
RFC 9396

OAuth 2.0 Rich Authorization Requests

Abstract

This document specifies a new parameter authorization_details that is used to carry fine-

grained authorization data in OAuth messages.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9396

Standards Track

May 2023

2070-1721

 T. Lodderstedt

yes.com

J. Richer

Bespoke Engineering

B. Campbell

Ping Identity

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9396

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Lodderstedt, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9396
https://www.rfc-editor.org/info/rfc9396
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Request Parameter "authorization_details"

2.1. Authorization Details Types

2.2. Common Data Fields

3. Authorization Request

3.1. Relationship to the "scope" Parameter

3.2. Relationship to the "resource" Parameter

4. Authorization Response

5. Authorization Error Response

6. Token Request

6.1. Comparing Authorization Details

7. Token Response

7.1. Enriched Authorization Details in Token Response

8. Token Error Response

9. Resource Servers

9.1. JWT-Based Access Tokens

9.2. Token Introspection

10. Metadata

11. Implementation Considerations

11.1. Using Authorization Details in a Certain Deployment

11.2. Minimal Implementation Support

11.3. Use of Machine-Readable Type Schemas

11.4. Large Requests

12. Security Considerations

13. Privacy Considerations

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 2

14. IANA Considerations

14.1. OAuth Parameters Registration

14.2. JSON Web Token Claims Registration

14.3. OAuth Token Introspection Response Registration

14.4. OAuth Authorization Server Metadata Registration

14.5. OAuth Dynamic Client Registration Metadata Registration

14.6. OAuth Extensions Error Registration

15. References

15.1. Normative References

15.2. Informative References

Appendix A. Additional Examples

A.1. OpenID Connect

A.2. Remote Electronic Signing

A.3. Access to Tax Data

A.4. eHealth

Acknowledgements

Authors' Addresses

1. Introduction

"The OAuth 2.0 Authorization Framework" defines the scope parameter that allows

OAuth clients to specify the requested scope, i.e., the limited capability, of an access token. This

mechanism is sufficient to implement static scenarios and coarse-grained authorization requests,

such as "give me read access to the resource owner's profile." However, it is not sufficient to

specify fine-grained authorization requirements, such as "please let me transfer an amount of 45

Euros to Merchant A" or "please give me read access to directory A and write access to file X."

This specification introduces a new parameter authorization_details that allows clients to

specify their fine-grained authorization requirements using the expressiveness of JSON

 data structures.

For example, an authorization request for a credit transfer (designated as "payment initiation" in

several open banking initiatives) can be represented using a JSON object like this:

[RFC6749]

[RFC8259]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 3

This object contains detailed information about the intended payment, such as amount, currency,

and creditor, that is required to inform the user and obtain their consent. The authorization

server (AS) and the respective resource server (RS) (providing the payment initiation API) will

together enforce this consent.

For a comprehensive discussion of the challenges arising from new use cases in the open

banking and electronic signing spaces, see .

In addition to facilitating custom authorization requests, this specification also introduces a set

of common data type fields for use across different APIs.

Figure 1: Example of an Authorization Request for a Credit Transfer

{

 "type": "payment_initiation",

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant A",

 "creditorAccount": {

 "bic":"ABCIDEFFXXX",

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

}

[Transaction-Auth]

1.1. Conventions and Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

This specification uses the terms "access token", "refresh token", "authorization server" (AS),

"resource server" (RS), "authorization endpoint", "authorization request", "authorization

response", "token endpoint", "grant type", "access token request", "access token response", and

"client" defined by "The OAuth 2.0 Authorization Framework" .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC6749]

2. Request Parameter "authorization_details"

The request parameter authorization_details contains, in JSON notation, an array of objects.

Each JSON object contains the data to specify the authorization requirements for a certain type of

resource. The type of resource or access requirement is determined by the type field, which is

defined as follows:

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 4

type: An identifier for the authorization details type as a string. The value of the type field

determines the allowable contents of the object that contains it. The value is unique for the

described API in the context of the AS. This field is .

An authorization_details array contain multiple entries of the same type.

Figure 2 shows an authorization_details of type payment_initiation using the example data

shown above:

Figure 3 shows a combined request asking for access to account information and permission to

initiate a payment:

REQUIRED

MAY

Figure 2: Example of "authorization_details" for a Credit Transfer

[

 {

 "type": "payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant A",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 5

The JSON objects with type fields of account_information and payment_initiation represent

the different authorization_details to be used by the AS to ask for consent.

Note: The AS will make this data subsequently available to the respective RSs (see

Section 9).

Figure 3: Example of "authorization_details" for a Combined Request

[

 {

 "type": "account_information",

 "actions": [

 "list_accounts",

 "read_balances",

 "read_transactions"

],

 "locations": [

 "https://example.com/accounts"

]

 },

 {

 "type": "payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant A",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

2.1. Authorization Details Types

The AS controls the interpretation of the value of the type parameter as well as the object fields

that the type parameter allows. However, the value of the type parameter is also generally

documented and intended to be used by developers. It is that API designers

choose type values that are easily copied without ambiguity. For example, some glyphs have

multiple Unicode code points for the same visual character, and a developer could potentially

type a different character than what the AS has defined. Possible means of reducing potential

RECOMMENDED

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 6

confusion are limiting the value to ASCII characters, providing a machine-readable

listing of data type values, or instructing developers to copy and paste directly from the

documentation.

If an application or API is expected to be deployed across different servers, such as the case in an

open standard, the API designer is to use a collision-resistant namespace under

their control, such as a URI that the API designer controls.

The following example shows how an implementation could utilize the namespace https://

scheme.example.org/ to ensure collision-resistant type values.

[RFC0020]

RECOMMENDED

Figure 4: Example of "authorization_details" with a URL as Type Identifier

{

 "type": "https://scheme.example.org/files",

 "locations": [

 "https://example.com/files"

],

 "permissions": [

 {

 "path": "/myfiles/A",

 "access": [

 "read"

]

 },

 {

 "path": "/myfiles/A/X",

 "access": [

 "read",

 "write"

]

 }

]

}

locations:

actions:

2.2. Common Data Fields

This specification defines a set of common data fields that are designed to be usable across

different types of APIs. This specification does not require the use of these common fields by an

API definition but, instead, provides them as reusable generic components for API designers to

make use of. The allowable values of all fields are determined by the API being protected, as

defined by a particular "type" value.

An array of strings representing the location of the resource or RS. These strings are

typically URIs identifying the location of the RS. This field can allow a client to specify a

particular RS, as discussed in Section 12.

An array of strings representing the kinds of actions to be taken at the resource.

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 7

datatypes:

identifier:

privileges:

An array of strings representing the kinds of data being requested from the

resource.

A string identifier indicating a specific resource available at the API.

An array of strings representing the types or levels of privilege being requested at

the resource.

When different common data fields are used in combination, the permissions the client requests

are the product of all the values. The object represents a request for all actions values listed

within the object to be used at all locations values listed within the object for all datatypes

values listed within the object. In the following example, the client is requesting read and write

access to both the contacts and photos belonging to customers in a customer_information API.

If this request is granted, the client would assume it would be able to use any combination of

rights defined by the API, such as read access to the photos and write access to the contacts.

If the client wishes to have finer control over its access, it can send multiple objects. In this

example, the client is asking for read access to the contacts and write access to the photos in

the same API endpoint. If this request is granted, the client would not be able to write to the

contacts.

Figure 5: Example of "authorization_details" with Common Data Fields

[

 {

 "type": "customer_information",

 "locations": [

 "https://example.com/customers"

],

 "actions": [

 "read",

 "write"

],

 "datatypes": [

 "contacts",

 "photos"

]

 }

]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 8

An API define its own extensions, subject to the type of the respective authorization object.

It is anticipated that API designers will use a combination of common data fields defined in this

specification as well as fields specific to the API itself. The following non-normative example

shows the use of both common and API-specific fields as part of two different fictitious API type

values. The first access request includes the actions, locations, and datatypes fields specified

here as well as the API-specific geolocation field, indicating access to photos taken at the given

coordinates. The second access request includes the actions and identifier fields specified

here as well as the API-specific currency fields.

Figure 6: Example of "authorization_details" with Common Data Fields in Multiple Objects

[

 {

 "type": "customer_information",

 "locations": [

 "https://example.com/customers"

],

 "actions": [

 "read"

],

 "datatypes": [

 "contacts"

]

 },

 {

 "type": "customer_information",

 "locations": [

 "https://example.com/customers"

],

 "actions": [

 "write"

],

 "datatypes": [

 "photos"

]

 }

]

MAY

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 9

If this request is approved, the resulting access token's access rights will be the union of the

requested types of access for each of the two APIs, just as above.

Figure 7: Example of "authorization_details" Using Common and Extension Data Fields

[

 {

 "type":"photo-api",

 "actions":[

 "read",

 "write"

],

 "locations":[

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes":[

 "metadata",

 "images"

],

 "geolocation":[

 {

 "lat":-32.364,

 "lng":153.207

 },

 {

 "lat":-35.364,

 "lng":158.207

 }

]

 },

 {

 "type":"financial-transaction",

 "actions":[

 "withdraw"

],

 "identifier":"account-14-32-32-3",

 "currency":"USD"

 }

]

3. Authorization Request

The authorization_details authorization request parameter can be used to specify

authorization requirements in all places where the scope parameter is used for the same

purpose, examples include:

authorization requests as specified in

device authorization requests as specified in

backchannel authentication requests as defined in

• [RFC6749]

• [RFC8628]

• [OID-CIBA]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 10

In case of authorization requests as defined in , implementers consider using

pushed authorization requests to improve the security, privacy, and reliability of the

flow. See Sections 12, 13, and 11.4 for details.

Parameter encoding is determined by the respective context. In the context of an authorization

request according to , the parameter is encoded using the application/x-www-form-

urlencoded format of the serialized JSON as shown in Figure 8, using the example from Section 2

(line breaks for display purposes only):

Based on the data provided in the authorization_details parameter, the AS will ask the user

for consent to the requested access permissions.

Note: The user may also grant a subset of the requested authorization details.

In Figure 9, the client wants to get access to account information and initiate a payment:

[RFC6749] MAY

[RFC9126]

[RFC6749]

Figure 8: Example of Authorization Request with "authorization_details"

GET /authorize?response_type=code

 &client_id=s6BhdRkqt3

 &state=af0ifjsldkj

 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

 &code_challenge_method=S256

 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bwc-uCHaoeK1t8U

 &authorization_details=%5B%7B%22type%22%3A%22account%5Finfo

 rmation%22%2C%22actions%22%3A%5B%22list%5Faccounts%22%2C%22

 read%5Fbalances%22%2C%22read%5Ftransactions%22%5D%2C%22loca

 tions%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%2Faccounts%22%

 5D%7D%2C%7B%22type%22%3A%22payment%5Finitiation%22%2C%22act

 ions%22%3A%5B%22initiate%22%2C%22status%22%2C%22cancel%22%5

 D%2C%22locations%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%2Fp

 ayments%22%5D%2C%22instructedAmount%22%3A%7B%22currency%22%

 3A%22EUR%22%2C%22amount%22%3A%22123%2E50%22%7D%2C%22credito

 rName%22%3A%22Merchant%20A%22%2C%22creditorAccount%22%3A%7B

 %22iban%22%3A%22DE02100100109307118603%22%7D%2C%22remittanc

 eInformationUnstructured%22%3A%22Ref%20Number%20Merchant%22

 %7D%5D HTTP/1.1

Host: server.example.com

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 11

Figure 9: URL Decoded "authorization_details"

[

 {

 "type": "account_information",

 "actions": [

 "list_accounts",

 "read_balances",

 "read_transactions"

],

 "locations": [

 "https://example.com/accounts"

]

 },

 {

 "type": "payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant A",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

3.1. Relationship to the "scope" Parameter

authorization_details and scope can be used in the same authorization request for carrying

independent authorization requirements.

Combined use of authorization_details and scope is supported by this specification in part to

allow existing OAuth-based applications to incrementally migrate towards using

authorization_details exclusively. It is that a given API use only one form of

requirement specification.

The AS process both sets of requirements in combination with each other for the given

authorization request. The details of how the AS combines these parameters are specific to the

APIs being protected and outside the scope of this specification.

When gathering user consent, the AS present the merged set of requirements represented

by the authorization request.

RECOMMENDED

MUST

MUST

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 12

If the resource owner grants the client the requested access, the AS will issue tokens to the client

that are associated with the respective authorization_details (and scope values, if applicable).

3.2. Relationship to the "resource" Parameter

The resource authorization request parameter, as defined in , can be used to further

determine the resources where the requested scope can be applied. The resource parameter

does not have any impact on the way the AS processes the authorization_details

authorization request parameter.

[RFC8707]

4. Authorization Response

This specification does not define extensions to the authorization response.

5. Authorization Error Response

The AS refuse to process any unknown authorization details type or authorization details

not conforming to the respective type definition. The AS abort processing and respond with

an error invalid_authorization_details to the client if any of the following are true of the

objects in the authorization_details structure:

contains an unknown authorization details type value,

is an object of known type but containing unknown fields,

contains fields of the wrong type for the authorization details type,

contains fields with invalid values for the authorization details type, or

is missing required fields for the authorization details type.

MUST

MUST

•

•

•

•

•

6. Token Request

The authorization_details token request parameter can be used to specify the authorization

details that a client wants the AS to assign to an access token. The AS checks whether the

underlying grant (in case of grant types authorization_code, refresh_token, etc.) or the

client's policy (in case of grant type client_credentials) allows the issuance of an access token

with the requested authorization details. Otherwise, the AS refuses the request with the error

code invalid_authorization_details (similar to invalid_scope).

6.1. Comparing Authorization Details

Many actions in the OAuth protocol allow the AS and RS to make security decisions based on

whether the request is asking for "more" or "less" than a previous, existing request. For example,

upon refreshing a token, the client can ask for a new access token with "fewer permissions" than

had been previously authorized by the resource owner. The requested access token will convey

the reduced permissions, but the resource owner's previous authorization is unchanged by such

requests. Since the semantics of the fields in the authorization_details will be implementation

specific to a given API or set of APIs, there is no standardized mechanism to compare two

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 13

arbitrary authorization detail requests. An AS should not rely on simple object comparison in

most cases, as the intersection of some fields within a request could have side effects on the

access rights granted, depending on how the API has been designed and deployed. This is a

similar effect to the scope values used with some APIs.

When comparing a new request to an existing request, an AS can use the same processing

techniques as used in granting the request in the first place to determine if a resource owner

needs to authorize the request. The details of this comparison are dependent on the definition of

the type of authorization request and outside the scope of this specification, but common

patterns can be applied.

This shall be illustrated using our running example. The example authorization request in

Section 3, if approved by the user, resulted in the issuance of an authorization code associated

with the privileges to:

list accounts,

access the balance of one or more accounts,

access the transactions of one or more accounts, and

initiate, check the status of, and cancel a payment.

The client could now request the AS to issue an access token assigned with the privilege to just

access a list of accounts as follows:

The example API is designed such that each field used by the account_information type

contains additive rights, with each value within the actions and locations arrays specifying a

different element of access. To make a comparison in this instance, the AS would perform the

following steps:

verify that the authorization code issued in the previous step contains an authorization

details object of type account_information,

verify whether the approved list of actions contains list_accounts, and

verify whether the locations value includes only previously approved locations.

•

•

•

•

Figure 10: Example of "authorization_details" Reduced Privileges

[

 {

 "type": "account_information",

 "actions": [

 "list_accounts"

],

 "locations": [

 "https://example.com/accounts"

]

 }

]

•

•

•

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 14

If all checks succeed, the AS would issue the requested access token with the reduced set of

access.

Note that this comparison is relevant to this specific API type definition. A different API type

definition could have different processing rules. For example, an actions value could subsume

the rights associated with another actions value. For example, if a client initially asks for a

token with write access, this implies both read and write access to this API:

Later, that same client makes a refresh request for read access:

The AS would compare the type value and the actions value to determine that the read access

is already covered by the write access previously granted to the client.

This same API could be designed with a possible value for privileges of admin, used in this

example to denote that the resulting token is allowed to perform any of the functions on the

resources. If that client is then granted such admin privileges to the API, the

authorization_details would be as follows:

Figure 11: Example of "authorization_details" Requesting "write" Access to an API

[

 {

 "type": "example_api",

 "actions": [

 "write"

]

 }

]

Figure 12: Example of "authorization_details" Requesting "read" Access to an API

[

 {

 "type": "example_api",

 "actions": [

 "read"

]

 }

]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 15

The AS would compare the type value and find that the privileges value subsumes any aspects

of read or write access that had been granted to the client previously. Note that other API

definitions can use privileges such that values do not subsume one another.

The next example shows how the client can use the common data element locations (see

Section 2.2) to request the issuance of an access token restricted to a certain RS. In our running

example, the client may ask for all permissions of the approved grant of type

payment_initiation applicable to the RS residing at https://example.com/payments as

follows:

Figure 13: Example of "authorization_details" with "admin" Access to an API

[

 {

 "type": "example_api",

 "privileges": [

 "admin"

]

 }

]

Figure 14: Example of "authorization_details" Requesting an Audience-Restricted Access Token

[

 {

 "type": "payment_initiation",

 "locations": [

 "https://example.com/payments"

]

 }

]

7. Token Response

In addition to the token response parameters as defined in , the AS also return

the authorization_details as granted by the resource owner and assigned to the respective

access token.

The authorization details assigned to the access token issued in a token response are determined

by the authorization_details parameter of the corresponding token request. If the client does

not specify the authorization_details token request parameters, the AS determines the

resulting authorization_details at its discretion.

The AS omit values in the authorization_details to the client.

For our running example, it would look like this:

[RFC6749] MUST

MAY

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 16

Figure 15: Example Token Response

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "access_token": "2YotnFZFEjr1zCsicMWpAA",

 "token_type": "example",

 "expires_in": 3600,

 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA",

 "authorization_details": [

 {

 "type": "payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant A",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

]

}

7.1. Enriched Authorization Details in Token Response

The authorization details attached to the access token differ from what the client requests.

In addition to the user authorizing less than what the client requested, there are some use cases

where the AS enriches the data in an authorization details object. Whether enrichment is

allowed and specifics of how it works are necessarily part of the definition of the respective

authorization details type.

As one example, a client may ask for access to account information but leave the decision about

the specific accounts it will be able to access to the user. During the course of the authorization

process, the user would select the subset of their accounts that they want to allow the client to

access. As one design option to convey the selected accounts, the AS could add this information to

the respective authorization details object.

MAY

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 17

In that example, the requested authorization_details parameter might look like the following.

In this example, the empty arrays serve as placeholders for where data will be added during

enrichment by the AS. This example is illustrative only and is not intended to suggest a

preference for designing the specifics of any authorization details type this way.

The AS then would expand the authorization details object and add the respective account

identifiers.

Figure 16: Example of Requested "authorization_details"

"authorization_details": [

 {

 "type": "account_information",

 "access": {

 "accounts": [],

 "balances": [],

 "transactions": []

 },

 "recurringIndicator":true

 }

]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 18

For another example, the client is asking for access to a medical record but does not know the

record number at request time. In this example, the client specifies the type of access it wants but

doesn't specify the location or identifier of that access.

Figure 17: Example of Enriched "authorization_details"

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JokF0XG5Qx2TlKWIA",

 "authorization_details":[

 {

 "type":"account_information",

 "access":{

 "accounts":[

 {

 "iban":"DE2310010010123456789"

 },

 {

 "maskedPan":"123456xxxxxx1234"

 }

],

 "balances":[

 {

 "iban":"DE2310010010123456789"

 }

],

 "transactions":[

 {

 "iban":"DE2310010010123456789"

 },

 {

 "maskedPan":"123456xxxxxx1234"

 }

]

 },

 "recurringIndicator":true

 }

]

}

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 19

When the user interacts with the AS, they select which of the medical records they are

responsible for giving to the client. This information gets returned with the access token.

Note: The client needs to be aware upfront of the possibility that a certain

authorization details object can be enriched. It is assumed that this property is part

of the definition of the respective authorization details type.

Figure 18: Example of Requested "authorization_details"

{

"authorization_details": [

 {

 "type": "medical_record",

 "sens": ["HIV", "ETH", "MART"],

 "actions": ["read"],

 "datatypes": ["Patient", "Observation", "Appointment"]

 }

]}

Figure 19: Example of Enriched "authorization_details"

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JokF0XG5Qx2TlKWIA",

 "authorization_details":[

 {

 "type": "medical_record",

 "sens": ["HIV", "ETH", "MART"],

 "actions": ["read"],

 "datatypes": ["Patient", "Observation", "Appointment"],

 "identifier": "patient-541235",

 "locations": ["https://records.example.com/"]

 }

]

}

8. Token Error Response

The Token Error Response conform to the rules given in Section 5.MUST

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 20

9. Resource Servers

In order to enable the RS to enforce the authorization details as approved in the authorization

process, the AS make this data available to the RS. The AS add the

authorization_details field to access tokens in JSON Web Token (JWT) format or to token

introspection responses.

MUST MAY

9.1. JWT-Based Access Tokens

If the access token is a JWT , the AS is to add the authorization details

object, filtered to the specific audience, as a top-level claim.

The AS will typically also add further claims to the JWT that the RS requires request processing,

e.g., user ID, roles, and transaction-specific data. What claims the particular RS requires is

defined by the RS-specific policy with the AS.

The following shows the contents of an example JWT for the payment initiation example above:

[RFC7519] RECOMMENDED

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 21

sub:

txn:

debtorAccount:

In this case, the AS added the following example claims to the JWT-based access token:

indicates the user for which the client is asking for payment initiation.

transaction id used to trace the transaction across the services of provider example.com

API-specific field containing the debtor account. In the example, this account

was not passed in the authorization_details but was selected by the user during the

authorization process. The field user_role conveys the role the user has with respect to this

particular account. In this case, they are the owner. This data is used for access control at the

payment API (the RS).

Figure 20: Example of "authorization_details" in JWT-Based Access Token

{

 "iss": "https://as.example.com",

 "sub": "24400320",

 "aud": "a7AfcPcsl2",

 "exp": 1311281970,

 "acr": "psd2_sca",

 "txn": "8b4729cc-32e4-4370-8cf0-5796154d1296",

 "authorization_details": [

 {

 "type": "https://scheme.example.com/payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant A",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

],

 "debtorAccount": {

 "iban": "DE40100100103307118608",

 "user_role": "owner"

 }

}

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 22

9.2. Token Introspection

Token introspection provides a means for an RS to query the AS to determine

information about an access token. If the AS includes authorization detail information for the

token in its response, the information be conveyed with authorization_details as a top-

level member of the introspection response JSON object. The authorization_details member

 contain the same structure defined in Section 2, potentially filtered and extended for the

RS making the introspection request.

Here is an example introspection response for the payment initiation example:

[RFC7662]

MUST

MUST

Figure 21: Example of "authorization_details" in Introspection Response

{

 "active": true,

 "sub": "24400320",

 "aud": "s6BhdRkqt3",

 "exp": 1311281970,

 "acr": "psd2_sca",

 "txn": "8b4729cc-32e4-4370-8cf0-5796154d1296",

 "authorization_details": [

 {

 "type": "https://scheme.example.com/payment_initiation",

 "actions": [

 "initiate",

 "status",

 "cancel"

],

 "locations": [

 "https://example.com/payments"

],

 "instructedAmount": {

 "currency": "EUR",

 "amount": "123.50"

 },

 "creditorName": "Merchant123",

 "creditorAccount": {

 "iban": "DE02100100109307118603"

 },

 "remittanceInformationUnstructured": "Ref Number Merchant"

 }

],

 "debtorAccount": {

 "iban": "DE40100100103307118608",

 "user_role": "owner"

 }

}

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 23

10. Metadata

To advertise its support for this feature, the supported list of authorization details types is

included in the AS metadata response using the metadata parameter

authorization_details_types_supported, which is a JSON array.

This is illustrated by the following example:

Clients indicate the authorization details types they will use when requesting authorization

with the client registration metadata parameter authorization_details_types, which is a

JSON array.

This is illustrated by the following example:

The registration of authorization details types with the AS is outside the scope of this

specification.

[RFC8414]

Figure 22: Example of Server Metadata about the Supported Authorization Details

{

 ...

 "authorization_details_types_supported":[

 "payment_initiation",

 "account_information"

]

}

MAY

Figure 23: Example of Server Metadata about Authorization Details

{

 ...

 "authorization_details_types":[

 "payment_initiation"

]

}

11. Implementation Considerations

11.1. Using Authorization Details in a Certain Deployment

Using authorization details in a certain deployment will require the following steps:

Define authorization details types.

Publish authorization details types in the OAuth server metadata.

Determine how authorization details are shown to the user in the user consent prompt.

•

•

•

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 24

If needed, enrich authorization details in the user consent process (e.g., add selected

accounts or set expirations).

If needed, determine how authorization details are reflected in access token content or

introspection responses.

Determine how the RSs process the authorization details or token data derived from

authorization details.

If needed, entitle clients to use certain authorization details types.

•

•

•

•

11.2. Minimal Implementation Support

General AS implementations supporting this specification should provide the following basic

functions:

Support advertisement of supported authorization details types in OAuth server metadata

Accept the authorization_details parameter in authorization requests in conformance

with this specification

Support storage of consented authorization details as part of a grant

Implement default behavior for adding authorization details to access tokens and token

introspection responses in order to make them available to RSs (similar to scope values). This

should work with any grant type, especially authorization_code and refresh_token.

Processing and presentation of authorization details will vary significantly among different

authorization details types. Implementations should therefore support customization of the

respective behavior. In particular, implementations should allow deployments to:

determine presentation of the authorization details;

modify requested authorization details in the user consent process, e.g., adding fields; and

merge requested and preexisting authorization details.

One approach to supporting such customization would be to have a mechanism allowing the

registration of extension modules, each of them responsible for rendering the respective user

consent and any transformation needed to provide the data needed to the RS by way of

structured access tokens or token introspection responses.

•

•

•

•

•

•

•

11.3. Use of Machine-Readable Type Schemas

Implementations might allow deployments to use machine-readable schema languages for

defining authorization details types to facilitate creating and validating authorization details

objects against such schemas. For example, if an authorization details type were defined using

JSON Schemas , the JSON Schema identifier could be used as type value in the

respective authorization details objects.

Note, however, that type values are identifiers understood by the AS and, to the extent necessary,

the client and RS. This specification makes no assumption that a type value would point to a

machine-readable schema format or that any party in the system (such as the client, AS, or RS)

would dereference or process the contents of the type field in any specific way.

[JSON.Schema]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 25

11.4. Large Requests

Authorization request URIs containing authorization_details in a request parameter or a

request object can become very long. Therefore, implementers should consider using the

request_uri parameter as defined in in combination with the pushed request object

mechanism as defined in to pass authorization_details in a reliable and secure

manner. Here is an example of such a pushed authorization request that sends the authorization

request data directly to the AS via an HTTPS-protected connection:

[RFC9101]

[RFC9126]

Figure 24: Example of Large Request including "authorization_details"

 POST /as/par HTTP/1.1

 Host: as.example.com

 Content-Type: application/x-www-form-urlencoded

 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

 response_type=code&

 client_id=s6BhdRkqt3

 &state=af0ifjsldkj

 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

 &code_challenge_method=S256

 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bwc-uCHaoeK1t8U

 &authorization_details=%5B%7B%22type%22%3A%22account_information%22

 %2C%22actions%22%3A%5B%22list_accounts%22%2C%22read_balances%22%2C%

 22read_transactions%22%5D%2C%22locations%22%3A%5B%22https%3A%2F%2Fe

 xample.com%2Faccounts%22%5D%7D%2C%7B%22type%22%3A%22payment_initiat

 ion%22%2C%22actions%22%3A%5B%22initiate%22%2C%22status%22%2C%22canc

 el%22%5D%2C%22locations%22%3A%5B%22https%3A%2F%2Fexample.com%2Fpaym

 ents%22%5D%2C%22instructedAmount%22%3A%7B%22currency%22%3A%22EUR%22

 %2C%22amount%22%3A%22123.50%22%7D%2C%22creditorName%22%3A%22Merchan

 t123%22%2C%22creditorAccount%22%3A%7B%22iban%22%3A%22DE021001001093

 07118603%22%7D%2C%22remittanceInformationUnstructured%22%3A%22Ref%2

 0Number%20Merchant%22%7D%5D

12. Security Considerations

The authorization_details parameter is sent through the user agent in case of an OAuth

authorization request, which makes them vulnerable to modifications by the user. If the integrity

of the authorization_details is a concern, clients protect authorization_details

against tampering and swapping. This can be achieved by signing the request using signed

request objects as defined in or using the request_uri authorization request

parameter as defined in in conjunction with to pass the URI of the request

object to the AS.

All string comparisons in an authorization_details parameter are to be done as defined by

. No additional transformation or normalization is to be done in evaluating

equivalence of string values.

MUST

[RFC9101]

[RFC9101] [RFC9126]

[RFC8259]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 26

The common data field locations allows a client to specify where it intends to use a certain

authorization, i.e., it is possible to unambiguously assign permissions to RSs. In situations with

multiple RSs, this prevents unintended client authorizations (e.g., a read scope value potentially

applicable for an email as well as a cloud service) through audience restriction.

The AS properly sanitize and handle the data passed in the authorization_details in

order to prevent injection attacks.

The Security Considerations of , , and also apply.

MUST

[RFC6749] [RFC7662] [RFC8414]

13. Privacy Considerations

It is especially important for implementers to design and use authorization details in a privacy-

preserving manner.

Any sensitive personal data included in authorization_details must be prevented from

leaking, e.g., through referrer headers. Implementation options include encrypted request

objects as defined in or transmission of authorization_details via end-to-end

encrypted connections between client and AS by utilizing and the request_uri

authorization request parameter as defined in . The latter does not require application-

level encryption, but it requires another message exchange between the client and the AS.

Even if the request data is encrypted, an attacker could use the AS to learn the user's data by

injecting the encrypted request data into an authorization request on a device under their

control and use the AS's user consent screens to show the (decrypted) user data in the clear.

Implementations need to consider this attack vector and implement appropriate

countermeasures, e.g., by only showing portions of the data or, if possible, determining whether

the assumed user context is still the same (after user authentication).

The AS needs to take into consideration the privacy implications when sharing

authorization_details with the client or RSs. The AS should share this data with those parties

on a "need to know" basis as determined by local policy.

[RFC9101]

[RFC9126]

[RFC9101]

14. IANA Considerations

Name:

Parameter Usage Location:

Change Controller:

Reference:

14.1. OAuth Parameters Registration

The following parameter has been registered in the "OAuth Parameters" registry

 established by .

authorization_details

authorization request, token request, token response

IETF

RFC 9396

[IANA.OAuth.Parameters] [RFC6749]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 27

Claim Name:

Claim Description:

Change Controller:

Reference:

14.2. JSON Web Token Claims Registration

The following value has been registered in the IANA "JSON Web Token Claims" registry

established by .

authorization_details

The claim authorization_details contains a JSON array of JSON objects

representing the rights of the access token. Each JSON object contains the data to specify the

authorization requirements for a certain type of resource.

IETF

Section 9.1 of RFC 9396

[RFC7519]

Name:

Description:

Change Controller:

Reference:

14.3. OAuth Token Introspection Response Registration

The following value has been registered in the IANA "OAuth Token Introspection Response"

registry established by .

authorization_details

The member authorization_details contains a JSON array of JSON objects

representing the rights of the access token. Each JSON object contains the data to specify the

authorization requirements for a certain type of resource.

IETF

Section 9.2 of RFC 9396

[RFC7662]

Metadata Name:

Metadata Description:

Change Controller:

Reference:

14.4. OAuth Authorization Server Metadata Registration

The following values have been registered in the IANA "OAuth Authorization Server Metadata"

registry of established by .

authorization_details_types_supported

JSON array containing the authorization details types the AS supports

IETF

Section 10 of RFC 9396

[IANA.OAuth.Parameters] [RFC8414]

14.5. OAuth Dynamic Client Registration Metadata Registration

The following value has been registered in the IANA "OAuth Dynamic Client Registration

Metadata" registry of established by .[IANA.OAuth.Parameters] [RFC7591]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 28

[RFC2119]

[RFC7519]

[RFC7662]

[RFC8174]

[RFC8414]

[RFC8628]

15. References

15.1. Normative References

, , ,

, , March 1997,

.

, , and , , ,

, May 2015, .

, , , ,

October 2015, .

, ,

, , , May 2017,

.

, , and ,

, , , June 2018,

.

, , , and ,

, , , August 2019,

.

Client Metadata Name:

Client Metadata Description:

Change Controller:

Reference:

authorization_details_types

Indicates what authorization details types the client uses.

IETF

Section 10 of RFC 9396

Name:

Usage Location:

Protocol Extension:

Change Controller:

Reference:

14.6. OAuth Extensions Error Registration

The following value has been registered in the IANA "OAuth Extensions Error Registry" of

 established by .

invalid_authorization_details

token endpoint, authorization endpoint

OAuth 2.0 Rich Authorization Requests

IETF

Section 5 of RFC 9396

[IANA.OAuth.Parameters] [RFC6749]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI

10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Richer, J., Ed. "OAuth 2.0 Token Introspection" RFC 7662 DOI 10.17487/RFC7662

<https://www.rfc-editor.org/info/rfc7662>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Jones, M. Sakimura, N. J. Bradley "OAuth 2.0 Authorization Server

Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-

editor.org/info/rfc8414>

Denniss, W. Bradley, J. Jones, M. H. Tschofenig "OAuth 2.0 Device

Authorization Grant" RFC 8628 DOI 10.17487/RFC8628 <https://

www.rfc-editor.org/info/rfc8628>

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 29

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628

[RFC8707]

[CSC]

[ETSI]

[IANA.OAuth.Parameters]

[JSON.Schema]

[OID-CIBA]

[OIDC]

[RFC0020]

[RFC6749]

[RFC7591]

[RFC8259]

[RFC9101]

[RFC9126]

, , and , ,

, , February 2020,

.

15.2. Informative References

,

, , June 2019,

.

,

, , , March 2019,

.

, ,

.

, , .

, , , , and ,

, 1

September 2021,

.

, , , , and ,

, 8 November 2014,

.

, , , ,

, October 1969, .

, , ,

, October 2012, .

, , , , and ,

, , , July

2015, .

, ,

, , , December 2017,

.

, , and ,

, ,

, August 2021, .

, , , , and ,

, , , September

2021, .

Campbell, B. Bradley, J. H. Tschofenig "Resource Indicators for OAuth 2.0"

RFC 8707 DOI 10.17487/RFC8707 <https://www.rfc-editor.org/

info/rfc8707>

Cloud Signature Consortium "Architectures and protocols for remote signature

applications" Version 1.0.4.0 <https://cloudsignatureconsortium.org/

wp-content/uploads/2020/01/CSC_API_V1_1.0.4.0.pdf>

ETSI "Electronic Signatures and Infrastructures (ESI); Protocols for remote

digital signature creation" V1.1.1 ETSI TS 119 432 <https://

www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/

ts_119432v010101p.pdf>

IANA "OAuth Parameters" <https://www.iana.org/assignments/

oauth-parameters>

OpenJS Foundation "JSON Schema" <https://json-schema.org/>

Fernandez, G. Walter, F. Nennker, A. Tonge, D. B. Campbell "OpenID

Connect Client-Initiated Backchannel Authentication Flow - Core 1.0"

<https://openid.net/specs/openid-client-initiated-backchannel-

authentication-core-1_0.html>

Sakimura, N. Bradley, J. Jones, M. de Medeiros, B. C. Mortimore "OpenID

Connect Core 1.0 incorporating errata set 1" <https://

openid.net/specs/openid-connect-core-1_0.html>

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/

RFC0020 <https://www.rfc-editor.org/info/rfc20>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI

10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Richer, J., Ed. Jones, M. Bradley, J. Machulak, M. P. Hunt "OAuth 2.0

Dynamic Client Registration Protocol" RFC 7591 DOI 10.17487/RFC7591

<https://www.rfc-editor.org/info/rfc7591>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

Sakimura, N. Bradley, J. M. Jones "The OAuth 2.0 Authorization

Framework: JWT-Secured Authorization Request (JAR)" RFC 9101 DOI 10.17487/

RFC9101 <https://www.rfc-editor.org/info/rfc9101>

Lodderstedt, T. Campbell, B. Sakimura, N. Tonge, D. F. Skokan "OAuth 2.0

Pushed Authorization Requests" RFC 9126 DOI 10.17487/RFC9126

<https://www.rfc-editor.org/info/rfc9126>

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 30

https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://cloudsignatureconsortium.org/wp-content/uploads/2020/01/CSC_API_V1_1.0.4.0.pdf
https://cloudsignatureconsortium.org/wp-content/uploads/2020/01/CSC_API_V1_1.0.4.0.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://json-schema.org/
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc9101
https://www.rfc-editor.org/info/rfc9126

[Transaction-Auth] ,

, 20 April 2019,

.

Lodderstedt, T. "Transaction Authorization or why we need to re-think

OAuth scopes" <https://medium.com/oauth-2/transaction-

authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948>

Appendix A. Additional Examples

claim_sets:

max_age:

acr_values:

claims:

A.1. OpenID Connect

OpenID Connect specifies the JSON-based claims request parameter that can be used to

specify the claims a client (acting as an OpenID Connect Relying Party) wishes to receive in a

fine-grained and privacy-preserving way as well as assign those claims to certain delivery

mechanisms, i.e., ID Token or userinfo response.

The combination of the scope value openid and the additional parameter claims can be used

beside authorization_details in the same way as every non-OIDC scope value.

Alternatively, there could be an authorization details type for OpenID Connect. This section gives

an example of what such an authorization details type could look like, but defining this

authorization details type is outside the scope of this specification.

These hypothetical examples try to encapsulate all details specific to the OpenID Connect part of

an authorization process into an authorization JSON object.

The top-level fields are based on the definitions given in :

the names of predefined claim sets, replacement for respective scope values, such

as profile

Maximum Authentication Age

requested Authentication Context Class Reference (ACR) values

the claims JSON structure as defined in

This is a simple request for some claim sets.

[OIDC]

[OIDC]

[OIDC]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 31

https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948
https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948

Note: locations specifies the location of the userinfo endpoint since this is the only

place where an access token is used by a client (Relying Party) in OpenID Connect to

obtain claims.

A more sophisticated example is shown in Figure 26.

Figure 25: Example of OpenID Connect Request Utilizing "authorization_details"

[

 {

 "type": "openid",

 "locations": [

 "https://op.example.com/userinfo"

],

 "claim_sets": [

 "email",

 "profile"

]

 }

]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 32

Figure 26: Advanced Example of OpenID Connect Request Utilizing "authorization_details"

[

 {

 "type": "openid",

 "locations": [

 "https://op.example.com/userinfo"

],

 "max_age": 86400,

 "acr_values": "urn:mace:incommon:iap:silver",

 "claims": {

 "userinfo": {

 "given_name": {

 "essential": true

 },

 "nickname": null,

 "email": {

 "essential": true

 },

 "email_verified": {

 "essential": true

 },

 "picture": null,

 "http://example.com/claims/groups": null

 },

 "id_token": {

 "auth_time": {

 "essential": true

 }

 }

 }

 }

]

A.2. Remote Electronic Signing

The following example is based on the concept laid out for remote electronic signing in ETSI TS

119 432 and the Cloud Signature Consortium (CSC) API for remote signature creation .[ETSI] [CSC]

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 33

credentialID:

documentDigests:

hashAlgorithm:

The top-level fields have the following meaning:

identifier of the certificate to be used for signing

array containing the hash of every document to be signed (hash fields).

Additionally, the corresponding label field identifies the respective document to the user, e.g.,

to be used in user consent.

algorithm that was used to calculate the hash values

The AS is supposed to ask the user for consent for the creation of signatures for the documents

listed in the structure. The client uses the access token issued as a result of the process to call the

document signature API at the respective signing service to actually create the signature. This

access token is bound to the client, the user ID and the hashes (and signature algorithm) as

consented by the user.

Figure 27: Example of Electronic Signing

[

 {

 "type": "sign",

 "locations": [

 "https://signing.example.com/signdoc"

],

 "credentialID": "60916d31-932e-4820-ba82-1fcead1c9ea3",

 "documentDigests": [

 {

 "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",

 "label": "Credit Contract"

 },

 {

 "hash": "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",

 "label": "Contract Payment Protection Insurance"

 }

],

 "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"

 }

]

A.3. Access to Tax Data

This example is inspired by an API allowing third parties to access citizen's tax declarations and

income statements, for example, to determine their creditworthiness.

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 34

periods:

duration_of_access:

tax_payer_id:

The top-level fields have the following meaning:

the periods the client wants to access

how long the clients intend to access the data in days

identifier of the taxpayer (if known to the client)

Figure 28: Example of Tax Data Access

[

 {

 "type": "tax_data",

 "locations": [

 "https://taxservice.govehub.no.example.com"

],

 "actions":"read_tax_declaration",

 "periods": ["2018"],

 "duration_of_access": 30,

 "tax_payer_id": "23674185438934"

 }

]

A.4. eHealth

These two examples are inspired by requirements for APIs used in the Norwegian eHealth

system.

In this use case, the physical therapist sits in front of their computer using a local Electronic

Health Records (EHR) system. They want to look at the electronic patient records of a certain

patient, and they also want to fetch the patient's journal entries in another system, perhaps at

another institution or a national service. Access to this data is provided by an API.

The information necessary to authorize the request at the API is only known by the EHR system

and must be presented to the API.

In the first example, the authorization details object contains the identifier of an organization. In

this case, the API needs to know if the given organization has the lawful basis for processing

personal health information to give access to sensitive data.

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 35

In the second example, the API requires more information to authorize the request. In this case,

the authorization details object contains additional information about the health institution and

the current profession the user has at the time of the request. The additional level of detail could

be used for both authorization and data minimization.

Figure 29: eHealth Example

"authorization_details": {

 "type": "patient_record",

 "requesting_entity": {

 "type": "Practitioner",

 "identifier": [

 {

 "system": "urn:oid:2.16.578.1.12.4.1.4.4",

 "value": "1234567"

 }],

 "practitioner_role": {

 "organization": {

 "identifier": {

 "system": "urn:oid:2.16.578.1.12.4.1.2.101",

 "type": "ENH",

 "value": "[organizational number]"

 }

 }

 }

 }

}

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 36

[

 {

 "type": "patient_record",

 "location": "https://fhir.example.com/patient",

 "actions": [

 "read"

],

 "patient_identifier": [

 {

 "system": "urn:oid:2.16.578.1.12.4.1.4.1",

 "value": "12345678901"

 }

],

 "reason_for_request": "Clinical treatment",

 "requesting_entity": {

 "type": "Practitioner",

 "identifier": [

 {

 "system": "urn:oid:2.16.578.1.12.4.1.4.4",

 "value": "1234567"

 }

],

 "practitioner_role": {

 "organization": {

 "identifier": [

 {

 "system": "urn:oid:2.16.578.1.12.4.1.2.101",

 "type": "ENH",

 "value": "<organizational number>"

 }

],

 "type": {

 "coding": [

 {

 "system":

 "http://hl7.example.org/fhir/org-type",

 "code": "dept",

 "display": "Hospital Department"

 }

]

 },

 "name": "Akuttmottak"

 },

 "profession": {

 "coding": [

 {

 "system": "http://snomed.example.org/sct",

 "code": "36682004",

 "display": "Physical therapist"

 }

]

 }

 }

 }

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 37

patient_identifier:

reason_for_request:

requesting_entity:

Description of the fields:

the identifier of the patient composed of a system identifier in OID

format (namespace) and the actual value within this namespace.

the reason why the user wants to access a certain API.

specification of the requester by means of identity, role and

organizational context. This data is provided to facilitate authorization and for auditing

purposes.

In this use case, the AS authenticates the requester, who is not the patient, and approves access

based on policies.

Figure 30: Advanced eHealth Example

 }

]

Acknowledgements

We would like to thank , , , , , and

 for their valuable feedback during the preparation of this specification.

We would also like to thank , , , ,

, , , , ,

, , and for their valuable feedback to this specification.

Daniel Fett Sebastian Ebling Dave Tonge Mike Jones Nat Sakimura

Rob Otto

Vladimir Dzhuvinov Takahiko Kawasaki Daniel Fett Dave Tonge

Travis Spencer Joergen Binningsboe Aamund Bremer Steinar Noem Francis Pouatcha Jacob

Ideskog Hannes Tschofenig Aaron Parecki

Authors' Addresses

Torsten Lodderstedt

yes.com

 torsten@lodderstedt.net Email:

Justin Richer

Bespoke Engineering

 ietf@justin.richer.org Email:

Brian Campbell

Ping Identity

 bcampbell@pingidentity.com Email:

RFC 9396 OAuth-RAR May 2023

Lodderstedt, et al. Standards Track Page 38

mailto:torsten@lodderstedt.net
mailto:ietf@justin.richer.org
mailto:bcampbell@pingidentity.com

	RFC 9396
	OAuth 2.0 Rich Authorization Requests
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Request Parameter "authorization_details"
	2.1. Authorization Details Types
	2.2. Common Data Fields

	3. Authorization Request
	3.1. Relationship to the "scope" Parameter
	3.2. Relationship to the "resource" Parameter

	4. Authorization Response
	5. Authorization Error Response
	6. Token Request
	6.1. Comparing Authorization Details

	7. Token Response
	7.1. Enriched Authorization Details in Token Response

	8. Token Error Response
	9. Resource Servers
	9.1. JWT-Based Access Tokens
	9.2. Token Introspection

	10. Metadata
	11. Implementation Considerations
	11.1. Using Authorization Details in a Certain Deployment
	11.2. Minimal Implementation Support
	11.3. Use of Machine-Readable Type Schemas
	11.4. Large Requests

	12. Security Considerations
	13. Privacy Considerations
	14. IANA Considerations
	14.1. OAuth Parameters Registration
	14.2. JSON Web Token Claims Registration
	14.3. OAuth Token Introspection Response Registration
	14.4. OAuth Authorization Server Metadata Registration
	14.5. OAuth Dynamic Client Registration Metadata Registration
	14.6. OAuth Extensions Error Registration

	15. References
	15.1. Normative References
	15.2. Informative References

	Appendix A. Additional Examples
	A.1. OpenID Connect
	A.2. Remote Electronic Signing
	A.3. Access to Tax Data
	A.4. eHealth

	Acknowledgements
	Authors' Addresses

