
RFC 9458

Oblivious HTTP

Abstract

This document describes Oblivious HTTP, a protocol for forwarding encrypted HTTP messages.

Oblivious HTTP allows a client to make multiple requests to an origin server without that server

being able to link those requests to the client or to identify the requests as having come from the

same client, while placing only limited trust in the nodes used to forward the messages.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9458

Standards Track

January 2024

2070-1721

 M. Thomson

Mozilla

C. A. Wood

Cloudflare

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9458

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Thomson & Wood Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9458
https://www.rfc-editor.org/info/rfc9458
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Overview

2.1. Applicability

2.2. Conventions and Definitions

3. Key Configuration

3.1. Key Configuration Encoding

3.2. Key Configuration Media Type

4. HPKE Encapsulation

4.1. Request Format

4.2. Response Format

4.3. Encapsulation of Requests

4.4. Encapsulation of Responses

4.5. Request and Response Media Types

4.6. Repurposing the Encapsulation Format

5. HTTP Usage

5.1. Informational Responses

5.2. Errors

5.3. Signaling Key Configuration Problems

6. Security Considerations

6.1. Client Responsibilities

6.2. Relay Responsibilities

6.2.1. Differential Treatment

6.2.2. Denial of Service

6.2.3. Traffic Analysis

6.3. Server Responsibilities

6.4. Key Management

4

5

7

8

9

9

10

11

11

12

13

14

15

16

16

17

18

18

19

20

21

21

22

22

23

23

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 2

6.5. Replay Attacks

6.5.1. Use of Date for Anti-replay

6.5.2. Correcting Clock Differences

6.6. Forward Secrecy

6.7. Post-Compromise Security

6.8. Client Clock Exposure

6.9. Media Type Security

6.10. Separate Gateway and Target

7. Privacy Considerations

8. Operational and Deployment Considerations

8.1. Performance Overhead

8.2. Resource Mappings

8.3. Network Management

9. IANA Considerations

9.1. application/ohttp-keys Media Type

9.2. message/ohttp-req Media Type

9.3. message/ohttp-res Media Type

9.4. Registration of "date" Problem Type

9.5. Registration of "ohttp-key" Problem Type

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Complete Example of a Request and Response

Acknowledgments

Authors' Addresses

24

25

25

27

27

27

28

28

29

29

30

30

30

30

31

32

33

33

34

34

34

35

37

40

40

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 3

1. Introduction

HTTP requests reveal information about client identities to servers. While the actual content of

the request message is under the control of the client, other information that is more difficult to

control can still be used to identify the client.

Even where an IP address is not directly associated with an individual, the requests made from it

can be correlated over time to assemble a profile of client behavior. In particular, connection

reuse improves performance but provides servers with the ability to link requests that share a

connection.

In particular, the source IP address of the underlying connection reveals identifying information

that the client has only limited control over. While client-configured HTTP proxies can provide a

degree of protection against IP address tracking, they present an unfortunate trade-off: if they

are used without TLS, the contents of communication are revealed to the proxy; if they are used

with TLS, a new connection needs to be used for each request to ensure that the origin server

cannot use the connection as a way to correlate requests, incurring significant performance

overheads.

To overcome these limitations, this document defines Oblivious HTTP, a protocol for encrypting

and sending HTTP messages from a client to a gateway. This uses a trusted relay service in a

manner that mitigates the use of metadata such as IP address and connection information for

client identification, with reasonable performance characteristics. This document describes:

an algorithm for encapsulating binary HTTP messages using Hybrid Public Key

Encryption (HPKE) to protect their contents,

a method for forwarding Encapsulated Requests between Clients and an Oblivious Gateway

Resource through a trusted Oblivious Relay Resource using HTTP, and

requirements for how the Oblivious Gateway Resource handles Encapsulated Requests and

produces Encapsulated Responses for the Client.

The combination of encapsulation and relaying ensures that Oblivious Gateway Resource never

sees the Client's IP address and that the Oblivious Relay Resource never sees plaintext HTTP

message content.

Oblivious HTTP allows connection reuse between the Client and Oblivious Relay Resource, as

well as between that relay and the Oblivious Gateway Resource, so this scheme represents a

performance improvement over using just one request in each connection. With limited trust

placed in the Oblivious Relay Resource (see Section 6), Clients are assured that requests are not

uniquely attributed to them or linked to other requests.

1. [BINARY]

[HPKE]

2.

3.

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 4

2. Overview

An Oblivious HTTP Client must initially know the following:

The identity of an Oblivious Gateway Resource. This might include some information about

what Target Resources the Oblivious Gateway Resource supports.

The details of an HPKE public key for the Oblivious Gateway Resource, including an

identifier for that key and the HPKE algorithms that are used with that key.

The identity of an Oblivious Relay Resource that will accept relay requests carrying an

Encapsulated Request as its content and forward the content in these requests to a particular

Oblivious Gateway Resource. Oblivious HTTP uses a one-to-one mapping between Oblivious

Relay and Gateway Resources; see Section 8.2 for more details.

This information allows the Client to send HTTP requests to the Oblivious Gateway Resource for

forwarding to a Target Resource. The Oblivious Gateway Resource does not learn the Client's IP

address or any other identifying information that might be revealed from the Client at the

transport layer, nor does the Oblivious Gateway Resource learn which of the requests it receives

are from the same Client.

•

•

•

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 5

In order to forward a request for a Target Resource to the Oblivious Gateway Resource, the

following steps occur, as shown in Figure 1:

The Client constructs an HTTP request for a Target Resource.

The Client encodes the HTTP request in a binary HTTP message and then encapsulates that

message using HPKE and the process from Section 4.3.

The Client sends a POST request to the Oblivious Relay Resource with the Encapsulated

Request as the content of that message.

The Oblivious Relay Resource forwards this request to the Oblivious Gateway Resource.

The Oblivious Gateway Resource receives this request and removes the HPKE protection to

obtain an HTTP request.

Figure 1: Overview of Oblivious HTTP

Client Relay Gateway Target

Resource Resource Resource

Relay

Request

[+ Encapsulated

Request]

Gateway

Request

[+ Encapsulated

Request]

Request

Response

Gateway

Response

[+ Encapsulated

Response]

Relay

Response

[+ Encapsulated

Response]

1.

2.

3.

4.

5.

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 6

The Oblivious Gateway Resource then handles the HTTP request. This typically involves making

an HTTP request using the content of the Encapsulated Request. Once the Oblivious Gateway

Resource has an HTTP response for this request, the following steps occur to return this response

to the Client:

The Oblivious Gateway Resource encapsulates the HTTP response following the process in

Section 4.4 and sends this in response to the request from the Oblivious Relay Resource.

The Oblivious Relay Resource forwards this response to the Client.

The Client removes the encapsulation to obtain the response to the original request.

This interaction provides authentication and confidentiality protection between the Client and

the Oblivious Gateway, but importantly not between the Client and the Target Resource. While

the Target Resource is a distinct HTTP resource from the Oblivious Gateway Resource, they are

both logically under the control of the Oblivious Gateway, since the Oblivious Gateway Resource

can unilaterally dictate the responses returned from the Target Resource to the Client. This

arrangement is shown in Figure 1.

1.

2.

3.

DNS queries:

2.1. Applicability

Oblivious HTTP has limited applicability. Importantly, it requires explicit support from a willing

Oblivious Relay Resource and Oblivious Gateway Resource, thereby limiting the use of Oblivious

HTTP for generic applications; see Section 6.3 for more information.

Many uses of HTTP benefit from being able to carry state between requests, such as with cookies

, authentication (), or even alternative services .

Oblivious HTTP removes linkage at the transport layer, which is only useful for an application

that does not carry state between requests.

Oblivious HTTP is primarily useful where the privacy risks associated with possible stateful

treatment of requests are sufficiently large that the cost of deploying this protocol can be

justified. Oblivious HTTP is simpler and less costly than more robust systems, like Prio or

Tor , which can provide stronger guarantees at higher operational costs.

Oblivious HTTP is more costly than a direct connection to a server. Some costs, like those

involved with connection setup, can be amortized, but there are several ways in which Oblivious

HTTP is more expensive than a direct request:

Each request requires at least two regular HTTP requests, which could increase latency.

Each request is expanded in size with additional HTTP fields, encryption-related metadata,

and Authenticated Encryption with Associated Data (AEAD) expansion.

Deriving cryptographic keys and applying them for request and response protection takes

non-negligible computational resources.

Examples of where preventing the linking of requests might justify these costs include:

[COOKIES] Section 11 of [HTTP] [RFC7838]

[PRIO]

[DMS2004]

•

•

•

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc9110#section-11

Telemetry submission:

DNS queries made to a recursive resolver reveal information about the requester, particularly

if linked to other queries.

Applications that submit reports about their usage to their developers

might use Oblivious HTTP for some types of moderately sensitive data.

These are examples of requests where there is information in a request that -- if it were

connected to the identity of the user -- might allow a server to learn something about that user

even if the identity of the user were pseudonymous. Other examples include submitting

anonymous surveys, making search queries, or requesting location-specific content (such as

retrieving tiles of a map display).

In addition to these limitations, Section 6 describes operational constraints that are necessary to

realize the goals of the protocol.

2.2. Conventions and Definitions

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

This document uses terminology from and defines several terms as follows:

A Client originates Oblivious HTTP requests. A Client is also an HTTP client in two ways: for

the Target Resource and for the Oblivious Relay Resource. However, when referring to the

HTTP definition of client (), the term "HTTP client" is used; see Section 5.

An HTTP request that is encapsulated in an HPKE-encrypted message; see Section 4.3.

An HTTP response that is encapsulated in an HPKE-encrypted message; see Section 4.4.

An intermediary that forwards Encapsulated Requests and Responses between Clients and a

single Oblivious Gateway Resource. In context, this can be referred to simply as a "relay".

A resource that can receive an Encapsulated Request, extract the contents of that request,

forward it to a Target Resource, receive a response, encapsulate that response, and then

return the resulting Encapsulated Response. In context, this can be referred to simply as a

"gateway".

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[HTTP]

Client:

Section 3.3 of [HTTP]

Encapsulated Request:

Encapsulated Response:

Oblivious Relay Resource:

Oblivious Gateway Resource:

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9110#section-3.3

The resource that is the target of an Encapsulated Request. This resource logically handles

only regular HTTP requests and responses, so it might be ignorant of the use of Oblivious

HTTP to reach it.

This document includes pseudocode that uses the functions and conventions defined in .

Encoding an integer to a sequence of bytes in network byte order is described using the function

encode(n, v), where n is the number of bytes and v is the integer value. ASCII encoding

of a string s is indicated using the function encode_str(s).

Formats are described using notation from . An extension to that notation

expresses the number of bits in a field using a simple mathematical function.

Target Resource:

[HPKE]

[ASCII]

Section 1.3 of [QUIC]

3. Key Configuration

A Client needs to acquire information about the key configuration of the Oblivious Gateway

Resource in order to send Encapsulated Requests. In order to ensure that Clients do not

encapsulate messages that other entities can intercept, the key configuration be

authenticated and have integrity protection.

This document does not define how that acquisition occurs. However, in order to help facilitate

interoperability, it does specify a format for the keys. This ensures that different Client

implementations can be configured in the same way and also enables advertising key

configurations in a consistent format. This format might be used, for example, with HTTPS, as

part of a system for configuring or discovering key configurations. However, note that such a

system needs to consider the potential for key configuration to be used to compromise Client

privacy; see Section 7.

A Client might have multiple key configurations to select from when encapsulating a request.

Clients are responsible for selecting a preferred key configuration from those it supports. Clients

need to consider both the Key Encapsulation Method (KEM) and the combinations of the Key

Derivation Function (KDF) and AEAD in this decision.

MUST

3.1. Key Configuration Encoding

A single key configuration consists of a key identifier, a public key, an identifier for the KEM that

the public key uses, and a set of HPKE symmetric algorithms. Each symmetric algorithm consists

of an identifier for a KDF and an identifier for an AEAD.

Figure 2 shows a single key configuration.

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9000#section-1.3

That is, a key configuration consists of the following fields:

Key Identifier:

An 8-bit value that identifies the key used by the Oblivious Gateway Resource.

HPKE KEM ID:

A 16-bit value that identifies the KEM used for the identified key as defined in

 or the "HPKE KEM Identifiers" registry.

HPKE Public Key:

The public key used by the gateway. The length of the public key is Npk, which is determined

by the choice of HPKE KEM as defined in .

HPKE Symmetric Algorithms Length:

A 16-bit integer in network byte order that encodes the length, in bytes, of the HPKE

Symmetric Algorithms field that follows.

HPKE Symmetric Algorithms:

One or more pairs of identifiers for the different combinations of HPKE KDF and AEAD that

the Oblivious Gateway Resource supports:

HPKE KDF ID:

A 16-bit HPKE KDF identifier as defined in or the "HPKE KDF

Identifiers" registry.

HPKE AEAD ID:

A 16-bit HPKE AEAD identifier as defined in or the "HPKE AEAD

Identifiers" registry.

Figure 2: A Single Key Configuration

HPKE Symmetric Algorithms {
 HPKE KDF ID (16),
 HPKE AEAD ID (16),
}

Key Config {
 Key Identifier (8),
 HPKE KEM ID (16),
 HPKE Public Key (Npk * 8),
 HPKE Symmetric Algorithms Length (16) = 4..65532,
 HPKE Symmetric Algorithms (32) ...,
}

Section 7.1 of

[HPKE]

Section 4 of [HPKE]

Section 7.2 of [HPKE]

Section 7.3 of [HPKE]

3.2. Key Configuration Media Type

The "application/ohttp-keys" format is a media type that identifies a serialized collection of key

configurations. The content of this media type comprises one or more key configuration

encodings (see Section 3.1). Each encoded configuration is prefixed with a 2-byte integer in

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc9180#section-7.1
https://www.iana.org/assignments/hpke
https://www.rfc-editor.org/rfc/rfc9180#section-4
https://www.rfc-editor.org/rfc/rfc9180#section-7.2
https://www.iana.org/assignments/hpke
https://www.iana.org/assignments/hpke
https://www.rfc-editor.org/rfc/rfc9180#section-7.3
https://www.iana.org/assignments/hpke
https://www.iana.org/assignments/hpke

network byte order that indicates the length of the key configuration in bytes. The length-

prefixed encodings are concatenated to form a list. See Section 9.1 for a definition of the media

type.

Evolution of the key configuration format is supported through the definition of new formats

that are identified by new media types.

A Client that receives an "application/ohttp-keys" object with encoding errors might be able to

recover one or more key configurations. Differences in how key configurations are recovered

might be exploited to segregate Clients, so Clients discard incorrectly encoded key

configuration collections.

MUST

4. HPKE Encapsulation

This document defines how a binary-encoded HTTP message is encapsulated using

HPKE . Separate media types are defined to distinguish request and response messages:

An Encapsulated Request format defined in Section 4.1 is identified by the

.

An Encapsulated Response format defined in Section 4.2 is identified by the

.

Alternative encapsulations or message formats are indicated using the media type; see Sections

4.5 and 4.6.

[BINARY]

[HPKE]

• "message/ohttp-

req" media type (Section 9.2)

• "message/

ohttp-res" media type (Section 9.3)

4.1. Request Format

A message in "message/ohttp-req" format protects a binary HTTP request message; see Figure

3.

This plaintext Request structure is encapsulated into a message in "message/ohttp-req" form by

generating an Encapsulated Request. An Encapsulated Request comprises a key identifier; HPKE

parameters for the chosen KEM, KDF, and AEAD; the encapsulated KEM shared secret (or enc);

and an HPKE-protected binary HTTP request message.

An Encapsulated Request is shown in Figure 4. Section 4.3 describes the process for constructing

and processing an Encapsulated Request.

Figure 3: Plaintext Request Structure

Request {
 Binary HTTP Message (..),
}

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 11

That is, an Encapsulated Request comprises a Key Identifier, an HPKE KEM ID, an HPKE KDF ID,

an HPKE AEAD ID, an Encapsulated KEM Shared Secret, and an HPKE-Protected Request. The Key

Identifier, HPKE KEM ID, HPKE KDF ID, and HPKE AEAD ID fields are defined in Section 3.1. The

Encapsulated KEM Shared Secret is the output of the Encap() function for the KEM, which is

Nenc bytes in length, as defined in .

Figure 4: Encapsulated Request

Encapsulated Request {
 Key Identifier (8),
 HPKE KEM ID (16),
 HPKE KDF ID (16),
 HPKE AEAD ID (16),
 Encapsulated KEM Shared Secret (8 * Nenc),
 HPKE-Protected Request (..),
}

Section 4 of [HPKE]

4.2. Response Format

A message in "message/ohttp-res" format protects a binary HTTP response message; see Figure

5.

This plaintext Response structure is encapsulated into a message in "message/ohttp-res" form

by generating an Encapsulated Response. An Encapsulated Response comprises a nonce and the

AEAD-protected binary HTTP response message.

An Encapsulated Response is shown in Figure 6. Section 4.4 describes the process for

constructing and processing an Encapsulated Response.

Figure 5: Plaintext Response Structure

Response {
 Binary HTTP Message (..),
}

Figure 6: Encapsulated Response

Encapsulated Response {
 Nonce (8 * max(Nn, Nk)),
 AEAD-Protected Response (..),
}

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9180#section-4

That is, an Encapsulated Response contains a Nonce and an AEAD-Protected Response. The

Nonce field is either Nn or Nk bytes long, whichever is larger. The Nn and Nk values correspond to

parameters of the AEAD used in HPKE, which is defined in or the "HPKE

AEAD Identifiers" IANA registry. Nn and Nk refer to the size of the AEAD nonce and key,

respectively, in bytes.

Section 7.3 of [HPKE]

4.3. Encapsulation of Requests

Clients encapsulate a request, identified as request, using values from a key configuration:

the key identifier from the configuration (key_id) with the corresponding KEM identified by

kem_id,

the public key from the configuration (pkR), and

a combination of KDF (identified by kdf_id) and AEAD (identified by aead_id) that the Client

selects from those in the key configuration.

The Client then constructs an Encapsulated Request, enc_request, from a binary-encoded HTTP

request (request) as follows:

Construct a message header (hdr) by concatenating the values of key_id, kem_id, kdf_id,

and aead_id as one 8-bit integer and three 16-bit integers, respectively, each in network byte

order.

Build a sequence of bytes (info) by concatenating the ASCII-encoded string "message/bhttp

request", a zero byte, and the header. Note: Section 4.6 discusses how alternative message

formats might use a different info value.

Create a sending HPKE context by invoking SetupBaseS() () with the

public key of the receiver pkR and info. This yields the context sctxt and an encapsulation

key enc.

Encrypt request by invoking the Seal() method on sctxt () with

empty associated data aad, yielding ciphertext ct.

Concatenate the values of hdr, enc, and ct. This yields an Encapsulated Request

(enc_request).

Note that enc is of fixed length, so there is no ambiguity in parsing this structure.

In pseudocode, this procedure is as follows:

•

•

•

[BINARY]

1.

2.

3. Section 5.1.1 of [HPKE]

4. Section 5.2 of [HPKE]

5.

hdr = concat(encode(1, key_id),
 encode(2, kem_id),
 encode(2, kdf_id),
 encode(2, aead_id))
info = concat(encode_str("message/bhttp request"),
 encode(1, 0),
 hdr)
enc, sctxt = SetupBaseS(pkR, info)
ct = sctxt.Seal("", request)
enc_request = concat(hdr, enc, ct)

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc9180#section-7.3
https://www.iana.org/assignments/hpke
https://www.iana.org/assignments/hpke
https://www.rfc-editor.org/rfc/rfc9180#section-5.1.1
https://www.rfc-editor.org/rfc/rfc9180#section-5.2

An Oblivious Gateway Resource decrypts an Encapsulated Request by reversing this process. To

decapsulate an Encapsulated Request, enc_request:

Parse enc_request into key_id, kem_id, kdf_id, aead_id, enc, and ct (indicated using the

function parse() in pseudocode). The Oblivious Gateway Resource is then able to find the

HPKE private key, skR, corresponding to key_id.

If key_id does not identify a key matching the type of kem_id, the Oblivious Gateway

Resource returns an error.

If kdf_id and aead_id identify a combination of KDF and AEAD that the Oblivious

Gateway Resource is unwilling to use with skR, the Oblivious Gateway Resource returns an

error.

Build a sequence of bytes (info) by concatenating the ASCII-encoded string "message/bhttp

request"; a zero byte; key_id as an 8-bit integer; plus kem_id, kdf_id, and aead_id as three

16-bit integers.

Create a receiving HPKE context, rctxt, by invoking SetupBaseR() ()

with skR, enc, and info.

Decrypt ct by invoking the Open() method on rctxt (), with an empty

associated data aad, yielding request or an error on failure. If decryption fails, the Oblivious

Gateway Resource returns an error.

In pseudocode, this procedure is as follows:

The Oblivious Gateway Resource retains the HPKE context, rctxt, so that it can encapsulate a

response.

1.

a.

b.

2.

3. Section 5.1.1 of [HPKE]

4. Section 5.2 of [HPKE]

key_id, kem_id, kdf_id, aead_id, enc, ct = parse(enc_request)
info = concat(encode_str("message/bhttp request"),
 encode(1, 0),
 encode(1, key_id),
 encode(2, kem_id),
 encode(2, kdf_id),
 encode(2, aead_id))
rctxt = SetupBaseR(enc, skR, info)
request, error = rctxt.Open("", ct)

4.4. Encapsulation of Responses

Oblivious Gateway Resources generate an Encapsulated Response (enc_response) from a binary-

encoded HTTP response (response). The Oblivious Gateway Resource uses the HPKE

receiver context (rctxt) as the HPKE context (context) as follows:

Export a secret (secret) from context, using the string "message/bhttp response" as the

exporter_context parameter to context.Export; see . The length of

this secret is max(Nn, Nk), where Nn and Nk are the length of the AEAD key and nonce that

are associated with context. Note: Section 4.6 discusses how alternative message formats

might use a different context value.

[BINARY]

1.

Section 5.3 of [HPKE]

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc9180#section-5.1.1
https://www.rfc-editor.org/rfc/rfc9180#section-5.2
https://www.rfc-editor.org/rfc/rfc9180#section-5.3

Generate a random value of length max(Nn, Nk) bytes, called response_nonce.

Extract a pseudorandom key (prk) using the Extract function provided by the KDF

algorithm associated with context. The ikm input to this function is secret; the salt input is

the concatenation of enc (from enc_request) and response_nonce.

Use the Expand function provided by the same KDF to create an AEAD key, key, of length Nk --

the length of the keys used by the AEAD associated with context. Generating aead_key uses

a label of "key".

Use the same Expand function to create a nonce, nonce, of length Nn -- the length of the nonce

used by the AEAD. Generating aead_nonce uses a label of "nonce".

Encrypt response, passing the AEAD function Seal the values of aead_key, aead_nonce, an

empty aad, and a pt input of response. This yields ct.

Concatenate response_nonce and ct, yielding an Encapsulated Response, enc_response.

Note that response_nonce is of fixed length, so there is no ambiguity in parsing either

response_nonce or ct.

In pseudocode, this procedure is as follows:

Clients decrypt an Encapsulated Response by reversing this process. That is, Clients first parse

enc_response into response_nonce and ct. Then, they follow the same process to derive values

for aead_key and aead_nonce, using their sending HPKE context, sctxt, as the HPKE context,

context.

The Client uses these values to decrypt ct using the AEAD function Open. Decrypting might

produce an error, as follows:

2.

3.

4.

5.

6.

7.

secret = context.Export("message/bhttp response", max(Nn, Nk))
response_nonce = random(max(Nn, Nk))
salt = concat(enc, response_nonce)
prk = Extract(salt, secret)
aead_key = Expand(prk, "key", Nk)
aead_nonce = Expand(prk, "nonce", Nn)
ct = Seal(aead_key, aead_nonce, "", response)
enc_response = concat(response_nonce, ct)

response, error = Open(aead_key, aead_nonce, "", ct)

4.5. Request and Response Media Types

Media types are used to identify Encapsulated Requests and Responses; see Sections 9.2 and 9.3

for definitions of these media types.

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 15

Evolution of the format of Encapsulated Requests and Responses is supported through the

definition of new formats that are identified by new media types. New media types might be

defined to use a similar encapsulation with a different HTTP message format than in ;

see Section 4.6 for guidance on reusing this encapsulation method. Alternatively, a new

encapsulation method might be defined.

[BINARY]

4.6. Repurposing the Encapsulation Format

The encrypted payload of an Oblivious HTTP request and response is a binary HTTP message

. The Client and Oblivious Gateway Resource agree on this encrypted payload type by

specifying the media type "message/bhttp" in the HPKE info string and HPKE export context

string for request and response encryption, respectively.

Future specifications may repurpose the encapsulation mechanism described in this document.

This requires that the specification define a new media type. The encapsulation process for that

content type can follow the same process, using new constant strings for the HPKE info and

exporter context inputs.

For example, a future specification might encapsulate DNS messages, which use the "application/

dns-message" media type . In creating a new, encrypted media types, specifications

might define the use of string "application/dns-message request" (plus a zero byte and the header

for the full value) for request encryption and the string "application/dns-message response" for

response encryption.

[BINARY]

[RFC8484]

5. HTTP Usage

A Client interacts with the Oblivious Relay Resource by constructing an Encapsulated Request.

This Encapsulated Request is included as the content of a POST request to the Oblivious Relay

Resource. This request only needs those fields necessary to carry the Encapsulated Request: a

method of POST, a target URI of the Oblivious Relay Resource, a header field containing the

content type (see Section 9.2), and the Encapsulated Request as the request content. In the

request to the Oblivious Relay Resource, Clients include additional fields. However,

additional fields be independent of the Encapsulated Request and be fields that the

Oblivious Relay Resource will remove before forwarding the Encapsulated Request towards the

target, such as the Connection or Proxy-Authorization header fields .

The Client role in this protocol acts as an HTTP client both with respect to the Oblivious Relay

Resource and the Target Resource. The request, which the Client makes to the Target Resource,

diverges from typical HTTP assumptions about the use of a connection (see)

in that the request and response are encrypted rather than sent over a connection. The Oblivious

Relay Resource and the Oblivious Gateway Resource also act as HTTP clients toward the

Oblivious Gateway Resource and Target Resource, respectively.

In order to achieve the privacy and security goals of the protocol, a Client also needs to observe

the guidance in Section 6.1.

MAY

MUST MUST

[HTTP]

Section 3.3 of [HTTP]

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc9110#section-3.3

The Oblivious Relay Resource interacts with the Oblivious Gateway Resource as an HTTP client

by constructing a request using the same restrictions as the Client request, except that the target

URI is the Oblivious Gateway Resource. The content of this request is copied from the Client. An

Oblivious Relay Resource reject requests that are obviously invalid, such as a request with

no content. The Oblivious Relay Resource add information to the request without the

Client being aware of the type of information that might be added; see Section 6.2 for more

information on relay responsibilities.

When a response is received from the Oblivious Gateway Resource, the Oblivious Relay Resource

forwards the response according to the rules of an HTTP proxy; see . In case

of timeout or error, the Oblivious Relay Resource can generate a response with an appropriate

status code.

In order to achieve the privacy and security goals of the protocol, an Oblivious Relay Resource

also needs to observe the guidance in Section 6.2.

An Oblivious Gateway Resource acts as a gateway for requests to the Target Resource (see

). The one exception is that any information it might forward in a response be

encapsulated, unless it is responding to errors that do not relate to processing the contents of the

Encapsulated Request; see Section 5.2.

An Oblivious Gateway Resource, if it receives any response from the Target Resource, sends a

single 200 response containing the Encapsulated Response. Like the request from the Client, this

response only contain those fields necessary to carry the Encapsulated Response: a 200

status code, a header field indicating the content type, and the Encapsulated Response as the

response content. As with requests, additional fields be used to convey information that

does not reveal information about the Encapsulated Response.

An Oblivious Gateway Resource that does not receive a response can itself generate a response

with an appropriate error status code (such as 504 (Gateway Timeout); see

), which is then encapsulated in the same way as a successful response.

In order to achieve the privacy and security goals of the protocol, an Oblivious Gateway Resource

also needs to observe the guidance in Section 6.3.

MAY

MUST NOT

Section 7.6 of [HTTP]

Section

7.6 of [HTTP] MUST

MUST

MAY

Section 15.6.5 of

[HTTP]

5.1. Informational Responses

This encapsulation does not permit progressive processing of responses. Though the binary HTTP

response format does support the inclusion of informational (1xx) status codes, the AEAD

encapsulation cannot be removed until the entire message is received.

In particular, the Expect header field with 100-continue (see) cannot be

used. Clients construct a request that includes a 100-continue expectation; the

Oblivious Gateway Resource generate an error if a 100-continue expectation is received.

Section 10.1.1 of [HTTP]

MUST NOT

MUST

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc9110#section-7.6
https://www.rfc-editor.org/rfc/rfc9110#section-7.6
https://www.rfc-editor.org/rfc/rfc9110#section-7.6
https://www.rfc-editor.org/rfc/rfc9110#section-15.6.5
https://www.rfc-editor.org/rfc/rfc9110#section-10.1.1

5.2. Errors

A server that receives an invalid message for any reason generate an HTTP response with a

4xx status code.

Errors detected by the Oblivious Relay Resource and errors detected by the Oblivious Gateway

Resource before removing protection (including being unable to remove encapsulation for any

reason) result in the status code being sent without protection in response to the POST request

made to that resource.

Errors detected by the Oblivious Gateway Resource after successfully removing encapsulation

and errors detected by the Target Resource be sent in an Encapsulated Response. This

might be because the Encapsulated Request is malformed or the Target Resource does not

produce a response. In either case, the Oblivious Gateway Resource can generate a response with

an appropriate error status code (such as 400 (Bad Request) or 504 (Gateway Timeout); see

Sections 15.5.1 and 15.6.5 of , respectively). This response is encapsulated in the same way

as a successful response.

Errors in the encapsulation of requests mean that responses cannot be encapsulated. This

includes cases where the key configuration is incorrect or outdated. The Oblivious Gateway

Resource can generate and send a response with a 4xx status code to the Oblivious Relay

Resource. This response be forwarded to the Client or treated by the Oblivious Relay

Resource as a failure. If a Client receives a response that is not an Encapsulated Response, this

could indicate that the Client configuration used to construct the request is incorrect or out of

date.

MUST

MUST

[HTTP]

MAY

5.3. Signaling Key Configuration Problems

The problem type of "https://iana.org/assignments/http-problem-types#ohttp-key" is

defined in this section. An Oblivious Gateway Resource use this problem type in a response

to indicate that an Encapsulated Request used an outdated or incorrect key configuration.

Figure 7 shows an example response in HTTP/1.1 format.

As this response cannot be encrypted, it might not reach the Client. A Client cannot rely on the

Oblivious Gateway Resource using this problem type. A Client might also be configured to

disregard responses that are not encapsulated on the basis that they might be subject to

[PROBLEM]

MAY

Figure 7: Example Rejection of Key Configuration

HTTP/1.1 400 Bad Request
Date: Mon, 07 Feb 2022 00:28:05 GMT
Content-Type: application/problem+json
Content-Length: 106

{"type":"https://iana.org/assignments/http-problem-types#ohttp-key",
"title": "key identifier unknown"}

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc9110#section-15.5.1
https://www.rfc-editor.org/rfc/rfc9110#section-15.6.5

observation or modification by an Oblivious Relay Resource. A Client might manage the risk of

an outdated key configuration using a heuristic approach whereby it periodically refreshes its

key configuration if it receives a response with an error status code that has not been

encapsulated.

6. Security Considerations

In this design, a Client wishes to make a request to an Oblivious Gateway Resource that is

forwarded to a Target Resource. The Client wishes to make this request without linking that

request with either of the following:

The identity at the network and transport layer of the Client (that is, the Client IP address

and TCP or UDP port number the Client uses to create a connection).

Any other request the Client might have made in the past or might make in the future.

In order to ensure this, the Client selects a relay (that serves the Oblivious Relay Resource) that it

trusts will protect this information by forwarding the Encapsulated Request and Response

without passing it to the server (that serves the Oblivious Gateway Resource).

In this section, a deployment where there are three entities is considered:

A Client makes requests and receives responses.

A relay operates the Oblivious Relay Resource.

A server operates both the Oblivious Gateway Resource and the Target Resource.

Section 6.10 discusses the security implications for a case where different servers operate the

Oblivious Gateway Resource and Target Resource.

Requests from the Client to Oblivious Relay Resource and from Oblivious Relay Resource to

Oblivious Gateway Resource use HTTPS in order to provide unlinkability in the presence of

a network observer.

To achieve the stated privacy goals, the Oblivious Relay Resource cannot be operated by the same

entity as the Oblivious Gateway Resource. However, colocation of the Oblivious Gateway

Resource and Target Resource simplifies the interactions between those resources without

affecting Client privacy.

As a consequence of this configuration, Oblivious HTTP prevents linkability described above.

Informally, this means:

Requests and responses are known only to Clients and Oblivious Gateway Resources. In

particular, the Oblivious Relay Resource knows the origin and destination of an

Encapsulated Request and Response, yet it does not know the decrypted contents. Likewise,

Oblivious Gateway Resources learn only the Oblivious Relay Resource and the decrypted

request. No entity other than the Client can see the plaintext request and response and can

attribute them to the Client.

•

•

•

•

•

MUST

1.

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 19

Oblivious Gateway Resources, and therefore Target Resources, cannot link requests from the

same Client in the absence of unique per-Client keys.

Traffic analysis that might affect these properties is outside the scope of this document; see

Section 6.2.3.

A formal analysis of Oblivious HTTP is in .

2.

[OHTTP-ANALYSIS]

6.1. Client Responsibilities

Because Clients do not authenticate the Target Resource when using Oblivious HTTP, Clients

 have some mechanism to authorize an Oblivious Gateway Resource for use with a Target

Resource. One possible means of authorization is an allowlist. This ensures that Oblivious

Gateway Resources are not misused to forward traffic to arbitrary Target Resources. Section 6.3

describes similar responsibilities that apply to Oblivious Gateway Resources.

Clients ensure that the key configuration they select for generating Encapsulated Requests

is integrity protected and authenticated so that it can be attributed to the Oblivious Gateway

Resource; see Section 3.

Since Clients connect directly to the Oblivious Relay Resource instead of the Target Resource,

application configurations wherein Clients make policy decisions about target connections, e.g.,

to apply certificate pinning, are incompatible with Oblivious HTTP. In such cases, alternative

technologies such as HTTP CONNECT () can be used. Applications could

implement related policies on key configurations and relay connections, though these might not

provide the same properties as policies enforced directly on target connections. Instead, when

this difference is relevant, applications can connect directly to the target at the cost of either

privacy or performance.

Clients cannot carry connection-level state between requests as they only establish direct

connections to the relay responsible for the Oblivious Relay Resource. However, the content of

requests might be used by a server to correlate requests. Cookies are the most obvious

feature that might be used to correlate requests, but any identity information and authentication

credentials might have the same effect. Clients also need to treat information learned from

responses with similar care when constructing subsequent requests, which includes the identity

of resources.

Clients generate a new HPKE context for every request, using a good source of entropy

 for generating keys. Key reuse not only risks requests being linked but also could

expose request and response contents to the relay.

The request the Client sends to the Oblivious Relay Resource only requires minimal information;

see Section 5. The request that carries the Encapsulated Request and that is sent to the Oblivious

Relay Resource include identifying information unless the Client can trust that this

information is removed by the relay. A Client include information only for the Oblivious

Relay Resource in header fields identified by the Connection header field if it trusts the relay to

remove these, as required by . The Client needs to trust that the relay does

not replicate the source addressing information in the request it forwards.

MUST

MUST

Section 9.3.6 of [HTTP]

[COOKIES]

MUST

[RANDOM]

MUST NOT

MAY

Section 7.6.1 of [HTTP]

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc9110#section-9.3.6
https://www.rfc-editor.org/rfc/rfc9110#section-7.6.1

Clients rely on the Oblivious Relay Resource to forward Encapsulated Requests and Responses.

However, the relay can only refuse to forward messages; it cannot inspect or modify the contents

of Encapsulated Requests or Responses.

6.2. Relay Responsibilities

The relay that serves the Oblivious Relay Resource has a very simple function to perform. For

each request it receives, it makes a request of the Oblivious Gateway Resource that includes the

same content. When it receives a response, it sends a response to the Client that includes the

content of the response from the Oblivious Gateway Resource.

When forwarding a request, the relay follow the forwarding rules in .

A generic HTTP intermediary implementation is suitable for the purposes of serving an Oblivious

Relay Resource, but additional care is needed to ensure that Client privacy is maintained.

Firstly, a generic implementation will forward unknown fields. For Oblivious HTTP, an Oblivious

Relay Resource forward unknown fields. Though Clients are not expected to include

fields that might contain identifying information, removing unknown fields removes this privacy

risk.

Secondly, generic implementations are often configured to augment requests with information

about the Client, such as the Via field or the Forwarded field . A relay

add information when forwarding requests that might be used to identify Clients, except for

information that a Client is aware of; see Section 6.2.1.

Finally, a relay can also generate responses, though it is assumed to not be able to examine the

content of a request (other than to observe the choice of key identifier, KDF, and AEAD);

therefore, it is also assumed that it cannot generate an Encapsulated Response.

MUST Section 7.6 of [HTTP]

SHOULD NOT

[FORWARDED] MUST NOT

6.2.1. Differential Treatment

A relay add information to requests if the Client is aware of the nature of the information

that could be added. Any addition include information that uniquely and permanently

identifies the Client, including any pseudonymous identifier. Information added by the relay --

beyond what is already revealed through Encapsulated Requests from Clients -- can reduce the

size of the anonymity set of Clients at a gateway.

A Client does not need to be aware of the exact value added for each request but needs to know

the range of possible values the relay might use. How a Client might learn about added

information is not defined in this document.

Moreover, relays apply differential treatment to Clients that engage in abusive behavior,

e.g., by sending too many requests in comparison to other Clients, or as a response to rate limits

signaled from the gateway. Any such differential treatment can reveal information to the

gateway that would not be revealed otherwise and therefore reduce the size of the anonymity set

of Clients using a gateway. For example, if a relay chooses to rate limit or block an abusive Client,

MAY

MUST NOT

MAY

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc9110#section-7.6

this means that any Client requests that are not treated this way are known to be non-abusive by

the gateway. Clients need to consider the likelihood of such differential treatment and the

privacy risks when using a relay.

Some patterns of abuse cannot be detected without access to the request that is made to the

target. This means that only the gateway or the target is in a position to identify abuse. A gateway

 send signals toward the relay to provide feedback about specific requests. For example, a

gateway could respond differently to requests it cannot decapsulate, as mentioned in Section 5.2.

A relay that acts on this feedback could -- either inadvertently or by design -- lead to Client

deanonymization.

MAY

6.2.2. Denial of Service

As there are privacy benefits from having a large rate of requests forwarded by the same relay

(see Section 6.2.3), servers that operate the Oblivious Gateway Resource might need an

arrangement with Oblivious Relay Resources. This arrangement might be necessary to prevent

having the large volume of requests being classified as an attack by the server.

If a server accepts a larger volume of requests from a relay, it needs to trust that the relay does

not allow abusive levels of request volumes from Clients. That is, if a server allows requests from

the relay to be exempt from rate limits, the server might want to ensure that the relay applies a

rate-limiting policy that is acceptable to the server.

Servers that enter into an agreement with a relay that enables a higher request rate might

choose to authenticate the relay to enable the higher rate.

6.2.3. Traffic Analysis

Using HTTPS protects information about which resources are the subject of request and prevents

a network observer from being able to trivially correlate messages on either side of a relay.

However, using HTTPS does not prevent traffic analysis by such network observers.

The time at which Encapsulated Request or Response messages are sent can reveal information

to a network observer. Though messages exchanged between the Oblivious Relay Resource and

the Oblivious Gateway Resource might be sent in a single connection, traffic analysis could be

used to match messages that are forwarded by the relay.

A relay could, as part of its function, delay requests before forwarding them. Delays might

increase the anonymity set into which each request is attributed. Any delay also increases the

time that a Client waits for a response, so delays only be added with the consent -- or at

least awareness -- of Clients.

A relay that forwards large volumes of exchanges can provide better privacy by providing larger

sets of messages that need to be matched.

SHOULD

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 22

Traffic analysis is not restricted to network observers. A malicious Oblivious Relay Resource

could use traffic analysis to learn information about otherwise encrypted requests and responses

relayed between Clients and gateways. An Oblivious Relay Resource terminates TLS connections

from Clients, so they see message boundaries. This privileged position allows for richer feature

extraction from encrypted data, which might improve traffic analysis.

Clients and Oblivious Gateway Resources can use padding to reduce the effectiveness of traffic

analysis. Padding is a capability provided by binary HTTP messages; see .

If the encapsulation method described in this document is used to protect a different message

type (see Section 4.6), that message format might need to include padding support. Oblivious

Relay Resources can also use padding for the same reason but need to operate at the HTTP layer

since they cannot manipulate binary HTTP messages; for example, see or

).

Section 3.8 of [BINARY]

Section 10.7 of [HTTP/2]

Section 10.7 of [HTTP/3]

6.3. Server Responsibilities

The Oblivious Gateway Resource can be operated by a different entity than the Target Resource.

However, this means that the Client needs to trust the Oblivious Gateway Resource not to modify

requests or responses. This analysis concerns itself with a deployment scenario where a single

server provides both the Oblivious Gateway Resource and Target Resource.

A server that operates both Oblivious Gateway and Target Resources is responsible for removing

request encryption, generating a response to the Encapsulated Request, and encrypting the

response.

Servers should account for traffic analysis based on response size or generation time. Techniques

such as padding or timing delays can help protect against such attacks; see Section 6.2.3.

If separate entities provide the Oblivious Gateway Resource and Target Resource, these entities

might need an arrangement similar to that between server and relay for managing denial of

service; see Section 6.2.2. Moreover, the Oblivious Gateway Resource have some

mechanism to ensure that the Oblivious Gateway Resource is not misused as a relay for HTTP

messages to an arbitrary Target Resource, such as an allowlist.

Non-secure requests -- such as those with the "http" scheme as opposed to the "https" scheme --

 be used if the Oblivious Gateway and Target Resources are not on the same origin.

If messages are forwarded between these resources without the protections afforded by HTTPS,

they could be inspected or modified by a network attacker. Note that a request could be

forwarded without protection if the two resources share an origin.

SHOULD

SHOULD NOT

6.4. Key Management

An Oblivious Gateway Resource needs to have a plan for replacing keys. This might include

regular replacement of keys, which can be assigned new key identifiers. If an Oblivious Gateway

Resource receives a request that contains a key identifier that it does not understand or that

corresponds to a key that has been replaced, the server can respond with an HTTP 422

(Unprocessable Content) status code.

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc9292#section-3.8
https://www.rfc-editor.org/rfc/rfc9113#section-10.7
https://www.rfc-editor.org/rfc/rfc9114#section-10.7

A server can also use a 422 status code if the server has a key that corresponds to the key

identifier, but the Encapsulated Request cannot be successfully decrypted using the key.

A server ensure that the HPKE keys it uses are not valid for any other protocol that uses

HPKE with the "message/bhttp request" label. Designers of protocols that reuse this encryption

format, especially new versions of this protocol, can ensure key diversity by choosing a different

label in their use of HPKE. The "message/bhttp response" label was chosen for symmetry only as

it provides key diversity only within the HPKE context created using the "message/bhttp request"

label; see Section 4.6.

MUST

6.5. Replay Attacks

A server is responsible for either rejecting replayed requests or ensuring that the effect of

replays does not adversely affect Clients or resources.

Encapsulated Requests can be copied and replayed by the Oblivious Relay Resource. The threat

model for Oblivious HTTP allows the possibility that an Oblivious Relay Resource might replay

requests. Furthermore, if a Client sends an Encapsulated Request in TLS early data (see

 and), a network-based adversary might be able to cause the request to be

replayed. In both cases, the effect of a replay attack and the mitigations that might be employed

are similar to TLS early data.

It is the responsibility of the application that uses Oblivious HTTP to either reject replayed

requests or ensure that replayed requests have no adverse effect on their operation. This section

describes some approaches that are universally applicable and suggestions for more targeted

techniques.

A Client or Oblivious Relay Resource automatically attempt to retry a failed request

unless it receives a positive signal indicating that the request was not processed or forwarded.

The HTTP/2 REFUSED_STREAM error code (), the HTTP/3

H3_REQUEST_REJECTED error code (), or a GOAWAY frame with a low

enough identifier (in either protocol version) are all sufficient signals that no processing

occurred. HTTP/1.1 provides no equivalent signal. Connection failures or

interruptions are not sufficient signals that no processing occurred.

The anti-replay mechanisms described in are generally applicable to Oblivious

HTTP requests. The encapsulated keying material (or enc) can be used in place of a nonce to

uniquely identify a request. This value is a high-entropy value that is freshly generated for every

request, so two valid requests will have different values with overwhelming probability.

The mechanism used in TLS for managing differences in Client and server clocks cannot be used

as it depends on being able to observe previous interactions. Oblivious HTTP explicitly prevents

such linkability.

The considerations in as they relate to managing the risk of replay also apply, though

there is no option to delay the processing of a request.

Section 8

of [TLS] [RFC8470]

MUST NOT

Section 8.1.4 of [HTTP/2]

Section 8.1 of [HTTP/3]

[HTTP/1.1]

Section 8 of [TLS]

[RFC8470]

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 24

https://www.rfc-editor.org/rfc/rfc8446#section-8
https://www.rfc-editor.org/rfc/rfc9113#section-8.1.4
https://www.rfc-editor.org/rfc/rfc9114#section-8.1
https://www.rfc-editor.org/rfc/rfc8446#section-8

Limiting requests to those with safe methods might not be satisfactory for some applications,

particularly those that involve the submission of data to a server. The use of idempotent methods

might be of some use in managing replay risk, though it is important to recognize that different

idempotent requests can be combined to be not idempotent.

Even without replay prevention, the server-chosen response_nonce field ensures that responses

have unique AEAD keys and nonces even when requests are replayed.

6.5.1. Use of Date for Anti-replay

Clients include a Date header field in Encapsulated Requests, unless the Client has prior

knowledge that indicates that the Oblivious Gateway Resource does not use Date for anti-replay

purposes.

Though HTTP requests often do not include a Date header field, the value of this field might be

used by a server to limit the amount of requests it needs to track if it needs to prevent replay

attacks.

An Oblivious Gateway Resource can maintain state for requests for a small window of time over

which it wishes to accept requests. The Oblivious Gateway Resource can store all requests it

processes within this window. Storing just the enc field of a request, which should be unique to

each request, is sufficient. The Oblivious Gateway Resource can reject any request that is the

same as one that was previously answered within that time window or if the Date header field

from the decrypted request is outside of the current time window.

Oblivious Gateway Resources might need to allow for the time it takes requests to arrive from the

Client, with a time window that is large enough to allow for differences in clocks. Insufficient

tolerance of time differences could result in valid requests being unnecessarily rejected. Beyond

allowing for multiple round-trip times -- to account for retransmission -- network delays are

unlikely to be significant in determining the size of the window, unless all potential Clients are

known to have excellent timekeeping. A specific window size might need to be determined

experimentally.

Oblivious Gateway Resources treat the time window as secret information. An

attacker can actively probe with different values for the Date field to determine the time window

over which the server will accept responses.

SHOULD

MUST NOT

6.5.2. Correcting Clock Differences

An Oblivious Gateway Resource can reject requests that contain a Date value that is outside of its

active window with a 400 series status code. The problem type of "https://iana.org/

assignments/http-problem-types#date" is defined to allow the server to signal that the Date value

in the request was unacceptable.

Figure 8 shows an example response in HTTP/1.1 format.

[PROBLEM]

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 25

Disagreements about time are unlikely if both Client and Oblivious Gateway Resource have a

good source of time; see . However, clock differences are known to be commonplace; see

Section 7.1 of .

Including a Date header field in the response allows the Client to correct clock errors by retrying

the same request using the value of the Date field provided by the Oblivious Gateway Resource.

The value of the Date field can be copied if the response is fresh, with an adjustment based on

the Age field otherwise; see . When retrying a request, the Client

 create a fresh encryption of the modified request, using a new HPKE context.

Retrying immediately allows the Oblivious Gateway Resource to measure the round-trip time to

the Client. The observed delay might reveal something about the location of the Client. Clients

could delay retries to add some uncertainty to any observed delay.

Figure 8: Example Rejection of Request Date Field

HTTP/1.1 400 Bad Request
Date: Mon, 07 Feb 2022 00:28:05 GMT
Content-Type: application/problem+json
Content-Length: 128

{"type":"https://iana.org/assignments/http-problem-types#date",
"title": "date field in request outside of acceptable range"}

[NTP]

[CLOCKSKEW]

Section 4.2 of [HTTP-CACHING]

MUST

Figure 9: Retrying with an Updated Date Field

Client Relay and Gateway Target

Resources Resource

Request

400 Response

+ Date

Request

+ Updated Date

|

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 26

https://www.rfc-editor.org/rfc/rfc9111#section-4.2

Intermediaries can sometimes rewrite the Date field when forwarding responses. This might

cause problems if the Oblivious Gateway Resource and intermediary clocks differ by enough to

cause the retry to be rejected. Therefore, Clients retry a request with an adjusted date

more than once.

Oblivious Gateway Resources that condition their responses on the Date header field

either ensure that intermediaries do not cache responses (by including a Cache-Control

directive of no-store) or designate the response as conditional on the value of the Date request

header field (by including the token "date" in a Vary header field).

Clients use the date provided by the Oblivious Gateway Resource for any other

purpose, including future requests to any resource. Any request that uses information provided

by the Oblivious Gateway Resource might be correlated using that information.

MUST NOT

SHOULD

MUST NOT

6.6. Forward Secrecy

This document does not provide forward secrecy for either requests or responses during the

lifetime of the key configuration. A measure of forward secrecy can be provided by generating a

new key configuration then deleting the old keys after a suitable period.

6.7. Post-Compromise Security

This design does not provide post-compromise security for responses.

A Client only needs to retain keying material that might be used to compromise the

confidentiality and integrity of a response until that response is consumed, so there is negligible

risk associated with a Client compromise.

A server retains a secret key that might be used to remove protection from messages over much

longer periods. A server compromise that provided access to the Oblivious Gateway Resource

secret key could allow an attacker to recover the plaintext of all requests sent toward affected

keys and all of the responses that were generated.

Even if server keys are compromised, an adversary cannot access messages exchanged by the

Client with the Oblivious Relay Resource as messages are protected by TLS. Use of a

compromised key also requires that the Oblivious Relay Resource cooperate with the attacker or

that the attacker is able to compromise these TLS connections.

The total number of messages affected by server key compromise can be limited by regular

rotation of server keys.

6.8. Client Clock Exposure

Including a Date field in requests reveals some information about the Client clock. This might be

used to fingerprint Clients or to identify Clients that are vulnerable to attacks that depend

on incorrect clocks.

[UWT]

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 27

Clients can randomize the value that they provide for Date to obscure the true value of their

clock and reduce the chance of linking requests over time. However, this increases the risk that

their request is rejected as outside the acceptable window.

6.9. Media Type Security

The key configuration media type defined in Section 3.2 represents keying material. The content

of this media type is not active (see), but it governs how a Client might

interact with an Oblivious Gateway Resource. The security implications of processing it are

described in Section 6.1; privacy implications are described in Section 7.

The security implications of handling the message media types defined in Section 4.5 is covered

in other parts of this section in more detail. However, these message media types are also

encrypted encapsulations of HTTP requests and responses.

HTTP messages contain content, which can use any media type. In particular, requests are

processed by an Oblivious Target Resource, which -- as an HTTP resource -- defines how content

is processed; see . HTTP clients can also use resource identity and response

content to determine how content is processed. Consequently, the security considerations of

 also apply to the handling of the content of these media types.

Section 4.6 of [RFC6838]

Section 3.1 of [HTTP]

Section 17 of [HTTP]

6.10. Separate Gateway and Target

This document generally assumes that the same entity operates the Oblivious Gateway Resource

and the Target Resource. However, as the Oblivious Gateway Resource performs generic HTTP

processing, the use of forwarding cannot be completely precluded.

The scheme specified in the Encapsulated Request determines the security requirements for any

protocol that is used between the Oblivious Gateway and Target Resources. Using HTTPS is

; see Section 6.3.

A Target Resource that is operated on a different server from the Oblivious Gateway Resource is

an ordinary HTTP resource. A Target Resource can privilege requests that are forwarded by a

given Oblivious Gateway Resource if it trusts the operator of the Oblivious Gateway Resource to

only forward requests that meet the expectations of the Target Resource. Otherwise, the Target

Resource treats requests from an Oblivious Gateway Resource no differently than any other

HTTP client.

For instance, an Oblivious Gateway Resource might -- possibly with the help of Oblivious Relay

Resources -- be trusted not to forward an excessive volume of requests. This might allow the

Target Resource to accept a greater volume of requests from that Oblivious Gateway Resource

relative to other HTTP clients.

An Oblivious Gateway Resource could implement policies that improve the ability of the Target

Resource to implement policy exemptions, such as only forwarding requests toward specific

Target Resources according to an allowlist; see Section 6.3.

RECOMMENDED

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 28

https://www.rfc-editor.org/rfc/rfc6838#section-4.6
https://www.rfc-editor.org/rfc/rfc9110#section-3.1
https://www.rfc-editor.org/rfc/rfc9110#section-17

7. Privacy Considerations

One goal of this design is that independent Client requests are only linkable by their content.

However, the choice of Client configuration might be used to correlate requests. A Client

configuration includes the Oblivious Relay Resource URI, the Oblivious Gateway key

configuration, and the Oblivious Gateway Resource URI. A configuration is active if Clients can

successfully use it for interacting with a target.

Oblivious Relay and Gateway Resources can identify when requests use the same configuration

by matching the key identifier from the key configuration or the Oblivious Gateway Resource

URI. The Oblivious Gateway Resource might use the source address of requests to correlate

requests that use an Oblivious Relay Resource run by the same operator. If the Oblivious

Gateway Resource is willing to use trial decryption, requests can be further separated into

smaller groupings based on active configurations that clients use.

Each active Client configuration partitions the Client anonymity set. In practice, it is infeasible to

reduce the number of active configurations to one. Enabling diversity in choice of Oblivious

Relay Resource naturally increases the number of active configurations. More than one

configuration might need to be active to allow for key rotation and server maintenance.

Client privacy depends on having each configuration used by many other Clients. It is critical to

prevent the use of unique Client configurations, which might be used to track individual Clients,

but it is also important to avoid creating small groupings of Clients that might weaken privacy

protections.

A specific method for a Client to acquire configurations is not included in this specification.

Applications using this design provide accommodations to mitigate tracking using Client

configurations. provides options for ensuring that Client configurations are

consistent between Clients.

The content of requests or responses, if used in forming new requests, can be used to correlate

requests. This includes obvious methods of linking requests, like cookies , but it also

includes any information in either message that might affect how subsequent requests are

formulated. For example, describes how interactions that are individually stateless

can be used to build a stateful system when a Client acts on the content of a response.

MUST

[CONSISTENCY]

[COOKIES]

[FIELDING]

8. Operational and Deployment Considerations

This section discusses various operational and deployment considerations.

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 29

8.1. Performance Overhead

Using Oblivious HTTP adds both cryptographic overhead and latency to requests relative to a

simple HTTP request-response exchange. Deploying relay services that are on path between

Clients and servers avoids adding significant additional delay due to network topology. A study of

a similar system found that deploying proxies close to servers was most effective in

minimizing additional latency.

[ODOH-PETS]

8.2. Resource Mappings

This protocol assumes a fixed, one-to-one mapping between the Oblivious Relay Resource and

the Oblivious Gateway Resource. This means that any Encapsulated Request sent to the Oblivious

Relay Resource will always be forwarded to the Oblivious Gateway Resource. This constraint was

imposed to simplify relay configuration and mitigate against the Oblivious Relay Resource being

used as a generic relay for unknown Oblivious Gateway Resources. The relay will only forward

for Oblivious Gateway Resources that it has explicitly configured and allowed.

It is possible for a server to be configured with multiple Oblivious Relay Resources, each for a

different Oblivious Gateway Resource as needed. If the goal is to support a large number of

Oblivious Gateway Resources, Clients might be provided with a URI template , from

which multiple Oblivious Relay Resources could be constructed.

[TEMPLATE]

8.3. Network Management

Oblivious HTTP might be incompatible with network interception regimes, such as those that

rely on configuring Clients with trust anchors and intercepting TLS connections. While TLS might

be intercepted successfully, interception middlebox devices might not receive updates that would

allow Oblivious HTTP to be correctly identified using the media types defined in Sections 9.2 and

9.3.

Oblivious HTTP has a simple key management design that is not trivially altered to enable

interception by intermediaries. Clients that are configured to enable interception might choose to

disable Oblivious HTTP in order to ensure that content is accessible to middleboxes.

9. IANA Considerations

IANA has registered the following media types in the "Media Types" registry at

, following the procedures of : "application/ohttp-

keys" (Section 9.1), "message/ohttp-req" (Section 9.2), and "message/ohttp-res" (Section 9.3).

IANA has added the following types to the "HTTP Problem Types" registry at

: "date" (Section 9.4) and "ohttp-key" (Section 9.5).

<https://iana.org/

assignments/media-types> [RFC6838]

<https://iana.org/

assignments/http-problem-types>

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 30

https://iana.org/assignments/media-types
https://iana.org/assignments/media-types
https://iana.org/assignments/http-problem-types
https://iana.org/assignments/http-problem-types

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

9.1. application/ohttp-keys Media Type

The "application/ohttp-keys" media type identifies a key configuration used by Oblivious

HTTP.

application

ohttp-keys

N/A

N/A

"binary"

See Section 6.9

N/A

RFC 9458

This type identifies a key configuration as used by

Oblivious HTTP and applications that use Oblivious HTTP.

N/A

N/A

N/A

N/A

N/A

See Authors' Addresses section

COMMON

N/A

See Authors' Addresses section

IETF

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 31

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

9.2. message/ohttp-req Media Type

The "message/ohttp-req" identifies an encrypted binary HTTP request. This is a binary format

that is defined in Section 4.3.

message

ohttp-req

N/A

N/A

"binary"

See Section 6.9

N/A

RFC 9458

Oblivious HTTP and applications that use Oblivious HTTP

use this media type to identify encapsulated binary HTTP requests.

N/A

N/A

N/A

N/A

N/A

See Authors' Addresses section

COMMON

N/A

See Authors' Addresses section

IETF

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 32

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

9.3. message/ohttp-res Media Type

The "message/ohttp-res" identifies an encrypted binary HTTP response. This is a binary format

that is defined in Section 4.4.

message

ohttp-res

N/A

N/A

"binary"

See Section 6.9

N/A

RFC 9458

Oblivious HTTP and applications that use Oblivious HTTP

use this media type to identify encapsulated binary HTTP responses.

N/A

N/A

N/A

N/A

N/A

See Authors' Addresses section

COMMON

N/A

See Authors' Addresses section

IETF

9.4. Registration of "date" Problem Type

IANA has added a new entry in the "HTTP Problem Types" registry established by .[PROBLEM]

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 33

10. References

Type URI:

Title:

Recommended HTTP Status Code:

Reference:

https://iana.org/assignments/http-problem-types#date

Date Not Acceptable

400

Section 6.5.2 of RFC 9458

Type URI:

Title:

Recommended HTTP Status Code:

Reference:

9.5. Registration of "ohttp-key" Problem Type

IANA has added a new entry in the "HTTP Problem Types" registry established by .

https://iana.org/assignments/http-problem-types#ohttp-key

Oblivious HTTP key configuration not acceptable

400

Section 5.3 of RFC 9458

[PROBLEM]

[ASCII]

[BINARY]

[HPKE]

[HTTP]

[HTTP-CACHING]

[PROBLEM]

10.1. Normative References

, , , ,

, October 1969, .

 and , ,

, , August 2022,

.

, , , and , ,

, , February 2022,

.

, , and , ,

, , , June 2022,

.

, , and , ,

, , , June 2022,

.

, , and , ,

, , July 2023,

.

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/

RFC0020 <https://www.rfc-editor.org/info/rfc20>

Thomson, M. C. A. Wood "Binary Representation of HTTP Messages" RFC

9292 DOI 10.17487/RFC9292 <https://www.rfc-editor.org/info/

rfc9292>

Barnes, R. Bhargavan, K. Lipp, B. C. Wood "Hybrid Public Key Encryption"

RFC 9180 DOI 10.17487/RFC9180 <https://www.rfc-editor.org/

info/rfc9180>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Caching"

STD 98 RFC 9111 DOI 10.17487/RFC9111 <https://www.rfc-editor.org/

info/rfc9111>

Nottingham, M. Wilde, E. S. Dalal "Problem Details for HTTP APIs" RFC

9457 DOI 10.17487/RFC9457 <https://www.rfc-editor.org/info/

rfc9457>

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 34

https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc9292
https://www.rfc-editor.org/info/rfc9292
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9457
https://www.rfc-editor.org/info/rfc9457

[QUIC]

[RFC2119]

[RFC6838]

[RFC8174]

[RFC8470]

[TLS]

 and ,

, , , May 2021,

.

, , ,

, , March 1997,

.

, , and ,

, , , , January 2013,

.

, ,

, , , May 2017,

.

, , and , ,

, , September 2018,

.

, , ,

, August 2018, .

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration

Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://

www.rfc-editor.org/info/rfc6838>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Thomson, M. Nottingham, M. W. Tarreau "Using Early Data in HTTP" RFC

8470 DOI 10.17487/RFC8470 <https://www.rfc-editor.org/info/

rfc8470>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

[CLOCKSKEW]

[CONSISTENCY]

[COOKIES]

[DMS2004]

[FIELDING]

[FORWARDED]

10.2. Informative References

, , , , , , ,

, and ,

,

, , October

2017, .

, , , and ,

, ,

, 10 July 2023,

.

, , ,

, April 2011, .

, , and ,

, May 2004,

.

,

, January 2000,

.

 and , , ,

, June 2014, .

Acer, M. Stark, E. Felt, A. Fahl, S. Bhargava, R. Dev, B. Braithwaite, M. Sleevi,

R. P. Tabriz "Where the Wild Warnings Are: Root Causes of Chrome HTTPS

Certificate Errors" Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security DOI 10.1145/3133956.3134007

<https://doi.org/10.1145/3133956.3134007>

Davidson, A. Finkel, M. Thomson, M. C. A. Wood "Key Consistency and

Discovery" Work in Progress Internet-Draft, draft-ietf-privacypass-key-

consistency-01 <https://datatracker.ietf.org/doc/html/draft-ietf-

privacypass-key-consistency-01>

Barth, A. "HTTP State Management Mechanism" RFC 6265 DOI 10.17487/

RFC6265 <https://www.rfc-editor.org/info/rfc6265>

Dingledine, R. Mathewson, N. P. Syverson "Tor: The Second-Generation

Onion Router" <https://svn.torproject.org/svn/projects/design-paper/

tor-design.html>

Fielding, R. T. "Architectural Styles and the Design of Network-based Software

Architectures" <https://www.ics.uci.edu/~fielding/pubs/

dissertation/fielding_dissertation.pdf>

Petersson, A. M. Nilsson "Forwarded HTTP Extension" RFC 7239 DOI

10.17487/RFC7239 <https://www.rfc-editor.org/info/rfc7239>

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 35

https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1145/3133956.3134007
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-key-consistency-01
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-key-consistency-01
https://www.rfc-editor.org/info/rfc6265
https://svn.torproject.org/svn/projects/design-paper/tor-design.html
https://svn.torproject.org/svn/projects/design-paper/tor-design.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.rfc-editor.org/info/rfc7239

[HTTP/1.1]

[HTTP/2]

[HTTP/3]

[NTP]

[ODOH]

[ODOH-PETS]

[OHTTP-ANALYSIS]

[PRIO]

[RANDOM]

[RFC7838]

[RFC8484]

[TEMPLATE]

[UWT]

, , and , , ,

, , June 2022,

.

 and , , ,

, June 2022, .

, , , , June 2022,

.

, , , and ,

, ,

, June 2010, .

, , , , and ,

, , , June 2022,

.

, , , , , ,

, , , and ,

,

, , January 2021,

.

, , , October

2022, .

 and ,

, March 2017,

.

, , and ,

, , , , June 2005,

.

, , and , ,

, , April 2016,

.

 and , , ,

, October 2018, .

, , , , and ,

, , , March 2012,

.

, , , July 2015,

.

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC

9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/

rfc9112>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Bishop, M., Ed. "HTTP/3" RFC 9114 DOI 10.17487/RFC9114 <https://

www.rfc-editor.org/info/rfc9114>

Mills, D. Martin, J., Ed. Burbank, J. W. Kasch "Network Time Protocol

Version 4: Protocol and Algorithms Specification" RFC 5905 DOI 10.17487/

RFC5905 <https://www.rfc-editor.org/info/rfc5905>

Kinnear, E. McManus, P. Pauly, T. Verma, T. C.A. Wood "Oblivious DNS

over HTTPS" RFC 9230 DOI 10.17487/RFC9230 <https://www.rfc-

editor.org/info/rfc9230>

Singanamalla, S. Chunhapanya, S. Hoyland, J. Vavruša, M. Verma, T. Wu, P.

Fayed, M. Heimerl, K. Sullivan, N. C. A. Wood "Oblivious DNS over HTTPS

(ODoH): A Practical Privacy Enhancement to DNS" PoPETS Proceedings Volume

2021, Issue 4, pp. 575-592 DOI 10.2478/popets-2021-0085 <https://

www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf>

Hoyland, J. "Tamarin Model of Oblivious HTTP" commit 6824eee

<https://github.com/cloudflare/ohttp-analysis>

Corrigan-Gibbs, H. D. Boneh "Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics" <https://crypto.stanford.edu/

prio/paper.pdf>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for

Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://

www.rfc-editor.org/info/rfc4086>

Nottingham, M. McManus, P. J. Reschke "HTTP Alternative Services" RFC

7838 DOI 10.17487/RFC7838 <https://www.rfc-editor.org/info/

rfc7838>

Hoffman, P. P. McManus "DNS Queries over HTTPS (DoH)" RFC 8484 DOI

10.17487/RFC8484 <https://www.rfc-editor.org/info/rfc8484>

Gregorio, J. Fielding, R. Hadley, M. Nottingham, M. D. Orchard "URI

Template" RFC 6570 DOI 10.17487/RFC6570 <https://www.rfc-

editor.org/info/rfc6570>

Nottingham, M. "Unsanctioned Web Tracking" W3C TAG Finding

<https://www.w3.org/2001/tag/doc/unsanctioned-tracking/>

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 36

https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc9230
https://www.rfc-editor.org/info/rfc9230
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://www.petsymposium.org/2021/files/papers/issue4/popets-2021-0085.pdf
https://github.com/cloudflare/ohttp-analysis
https://crypto.stanford.edu/prio/paper.pdf
https://crypto.stanford.edu/prio/paper.pdf
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://www.w3.org/2001/tag/doc/unsanctioned-tracking/

[X25519] , , and , , ,

, January 2016, .

Langley, A. Hamburg, M. S. Turner "Elliptic Curves for Security" RFC 7748

DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Appendix A. Complete Example of a Request and Response

A single request and response exchange is shown here. Binary values (key configuration, secret

keys, the content of messages, and intermediate values) are shown in hexadecimal. The request

and response here are minimal; the purpose of this example is to show the cryptographic

operations. In this example, the Client is configured with the Oblivious Relay Resource URI of

https://proxy.example.org/request.example.net/proxy, and the proxy is configured to map

requests to this URI to the Oblivious Gateway Resource URI https://example.com/oblivious/

request. The Target Resource URI, i.e., the resource the Client ultimately wishes to query, is

https://example.com.

To begin the process, the Oblivious Gateway Resource generates a key pair. In this example, the

server chooses DHKEM(X25519, HKDF-SHA256) and generates an X25519 key pair . The

X25519 secret key is:

The Oblivious Gateway Resource constructs a key configuration that includes the corresponding

public key as follows:

This key configuration is somehow obtained by the Client. Then, when a Client wishes to send an

HTTP GET request to the target https://example.com, it constructs the following binary HTTP

message:

The Client then reads the Oblivious Gateway Resource key configuration and selects a mutually

supported KDF and AEAD. In this example, the Client selects HKDF-SHA256 and AES-128-GCM.

The Client then generates an HPKE sending context that uses the server public key. This context

is constructed from the following ephemeral secret key:

The corresponding public key is:

[X25519]

3c168975674b2fa8e465970b79c8dcf09f1c741626480bd4c6162fc5b6a98e1a

01002031e1f05a740102115220e9af918f738674aec95f54db6e04eb705aae8e
79815500080001000100010003

00034745540568747470730b6578616d706c652e636f6d012f

bc51d5e930bda26589890ac7032f70ad12e4ecb37abb1b65b1256c9c48999c73

4b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad19dec96c208b472

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 37

https://www.rfc-editor.org/info/rfc7748

The context is created with an info parameter of:

Applying the Seal operation from the HPKE context produces an encrypted message, allowing the

Client to construct the following Encapsulated Request:

The Client then sends this to the Oblivious Relay Resource in a POST request, which might look

like the following HTTP/1.1 request:

The Oblivious Relay Resource receives this request and forwards it to the Oblivious Gateway

Resource, which might look like:

The Oblivious Gateway Resource receives this request, selects the key it generated previously

using the key identifier from the message, and decrypts the message. As this request is directed

to the same server, the Oblivious Gateway Resource does not need to initiate an HTTP request to

the Target Resource. The request can be served directly by the Target Resource, which generates

a minimal response (consisting of just a 200 status code) as follows:

The response is constructed by exporting a secret from the HPKE context:

6d6573736167652f626874747020726571756573740001002000010001

010020000100014b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad1
9dec96c208b4726374e469135906992e1268c594d2a10c695d858c40a026e796
5e7d86b83dd440b2c0185204b4d63525

POST /request.example.net/proxy HTTP/1.1
Host: proxy.example.org
Content-Type: message/ohttp-req
Content-Length: 78

<content is the Encapsulated Request above>

POST /oblivious/request HTTP/1.1
Host: example.com
Content-Type: message/ohttp-req
Content-Length: 78

<content is the Encapsulated Request above>

0140c8

62d87a6ba569ee81014c2641f52bea36

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 38

The key derivation for the Encapsulated Response uses both the encapsulated KEM key from the

request and a randomly selected nonce. This produces a salt of:

The salt and secret are both passed to the Extract function of the selected KDF (HKDF-SHA256)

to produce a pseudorandom key of:

The pseudorandom key is used with the Expand function of the KDF and an info field of "key" to

produce a 16-byte key for the selected AEAD (AES-128-GCM):

With the same KDF and pseudorandom key, an info field of "nonce" is used to generate a 12-byte

nonce:

The AEAD Seal() function is then used to encrypt the response, which is added to the

randomized nonce value to produce the Encapsulated Response:

The Oblivious Gateway Resource constructs a response with the same content:

The same response might then be generated by the Oblivious Relay Resource, which might

change as little as the Date header. The Client is then able to use the HPKE context it created and

the nonce from the Encapsulated Response to construct the AEAD key and nonce and decrypt the

response.

4b28f881333e7c164ffc499ad9796f877f4e1051ee6d31bad19dec96c208b472
c789e7151fcba46158ca84b04464910d

979aaeae066cf211ab407b31ae49767f344e1501e475c84e8aff547cc5a683db

5d0172a080e428b16d298c4ea0db620d

f6bf1aeb88d6df87007fa263

c789e7151fcba46158ca84b04464910d86f9013e404feea014e7be4a441f234f
857fbd

HTTP/1.1 200 OK
Date: Wed, 27 Jan 2021 04:45:07 GMT
Cache-Control: private, no-store
Content-Type: message/ohttp-res
Content-Length: 38

<content is the Encapsulated Response>

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 39

Acknowledgments

This design is based on a design for Oblivious DNS (queries) over HTTPS (DoH), described in

. , , and made technical contributions. The

authors also thank , , and for invaluable assistance.

[ODOH] David Benjamin Mark Nottingham Eric Rescorla

Ralph Giles Lucas Pardue Tommy Pauly

Authors' Addresses

Martin Thomson

Mozilla

 mt@lowentropy.net Email:

Christopher A. Wood

Cloudflare

 caw@heapingbits.net Email:

RFC 9458 Oblivious HTTP January 2024

Thomson & Wood Standards Track Page 40

mailto:mt@lowentropy.net
mailto:caw@heapingbits.net

	RFC 9458
	Oblivious HTTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview
	2.1. Applicability
	2.2. Conventions and Definitions

	3. Key Configuration
	3.1. Key Configuration Encoding
	3.2. Key Configuration Media Type

	4. HPKE Encapsulation
	4.1. Request Format
	4.2. Response Format
	4.3. Encapsulation of Requests
	4.4. Encapsulation of Responses
	4.5. Request and Response Media Types
	4.6. Repurposing the Encapsulation Format

	5. HTTP Usage
	5.1. Informational Responses
	5.2. Errors
	5.3. Signaling Key Configuration Problems

	6. Security Considerations
	6.1. Client Responsibilities
	6.2. Relay Responsibilities
	6.2.1. Differential Treatment
	6.2.2. Denial of Service
	6.2.3. Traffic Analysis

	6.3. Server Responsibilities
	6.4. Key Management
	6.5. Replay Attacks
	6.5.1. Use of Date for Anti-replay
	6.5.2. Correcting Clock Differences

	6.6. Forward Secrecy
	6.7. Post-Compromise Security
	6.8. Client Clock Exposure
	6.9. Media Type Security
	6.10. Separate Gateway and Target

	7. Privacy Considerations
	8. Operational and Deployment Considerations
	8.1. Performance Overhead
	8.2. Resource Mappings
	8.3. Network Management

	9. IANA Considerations
	9.1. application/ohttp-keys Media Type
	9.2. message/ohttp-req Media Type
	9.3. message/ohttp-res Media Type
	9.4. Registration of "date" Problem Type
	9.5. Registration of "ohttp-key" Problem Type

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Complete Example of a Request and Response
	Acknowledgments
	Authors' Addresses

