot e ae e aaaaaaa 13

3.11. State AQeNtES e e e e e eiaaaaaaa 13

4. Dialog Information Format 13

4.1. Structure of Dialog Information ccceoaaan. 13

4.1.1. Dialog Element i i e e e e e 14

4.1.2. State Element a i aaaa 15

4.1_.3. Duration Element aaaaa- 15

4.1.4. Replaces Element i 15

4.1.5. Referred-By Element i .ooo... 16

4.1.6. Local and Remote Elements 16

4.2. Sample Notification Body e e e aaaaaann 17

4_.3. Constructing Coherent State i iaaaaaaaann 18

S T o 1T 1= 19

5. Definition of New Media Feature Parameters_ _.._..... 22

5.1. The "sip.byeless™ Parameter i ai ooy 22

5.2. The "sip.rendering"” parametero ecccaacaaaaaan 23

6. EXampPles ..o e e e e e e e e e aae e e e 24

6.1. Basic Example e e e e e e 24

6.2. Emulating a Shared-Line Phone System 26

6.3. Minimal Dialog Information with Privacy__._...... 31

7. Security Consideratlions oo it e e a e e e e 32

8. TANA Considerationsttt e d e a e e e 32

8.1. application/dialog-info+xml MIME Registration 33
8.2. URN Sub-Namespace Registration for

urn:ietf:params:xml:ns:dialog-info __ ... ______.._._._..... 34

8.3. Schema Registration it e i e aaa s 34

8.4. Media Feature Parameter Registration .._...._ 34

8.4.1. sip.byeless e aaaeaaaan 35

8.4.2. sSIp-rendering ... e et e e e e a e 35

9. Acknowledgements e e e 36

10. ReTErENCeS . oo it e e e e e e e e e e 36

10.1. Normative References ot a e aaa e 36

10.2. Informative References i e aaaaa e 37

Rosenberg, et al. Standards Track [Page 2]

RFC 4235 Dialog Package November 2005

1. Introduction

The SIP Events framework [1] defines general mechanisms for
subscription to, and notification of, events within SIP networks. It
introduces the notion of a package, which is a specific
"iInstantiation” of the events mechanism for a well-defined set of
events. Packages have been defined for user presence [16], watcher
information [17], and message waiting indicators [18], amongst
others. This document defines an event package for INVITE-initiated
dialog usages. Dialogs refer to the SIP relationship established
between two SIP peers [2]. Dialogs can be created by many methods,
although RFC 3261 defines only one: the INVITE method. RFC 3265 [1]
defines the SUBSCRIBE and NOTIFY methods, which also create new
dialog usages. However, using this package to model state for non-
session dialog usages is out of the scope of this specification.

A variety of applications are enabled through knowledge of INVITE
dialog usage state. Some examples include:

Automatic Callback: In this basic Public Switched Telephone
Network (PSTN) application, user A calls user B but User B is
busy. User A would like to get a callback when user B hangs
up- When B hangs up, user A’s phone rings. When A picks up,
they hear ringing, while they are being connected to B. To
implement this with SIP, a mechanism is required for A to
receive a notification when the dialogs at B are complete.

Presence-Enabled Conferencing: In this application, user A wishes
to set up a conference call with users B and C. Rather than
being scheduled, the call is created automatically when A, B
and C are all available. To do this, the server providing the
application would like to know whether A, B, and C are
"online™, not idle, and not in a phone call. Determining
whether or not A, B, and C are in calls can be done in two
ways. In the first, the server acts as a call-stateful proxy
for users A, B, and C, and therefore knows their call state.
This won’t always be possible, however, and it introduces
scalability, reliability, and operational complexities. In the
second way, the server subscribes to the dialog state of those
users and receives notifications as this state changes. This
enables the application to be provided in a distributed way;
the server need not reside in the same domain as the users.

IM Conference Alerts: In this application, a user can receive an
Instant Message (IM) on their phone whenever someone joins a
conference that the phone is involved in. The IM alerts are
generated by an application separate from the conference
server.

Rosenberg, et al. Standards Track [Page 3]

RFC 4235 Dialog Package November 2005

In general, the dialog package allows for construction of distributed
applications, where the application requires information on dialog
state but is not co-resident with the end user on which that state
resides.

This document also defines two new callee capability [10] feature
parameters:

o0 "sip.byeless™, which indicates that a SIP user agent (UA) is not
capable of terminating a session itself (for example, in some
announcement or recording services, or in some call centers) in
which the UA is no longer interested in participating; and

0 "sip.rendering', which positively describes whether the user
agent is rendering any of the media it is receiving. These
feature parameters are useful in many of the same applications
that motivated the dialog package, such as conferencing,
presence, and the shared-line example described in Section 6.2.

2. Terminology

In this document, the key words "MUST"™, "MUST NOT", "REQUIRED",
"SHALL'"™, "SHALL NOT"™, ''SHOULD'", "SHOULD NOT", ""RECOMMENDED'", '"MAY',
and "OPTIONAL"™ are to be interpreted as described in RFC 2119 [9] and
indicate requirement levels for compliant implementations.

3. Dialog Event Package

This section provides the details for defining a SIP Events package,
as specified in [1].

3.1. Event Package Name

The name of this event package is '"‘dialog”. This package name is
carried in the Event and Allow-Events header fields, as defined in

[11-
3.2. Event Package Parameters

This package defines four Event Package parameters: call-id, to-tag,
from-tag, and include-session-description. If a subscription to a
specific dialog iIs requested, the first three of these parameters
MUST be present, to identify the dialog that is being subscribed to.
The to-tag is matched against the local tag, the from-tag is matched
against the remote tag, and the call-id is matched against the
Call-ID. The include-session-description parameter indicates whether
the subscriber would like to receive the session descriptions
associated with the subscribed dialog usage or usages.

Rosenberg, et al. Standards Track [Page 4]

RFC 4235 Dialog Package November 2005

It is also possible to subscribe to the set of dialogs created as a
result of a single INVITE sent by a UAC (user agent client). In that
case, the call-id and to-tag MUST be present. The to-tag is matched
against the local tag and the call-id is matched against the Call-ID.

The ABNF for these parameters is shown below. It refers to many
constructions from the ABNF of RFC3261, such as EQUAL, DQUOTE, and
token.
call-id = "call-id" EQUAL (token / DQUOTE callid DQUOTE)

;> NOTE: any DQUOTEs inside callid MUST be escaped!
from-tag = "from-tag" EQUAL token
to-tag = "to-tag" EQUAL token

with-sessd "include-session-description”

IT any call-ids contain embedded double-quotes, those double-quotes
MUST be escaped using the backslash-quoting mechanism. Note that the
call-id parameter may need to be expressed as a quoted string. This
is because the ABNF for the callid production and the word
production, which is used by callid (both from RFC 3261 [1]), allow
some characters (such as "@", "[", and ":") that are not allowed
within a token.

3.3. SUBSCRIBE Bodies

A SUBSCRIBE request for a dialog package MAY contain a body. This
body defines a filter to be applied to the subscription. Filter
documents are not specified in this document, and at the time of
writing, they are expected to be the subject of future
standardization activity.

A SUBSCRIBE request for a dialog package MAY be sent without a body.
This implies the default subscription filtering policy. The default
policy is:

o0 |If the Event header field contained dialog identifiers, a
notification is generated every time there is a change in the
state of any matching dialogs for the user identified in the
request URI of the SUBSCRIBE.

o |If there were no dialog identifiers in the Event header field, a
notification is generated every time there is any change in the
state of any dialogs for the user identified in the request URI of
the SUBSCRIBE with the following exceptions. |If the target
(Contact) URI of a subscriber is equivalent to the remote target
URI of a specific dialog, then the dialog element for that dialog
is suppressed for that subscriber. (The subscriber is already a
party in the dialog directly, so these notifications are

Rosenberg, et al. Standards Track [Page 5]

RFC

3.4.

3.5.

Ros

4235 Dialog Package November 2005

superfluous.) If no dialogs remain after suppressing dialogs, the
entire notification to that subscriber is suppressed and the
version number in the dialog-info element is not incremented for
that subscriber. Implicit Ffiltering for one subscriber does not
affect notifications to other subscribers.

o Notifications do not normally contain full state; rather, they
only indicate the state of the dialog(s) whose state has changed.
The exceptions are a NOTIFY sent in response to a SUBSCRIBE, and a
NOTIFY that contains no dialog elements. These NOTIFYs contain
the complete view of dialog state.

o0 The notifications contain the identities of the participants in
the dialog, the target URIs, and the dialog identifiers. Session
descriptions are not included unless explicitly requested and
explicitly authorized.

Subscription Duration

Dialog state changes fairly quickly. Once established, a typical
phone call lasts a few minutes (this is different for other session
types, of course). However, the interval between new calls is
typically long. Clients SHOULD specify an explicit duration.

There are two distinct use cases for dialog state. The Ffirst is when
a subscriber is interested in the state of a specific dialog or
dialogs (and they are authorized to find out just the state of those
dialogs). |In that case, when the dialogs terminate, so too does the
subscription. In these cases, the value of the subscription duration
is largely irrelevant; it SHOULD be longer than the typical duration
of a dialog. We recommend a default duration of two hours, which is
likely to cover most dialogs.

In another case, a subscriber is interested in the state of all
dialogs for a specific user. In these cases, a shorter interval
makes more sense. The default is one hour for these subscriptions.

NOTIFY Bodies

As described in RFC 3265 [1], the NOTIFY message will contain bodies
that describe the state of the subscribed resource. This body is iIn
a format listed in the Accept header field of the SUBSCRIBE, or in a
package-specific default format if the Accept header field was
omitted from the SUBSCRIBE.

In this event package, the body of the notification contains a dialog

information document. This document describes the state of one or
more dialogs associated with the subscribed resource. All

enberg, et al. Standards Track [Page 6]

RFC 4235 Dialog Package November 2005

subscribers and notifiers MUST support the "application/
dialog-info+xml" data format described in Section 4. The subscribe
request MAY contain an Accept header field. If no such header field
is present, it has a default value of "application/dialog-info+xml".
IT the header field is present, it MUST include "application/
dialog-info+xml"™, and it MAY include any other types capable of
representing dialog state.

OFf course, the notifications generated by the server MUST be in one
of the formats specified in the Accept header field in the SUBSCRIBE
request.

3.6. Notifier Processing of SUBSCRIBE Requests

The dialog information for a user contains sensitive information.
Therefore, all subscriptions SHOULD be authenticated and then
authorized before approval. All implementors of this package MUST
support the digest authentication mechanism as a baseline. The
authorization policy is at the discretion of the administrator, as
always. However, a few recommendations can be made.

It is RECOMMENDED that, if the policy of user B is that user A is
allowed to call them, dialog subscriptions from user A be allowed.
However, the information provided in the notifications does not
contain any dialog identification information, merely an indication
of whether the user is in at least one call. Specifically, they
should not be able to find out any more information than if they sent
an INVITE. (This concept of a "virtual" dialog is discussed more 1in
Section 3.7.2, and an example of such a notification body is shown
below).

<?xml version="1.0"7?>
<dialog-info xmIns="urn:ietf:params:xml:ns:dialog-info"
version="0" state="full"
entity=""sip:alice@example.com">
<dialog i1d=""as7d900as8">
<state>confirmed</state>
</dialog>
</dialog-info>

A user agent that registers with the address-of-record X SHOULD
authorize subscriptions that come from any entity that can
authenticate itself as X. Complete information on the dialog state
SHOULD be sent in this case. This authorization behavior allows a
group of devices representing a single user to become aware of each
other’s state. This is useful for applications such as
single-line-extension, also known as shared lines.

Rosenberg, et al. Standards Track [Page 7]

RFC

3.7.

4235 Dialog Package November 2005

Note that many implementations of "shared-lines" have a feature
that allows details of calls on a shared address-of-record to be
made private. This is a completely reasonable authorization
policy that could result in notifications that contain only the id
attribute of the dialog element and the state element when
shared-line privacy is requested, and notifications with more
complete information when shared-line privacy is not requested.

Notifier Generation of NOTIFY Requests

Notifications are generated for the dialog package when an INVITE
request is sent, when a new dialog comes into existence at a UA, or
when the state or characteristics of an existing dialog changes.
Therefore, a model of dialog state is needed in order to determine
precisely when to send notifications, and what their content should
be. The SIP specification has a reasonably well defined lifecycle
for dialogs. However, it is not explicitly modelled. This
specification provides an explicit model of dialog state through a
finite state machine.

It is RECOMMENDED that NOTIFY requests only contain information on
the dialogs whose state or participation information has changed.
However, 1T a notifier receives a SUBSCRIBE request, the triggered
NOTIFY SHOULD contain the state of all dialogs that the subscriber is
authorized to see.

1. The Dialog State Machine

Modelling of dialog state is complicated by two factors. The first
is forking, which can cause a single INVITE to generate many dialogs
at a UAC. The second is the differing views of state at the UAC
(user agent client) and UAS (usage agent server). We have chosen to
handle the first issue by extending the dialog finite state machine
(FSM) to include the states between transmission of the INVITE and
the creation of actual dialogs through receipt of 1xx and 2xx
responses. As a result, this specification supports the notion of
dialog state for dialogs before they are fully instantiated.

We have also chosen to use a single FSM for both UAC and UAS.

Rosenberg, et al. Standards Track [Page 8]

RFC 4235 Dialog Package November 2005

o + o +
| | 1xx-notag | |
| |-----mmm- > |
| Trying | |Proceeding|-—--- +
| |-+ 4] I
| (N | | |
o + | | o + |
| I | | |
| 1 1 | |
+<--C----- C--+ | 1xx-tag |
1 | | |
cancelled] | | \Y |
rejected] | | 1xx-tag +---—-——-—- + |
I > | | 2xx
| | | |
+<-—Cmmmm - | Early |-—- C---+ 1xx-tag
| | replaced | | | | w/new tag
| | |<----C-—-+ (new FSM
| | o + | instance
| | 2xx | | created)
R + |
| I 12xx |
| 11 |
\ vV Vv |
o + o + |
| | | | |
| | |
|Terminated]|<--——————-—-- | Confirmed|<----+
| | error | |
| | timeout | |
Fomm - + replaced +---—-——---—-- +
local-bye | n
remote-bye | |
| |
B +

2xXX w. new tag
(new FSM instance
created)
Figure 3

The FSM for dialog state is shown in Figure 3. The FSM is best
understood by considering the UAC and UAS cases separately.

Rosenberg, et al. Standards Track [Page 9]

RFC 4235 Dialog Package November 2005

The FSM is created in the Trying state when the UAC sends an INVITE
request. Upon receipt of a 1xx without a tag, the FSM transitions to
the Proceeding state. Note that there is no actual dialog yet, as
defined by the SIP specification. However, there is a "half-dialog",
in the sense that two of the three components of the dialog ID (the
call identifier and local tag) are known. 1If a 1xx with a tag is
received, the FSM transitions to the Early state. The full dialog
identifier is now defined. Had a 2xx been received, the FSM would
have transitioned to the Confirmed state.

IT, after transitioning to the Early or Confirmed states, the UAC
receives another 1xx or 2xx respectively with a different tag,
another instance of the FSM is created, initialized into the Early or
Confirmed state, respectively. The benefit of this approach is that
there will be a single FSM representing the entire state of the
invitation and resulting dialog when dealing in the common case of no
forking.

IT the UAC sends a CANCEL and then subsequently receives a 487 to its
INVITE transaction, all FSMs spawned from that INVITE transition to
the Terminated state with the event "cancelled”. If the UAC receives
a new invitation (with a Replaces [13] header) that replaces the
current Early or Confirmed dialog, all INVITE transactions spawned
from the replaced invitation transition to the Terminated state with
the event "replaced”. |If the INVITE transaction terminates with a
non-2xx response for any other reason, all FSMs spawned from that
INVITE transition to the Terminated state with the event "rejected”.

Once in the Confirmed state, the call is active. It can transition
to the Terminated state if the UAC sends a BYE or receives a BYE
(corresponding to the "local-bye"™ and "remote-bye" events as
appropriate), if a mid-dialog request generates a 481 or 408 response
(corresponding to the "error"™ event), or a mid-dialog request
generates no response (corresponding to the "timeout™ event).

From the perspective of the UAS, when an INVITE is received, the FSM
is created in the Trying state. |If it sends a 1xx without a tag, the
FSM transitions to the Proceeding state. If a 1xx is sent with a
tag, the FSM transitions to the Early state, and if a 2xx is sent, it
transitions to the Confirmed state. |If the UAS receives a CANCEL
request and then generates a 487 response to the INVITE (which can
occur in the Proceeding and Early states), the FSM transitions to the

Terminated state with the event "cancelled". |If the UAS generates
any other non-2xx final response to the INVITE request, the FSM
transitions to the Terminated state with the event “rejected". If

the UAS receives a new invitation (with a Replaces [13] header field)
that replaces the current Confirmed dialog, the replaced invitation
transitions to the Terminated state with the event "replaced”. Once

Rosenberg, et al. Standards Track [Page 10]

RFC 4235 Dialog Package November 2005

3.

7.

in the Confirmed state, the other transitions to the Terminated state
occur for the same reasons they do in the case of UAC.

There should never be a transition from the Trying state to the
Terminated state with the event "cancelled”, since the SIP
specification prohibits transmission of CANCEL until a provisional
response is received. However, this transition is defined in the
FSM just to unify the transitions from Trying, Proceeding, and
Early states to the Terminated state.

2. Applying the State Machine

The notifier MAY generate a NOTIFY request on any event transition of
the FSM. Whether it does or not is policy dependent. However, some
general guidelines are provided.

When the subscriber is unauthenticated, or it is authenticated but
represents a third party with no specific authorization policies, it
is RECOMMENDED that subscriptions to an individual dialog or to a
specific set of dialogs be forbidden. Only subscriptions to all
dialogs (i.e., there are no dialog identifiers in the Event header
field) are permitted. |In that case, actual dialog states across all
dialogs will not be reported. Rather, a single "virtual™ dialog FSM
will be used, and event transitions on that FSM will be reported.

IT there is any dialog at the UA whose state is Confirmed, the

virtual FSM is in the Confirmed state. If there are no dialogs at
the UA in the Confirmed state but there is at least one in the Early
state, the virtual FSM is in the Early or Confirmed state. If there

are no dialogs in the Confirmed or Early states but there is at least
one in the Proceeding state, the virtual FSM is in the Proceeding,
Early, or Confirmed state. |If there are no dialogs in the Confirmed,
Early, or Proceeding states but there is at least one in the Trying
state, the virtual FSM is in the Trying, Proceeding, Early or
Confirmed state. The choice of state to use depends on whether the
UA wishes to let unknown users know that their phone is ringing, as
opposed to being in an active call.

It is RECOMMENDED that, in the absence of any preference, Confirmed
is used in all cases as shown in the example in Section 3.6.
Furthermore, it is RECOMMENDED that the notifications of changes in
the virtual FSM machine not convey any information except the state
of the FSM and its event transitions - no dialog identifiers (which
are ill-defined in this model in any case). The use of this virtual
FSM allows minimal information to be conveyed. A subscriber cannot
know how many calls are in progress, or with whom, just that there
exists a call. This is the same information they would receive if

Rosenberg, et al. Standards Track [Page 11]

RFC 4235 Dialog Package November 2005

they simply sent an INVITE to the user instead; a 486 (Busy Here)
response would indicate that they are on a call.

When the subscriber is authenticated and has authenticated itself
with the same address-of-record that the UA itself uses, if no
explicit authorization policy is defined, it is RECOMMENDED that all
state transitions on dialogs that have been subscribed to be
reported, along with complete dialog IDs. This means either all of
the dialogs, if no dialog identifiers were present in the Event
header field, or the specific set of dialogs identified by the Event
header field parameters.

The notifier SHOULD generate a NOTIFY request on any change in the
characteristics associated with the dialog. Since these include
Contact URIs, Contact parameters, and session descriptions, receipt
of re-INVITEs and UPDATE requests [3] that modify this information
MAY trigger notifications.

3.8. Subscriber Processing of NOTIFY Requests

The SIP Events framework expects packages to specify how a subscriber
processes NOTIFY requests in package-specific ways. In particular, a
package should specify how it uses the NOTIFY requests to construct a
coherent view of the state of the subscribed resource.

Typically, the NOTIFY for the dialog package will contain information
about only those dialogs whose state has changed. To construct a
coherent view of the total state of all dialogs, a subscriber to the
dialog package will need to combine NOTIFYs received over time.

Notifications within this package can convey partial information;
that is, they can indicate information about a subset of the state
associated with the subscription. This means that an explicit
algorithm needs to be defined in order to construct coherent and
consistent state. The details of this mechanism are specific to the
particular document type. See Section 4.3 for information on
constructing coherent information from an application/dialog-info+xml
document.

3.9. Handling of Forked Requests
Since dialog state is distributed across the UA for a particular
user, it is reasonable and useful for a SUBSCRIBE request for dialog
state to fork and to reach multiple UAs.

As a result, a forked SUBSCRIBE request for dialog state can install
multiple subscriptions. Subscribers to this package MUST be prepared

Rosenberg, et al. Standards Track [Page 12]

RFC 4235 Dialog Package November 2005

to install subscription state for each NOTIFY generated as a result
of a single SUBSCRIBE.

3.10. Rate of Notifications

For reasons of congestion control, it is important that the rate of
notifications not be excessive. It is RECOMMENDED that the server

not generate notifications for a single subscriber faster than once
every 1 second.

3.11. State Agents

Dialog state is ideally maintained in the user agents in which the
dialog resides. Therefore, the elements that maintain the dialog are
the ones best suited to handle subscriptions to it. However, in some
cases, a network agent may also know the state of the dialogs held by
a user. Such state agents MAY be used with this package.

4. Dialog Information Format

Dialog information is an XML document [4] that MUST be well-formed
and SHOULD be valid. Dialog information documents MUST be based on
XML 1.0 and MUST be encoded using UTF-8. This specification makes
use of XML namespaces for identifying dialog information documents
and document fragments. The namespace URI for elements defined by
this specification is a URN [5], using the namespace identifier
“ietf” defined by [6] and extended by [7]- This URN is:

urn:ietf:params:xml:ns:dialog-info

A dialog information document begins with the root element tag
"dialog-info".

4.1. Structure of Dialog Information

A dialog information document starts with a dialog-info element.
This element has three mandatory attributes:

o version: This attribute allows the recipient of dialog information
documents to properly order them. Versions start at 0, and
increment by one for each new document sent to a subscriber.
Versions are scoped within a subscription. Versions MUST be
representable using a non-negative 32 bit integer.

0 state: This attribute indicates whether the document contains the
full dialog information, or whether it contains only information
on those dialogs that have changed since the previous document
(partial).

Rosenberg, et al. Standards Track [Page 13]

RFC 4235 Dialog Package November 2005

0 entity: This attribute contains a URI that identifies the user
whose dialog information is reported in the remainder of the
document. This user is referred to as the "observed user".

The dialog-info element has a series of zero or more dialog sub-
elements. Each of those represents a specific dialog. An example:

<?xml version="1.0"7?>

<dialog-info xmIns="urn:ietf:params:xml:ns:dialog-info"
version="0" notify-state="full"
entity=""sip:alice@example.com">

</dialog-info>

4.1.1. Dialog Element

The dialog element reports information about a specific dialog or
"half-dialog”™. It has a single mandatory attribute: id. The id
attribute provides a single string that can be used as an identifier
for this dialog or "half-dialog"”. This is a different identifier
than the dialog ID defined in RFC 3261 [2], but related to it.

For a caller, the id is created when an INVITE request is sent. When
a 1xx response with a tag, or a 2xx response iIs received, the dialog
is formally created. The id remains unchanged. However, if an
additional 1xx or 2xx is received, resulting in the creation of
another dialog (and resulting FSM), that dialog is allocated a new
id.

For a callee, the id is created when an INVITE outside of an existing
dialog is received. When a 2xx or a 1xx with a tag is sent, creating
the dialog, the id remains unchanged.

The id MUST be unique amongst all current dialogs at a UA.

There are a number of optional attributes that provide identification
information about the dialog:

o call-id: This attribute is a string that represents the call-id
component of the dialog identifier. (Note that single and
double quotes inside a call-id must be escaped using "e;
for ™ and ' for ~)

o local-tag: This attribute is a string that represents the
local-tag component of the dialog identifier.

0 remote-tag: This attribute is a string that represents the

remote-tag component of the dialog identifier. The remote tag
attribute won’t be present if there is only a "half-dialog",

Rosenberg, et al. Standards Track [Page 14]

RFC 4235 Dialog Package November 2005

resulting from the generation of an INVITE for which no final
responses or provisional responses with tags has been received.

o direction: This attribute is either initiator or recipient, and
indicates whether the observed user was the iInitiator of the
dialog, or the recipient of the INVITE that created it.

<?xml version="1.0"7?>
<dialog-info xmIns="urn:ietf:params:xml:ns:dialog-info"
version="0" state="partial”
entity=""sip:alice@example.com">
<dialog i1d="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774" direction="initiator">

" “</dialog>
</dialog-info>

The sub-elements of the dialog element provide additional information
about the dialog. Some of these sub-elements provide more detail
about the dialog itself, while the local and remote sub-elements
describe characteristics of the participants involved in the dialog.
The only mandatory sub-element is the state element.

4.1.2. State Element

The "'state' element indicates the state of the dialog. Its value is
an enumerated type describing one of the states in the FSM above. It
has an optional event attribute that can be used to indicate the
event that caused any transition into the terminated state, and an
optional code attribute that indicates the response code associated
with any transition caused by a response to the original INVITE.

<state event="'rejected" code="486"">terminated</state>
4.1.3. Duration Element

The "duration”™ element contains the amount of time, in seconds, since
the FSM was created.

<duration>145</duration>
4.1.4. Replaces Element
The "replaces™ element is used to correlate a new dialog with one it
replaced as a result of an invitation with a Replaces header field.
This element is present in the replacement dialog only (the newer

dialog) and contains attributes with the call-id, local-tag, and
remote-tag of the replaced dialog.

Rosenberg, et al. Standards Track [Page 15]

RFC 4235 Dialog Package November 2005

<replaces call-id="hg287s98s89"
local-tag="'6762h7" remote-tag="09278hsb"/>

4.1.5. Referred-By Element

The "referred-by"™ element is used to correlate a new dialog with a
REFER [12] request that triggered it. The element is present in a
dialog that was triggered by a REFER request that contained a
Referred-By [11] header field and contains the (optional) display
name attribute and the Referred-By URI as its value.

<referred-by display="Bob">sip:bob@example.com</referred-by>
4.1.6. Local and Remote Elements

The "local™ and "remote" elements are sub-elements of the dialog
element that contain information about the local and remote
participants, respectively. They both have a number of optional
sub-elements that indicate the identity conveyed by the participant,
the target URI, the feature-tags of the target, and the
session-description of the participant.

4.1.6.1. Ildentity Element

The "identity" element indicates a local or remote URI, as defined in
[2] as appropriate. It has an optional attribute, display, that
contains the display name from the appropriate URI.

Note that multiple identities (for example a sip: URI and a tel:
URI) could be included if they all correspond to the participant.
To avoid repeating identity information in each request, the
subscriber can assume that the identity URIs are the same as in
previous notifications if no identity elements are present in the
corresponding local or remote element. If any identity elements
are present in the local or remote part of a notification, the new
list of identity tags completely supersedes the old list in the
corresponding part.

<identity display=""Anonymous'>
sip:anonymous@anonymous. invalid</identity>

4.1.6.2. Target Element
The "target" contains the local or remote target URI constructed by

the user agent for this dialog, as defined in RFC 3261 [2] in a "uri”
attribute.

Rosenberg, et al. Standards Track [Page 16]

RFC 4235 Dialog Package November 2005

It can contain a list of Contact header parameters in param sub-
elements (such as those defined in [10]). The param element contains
two required attributes, pname and pval. Boolean parameters are
represented by the explicit pval values, "true" and "false"™ (for
example, when a feature parameter is explicitly negated). Parameters
that have no value at all are represented by the explicit pval value
"true". The param element itself has no contents. To avoid
repeating Contact information in each request, the subscriber can
assume that the target URI and parameters are the same as In previous
notifications iIf no target element is present in the corresponding
local or remote element. |If a target element is present in the local
or remote part of a notification, the new target tag and list of
parameter tags completely supersedes the old target and parameter
list in the corresponding part. Note that any quoting (including
extra angle-bracket quoting used to quote string values in [10]) or
backslash escaping MUST be removed before being placed in a pval
attribute. Any remaining single quotes, double quotes, and
ampersands MUST be properly XML escaped.

<target uri="sip:alice@pc33.example.com">
<param pname="isfocus" pval=""true"/>
<param pname="class" pval="business"/>
<param pname="‘description” pval="Alice’s desk & office'/>
<param pname="sip.rendering" pval="no"/>
</target>

4.1.6.3. Session Description Element

The session-description element contains the session description used
by the observed user for its end of the dialog. This element should
generally NOT be included in the notifications, unless it was
explicitly requested by the subscriber. It has a single attribute,
""type', which indicates the MIME media type of the session
description. To avoid repeating session description information in
each request, the subscriber can assume that the session description
is the same as iIn previous notifications 1If no session description
element is present in the corresponding local or remote element.

4_2. Sample Notification Body

<?xml version="1.0" encoding="UTF-8"7?>
<dialog-info xmIns="urn:ietf:params:xml:ns:dialog-info"
xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation=""urn:ietf:params:xml:ns:dialog-info"
version="1" state="full"'>
<dialog 1d=""123456"">
<state>confirmed</state>
<duration>274</duration>

Rosenberg, et al. Standards Track [Page 17]

RFC 4235 Dialog Package November 2005

<local>
<identity display="Alice'>sip:alice@example.com</identity>
<target uri="sip:alice@pc33.example.com">
<param pname="isfocus" pval=""true"/>
<param pname="class" pval="personal’/>
</target>
</local>
<remote>
<identity display="Bob">sip:bob@example._org</identity>
<target uri="'sip:bobster@phone2l.example.org"/>
</remote>
</dialog>
</dialog-info>

4_3. Constructing Coherent State

The dialog information subscriber maintains a table listing the
dialogs, with a row for each dialog. Each row is indexed by an ID
that is present in the "id" attribute of the "dialog" element. Each
row contains the state of that dialog, as conveyed in the document.

The table is also associated with a version number. The version
number MUST be initialized with the value of the "version™ attribute
from the "dialog-info"” element in the first document received. Each
time a new document is received, the value of the local version
number is compared to the "version" attribute in the new document.

IT the value In the new document is one higher than the local version
number, the local version number is increased by one and the document

is processed. If the value iIn the document is more than one higher
than the local version number, the local version number is set to the
value in the new document and the document is processed. If the

document did not contain full state, the subscriber SHOULD generate a
refresh request (SUBSCRIBE) to trigger a full state notification. |IFf
the value in the document is less than the local version, the
document is discarded without processing.

The processing of the dialog information document depends on whether
it contains full or partial state. If it contains full state,
indicated by the value of the "state"™ attribute in the "dialog-info”
element, the contents of the table are flushed and then repopulated
from the document. A new row in the table is created for each
"dialog"™ element. |If the document contains partial state, as
indicated by the value of the "state" attribute in the "dialog-info"
element, the document is used to update the table. For each "dialog"
element in the document, the subscriber checks to see whether a row
exists for that dialog. This check compares the ID in the "id"
attribute of the "dialog™ element with the ID associated with the
row. If the dialog does not exist in the table, a row is added and

Rosenberg, et al. Standards Track [Page 18]

RFC 4235 Dialog Package November 2005

its state is set to the information from that "dialog" element. If
the dialog does exist, its state is updated to be the information
from that "dialog™ element. |If a row is updated or created, such

that its state is now terminated, that entry MAY be removed from the
table at any time.

4_.4_. Schema
The following is the sc