
RFC 9261
Exported Authenticators in TLS

Abstract
This document describes a mechanism that builds on Transport Layer Security (TLS) or Datagram
Transport Layer Security (DTLS) and enables peers to provide proof of ownership of an identity,
such as an X.509 certificate. This proof can be exported by one peer, transmitted out of band to
the other peer, and verified by the receiving peer.

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9261
Standards Track
July 2022
2070-1721

 N. Sullivan
Cloudflare Inc.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9261

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Sullivan Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9261
https://www.rfc-editor.org/info/rfc9261
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions and Terminology

3. Message Sequences

4. Authenticator Request

5. Authenticator

5.1. Authenticator Keys

5.2. Authenticator Construction

5.2.1. Certificate

5.2.2. CertificateVerify

5.2.3. Finished

5.2.4. Authenticator Creation

6. Empty Authenticator

7. API Considerations

7.1. The "request" API

7.2. The "get context" API

7.3. The "authenticate" API

7.4. The "validate" API

8. IANA Considerations

8.1. Update of the TLS ExtensionType Registry

8.2. Update of the TLS Exporter Labels Registry

8.3. Update of the TLS HandshakeType Registry

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgements

Author's Address

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 2

multiple identities:

spontaneous authentication:

1. Introduction
This document provides a way to authenticate one party of a Transport Layer Security (TLS) or
Datagram Transport Layer Security (DTLS) connection to its peer using authentication messages
created after the session has been established. This allows both the client and server to prove
ownership of additional identities at any time after the handshake has completed. This proof of
authentication can be exported and transmitted out of band from one party to be validated by its
peer.

This mechanism provides two advantages over the authentication that TLS and DTLS natively
provide:

Endpoints that are authoritative for multiple identities, but that do not have
a single certificate that includes all of the identities, can authenticate additional identities
over a single connection.

After a connection is established, endpoints can authenticate in
response to events in a higher-layer protocol; they can also integrate more context (such as
context from the application).

Versions of TLS prior to TLS 1.3 used renegotiation as a way to enable post-handshake client
authentication given an existing TLS connection. The mechanism described in this document
may be used to replace the post-handshake authentication functionality provided by
renegotiation. Unlike renegotiation, Exported Authenticator-based post-handshake
authentication does not require any changes at the TLS layer.

Post-handshake authentication is defined in TLS 1.3 , but it has the
disadvantage of requiring additional state to be stored as part of the TLS state machine.
Furthermore, the authentication boundaries of TLS 1.3 post-handshake authentication align with
TLS record boundaries, which are often not aligned with the authentication boundaries of the
higher-layer protocol. For example, multiplexed connection protocols like HTTP/2 do
not have a notion of which TLS record a given message is a part of.

Exported Authenticators are meant to be used as a building block for application protocols.
Mechanisms such as those required to advertise support and handle authentication errors are
not handled by TLS (or DTLS).

The minimum version of TLS and DTLS required to implement the mechanisms described in this
document are TLS 1.2 and DTLS 1.2 .

Section 4.6.2 of [RFC8446]

[RFC9113]

[RFC5246] [RFC6347]

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc8446#section-4.6.2

2. Conventions and Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

This document uses terminology such as client, server, connection, handshake, endpoint, and
peer that are defined in . The term "initial connection" refers to the (D)TLS
connection from which the Exported Authenticator messages are derived.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 1.1 of [RFC8446]

3. Message Sequences
There are two types of messages defined in this document: authenticator requests and
authenticators. These can be combined in the following three sequences:

Client Authentication

Server generates authenticator request
Client generates Authenticator from Server's authenticator request
Server validates Client's authenticator

Server Authentication

Client generates authenticator request
Server generates authenticator from Client's authenticator request
Client validates Server's authenticator

Spontaneous Server Authentication

Server generates authenticator
Client validates Server's authenticator

•
•
•

•
•
•

•
•

4. Authenticator Request
The authenticator request is a structured message that can be created by either party of a (D)TLS
connection using data exported from that connection. It can be transmitted to the other party of
the (D)TLS connection at the application layer. The application-layer protocol used to send the
authenticator request use a secure transport channel with equivalent security to TLS,
such as QUIC , as its underlying transport to keep the request confidential. The
application use the existing (D)TLS connection to transport the authenticator.

An authenticator request message can be constructed by either the client or the server. Server-
generated authenticator requests use the CertificateRequest message from

. Client-generated authenticator requests use a new message, called the

SHOULD
[RFC9001]

MAY

Section 4.3.2 of
[RFC8446]

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8446#section-1.1
https://www.rfc-editor.org/rfc/rfc8446#section-4.3.2

certificate_request_context:

extensions:

"ClientCertificateRequest", that uses the same structure as CertificateRequest. (Note that the latter
is not a request for a client certificate, but rather a certificate request generated by the client.)
These message structures are used even if the connection protocol is TLS 1.2 or DTLS 1.2.

The CertificateRequest and ClientCertificateRequest messages are used to define the parameters
in a request for an authenticator. These are encoded as TLS handshake messages, including
length and type fields. They do not include any TLS record-layer framing and are not encrypted
with a handshake or application-data key.

The structures are defined to be:

An opaque string that identifies the authenticator request and that
will be echoed in the authenticator message. A certificate_request_context value be
unique for each authenticator request within the scope of a connection (preventing replay
and context confusion). The certificate_request_context be chosen to be
unpredictable to the peer (e.g., by randomly generating it) in order to prevent an attacker who
has temporary access to the peer's private key from precomputing valid authenticators. For
example, the application may choose this value to correspond to a value used in an existing
data structure in the software to simplify implementation.

The set of extensions allowed in the structures of CertificateRequest and
ClientCertificateRequest is comprised of those defined in the "TLS ExtensionType Values" IANA
registry containing CR in the "TLS 1.3" column (see and). In addition, the
set of extensions in the ClientCertificateRequest structure include the server_name
extension .

The uniqueness requirements of the certificate_request_context apply across CertificateRequest
and ClientCertificateRequest messages that are used as part of authenticator requests. A
certificate_request_context value used in a ClientCertificateRequest cannot be used in an
authenticator CertificateRequest on the same connection, and vice versa. There is no impact if
the value of a certificate_request_context used in an authenticator request matches the value of a
certificate_request_context in the handshake or in a post-handshake message.

 struct {
 opaque certificate_request_context<0..2^8-1>;
 Extension extensions<2..2^16-1>;
 } ClientCertificateRequest;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 Extension extensions<2..2^16-1>;
 } CertificateRequest;

MUST

SHOULD

[IANA-TLS] [RFC8447]
MAY

[RFC6066]

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 5

5. Authenticator
The authenticator is a structured message that can be exported from either party of a (D)TLS
connection. It can be transmitted to the other party of the (D)TLS connection at the application
layer. The application-layer protocol used to send the authenticator use a secure
transport channel with equivalent security to TLS, such as QUIC , as its underlying
transport to keep the authenticator confidential. The application use the existing (D)TLS
connection to transport the authenticator.

An authenticator message can be constructed by either the client or the server given an
established (D)TLS connection; an identity, such as an X.509 certificate; and a corresponding
private key. Clients send an authenticator without a preceding authenticator request;
for servers, an authenticator request is optional. For authenticators that do not correspond to
authenticator requests, the certificate_request_context is chosen by the server.

SHOULD
[RFC9001]

MAY

MUST NOT

5.1. Authenticator Keys
Each authenticator is computed using a Handshake Context and Finished MAC (Message
Authentication Code) Key derived from the (D)TLS connection. These values are derived using an
exporter as described in (for (D)TLS 1.2) or (for
(D)TLS 1.3). For (D)TLS 1.3, the exporter_master_secret be used, not the
early_exporter_master_secret. These values use different labels depending on the role of the
sender:

The Handshake Context is an exporter value that is derived using the label "EXPORTER-client
authenticator handshake context" or "EXPORTER-server authenticator handshake context"
for authenticators sent by the client or server, respectively.
The Finished MAC Key is an exporter value derived using the label "EXPORTER-client
authenticator finished key" or "EXPORTER-server authenticator finished key" for
authenticators sent by the client or server, respectively.

The context_value used for the exporter is empty (zero length) for all four values. There is no need
to include additional context information at this stage because the application-supplied context
is included in the authenticator itself. The length of the exported value is equal to the length of the
output of the hash function associated with the selected ciphersuite (for TLS 1.3) or the hash
function used for the pseudorandom function (PRF) (for (D)TLS 1.2). Exported Authenticators
cannot be used with (D)TLS 1.2 ciphersuites that do not use the TLS PRF and with TLS 1.3
ciphersuites that do not have an associated hash function. This hash is referred to as the
"authenticator hash".

To avoid key synchronization attacks, Exported Authenticators be generated or
accepted on (D)TLS 1.2 connections that did not negotiate the extended master secret extension

.

Section 4 of [RFC5705] Section 7.5 of [RFC8446]
MUST

•

•

MUST NOT

[RFC7627]

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc5705#section-4
https://www.rfc-editor.org/rfc/rfc8446#section-7.5

5.2. Authenticator Construction
An authenticator is formed from the concatenation of TLS 1.3 Certificate, CertificateVerify, and
Finished messages . These messages are encoded as TLS handshake messages, including
length and type fields. They do not include any TLS record-layer framing and are not encrypted
with a handshake or application-data key.

If the peer populating the certificate_request_context field in an authenticator's Certificate
message has already created or correctly validated an authenticator with the same value, then
no authenticator should be constructed. If there is no authenticator request, the extensions are
chosen from those presented in the (D)TLS handshake's ClientHello. Only servers can provide an
authenticator without a corresponding request.

ClientHello extensions are used to determine permissible extensions in the server's unsolicited
Certificate message in order to follow the general model for extensions in (D)TLS in which
extensions can only be included as part of a Certificate message if they were previously sent as
part of a CertificateRequest message or ClientHello message. This ensures that the recipient will
be able to process such extensions.

[RFC8446]

5.2.1. Certificate

The Certificate message contains the identity to be used for authentication, such as the end-entity
certificate and any supporting certificates in the chain. This structure is defined in

.

The Certificate message contains an opaque string called "certificate_request_context", which is
extracted from the authenticator request, if present. If no authenticator request is provided, the
certificate_request_context can be chosen arbitrarily; however, it be unique within the
scope of the connection and be unpredictable to the peer.

Certificates chosen in the Certificate message conform to the requirements of a Certificate
message in the negotiated version of (D)TLS. In particular, the entries of certificate_list be
valid for the signature algorithms indicated by the peer in the "signature_algorithms" and
"signature_algorithms_cert" extensions, as described in for (D)TLS 1.3 or
in Sections 7.4.2 and 7.4.6 of for (D)TLS 1.2.

In addition to "signature_algorithms" and "signature_algorithms_cert", the "server_name"
, "certificate_authorities" (), and "oid_filters" (
) extensions are used to guide certificate selection.

Only the X.509 certificate type defined in is supported. Alternative certificate formats
such as Raw Public Keys as described in are not supported in this version of the
specification and their use in this context has not yet been analyzed.

Section 4.4.2 of
[RFC8446]

MUST

MUST
MUST

Section 4.2.3 of [RFC8446]
[RFC5246]

[RFC6066] Section 4.2.4 of [RFC8446] Section 4.2.5 of
[RFC8446]

[RFC8446]
[RFC7250]

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2
https://www.rfc-editor.org/rfc/rfc8446#section-4.2.3
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.2
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.6
https://www.rfc-editor.org/rfc/rfc8446#section-4.2.4
https://www.rfc-editor.org/rfc/rfc8446#section-4.2.5

If an authenticator request was provided, the Certificate message contain only extensions
present in the authenticator request. Otherwise, the Certificate message contain only
extensions present in the (D)TLS ClientHello. Unrecognized extensions in the authenticator
request be ignored.

MUST
MUST

MUST

5.2.2. CertificateVerify

This message is used to provide explicit proof that an endpoint possesses the private key
corresponding to its identity. The format of this message is taken from TLS 1.3:

The algorithm field specifies the signature algorithm used (see for the
definition of this field). The signature is a digital signature using that algorithm.

The signature scheme be a valid signature scheme for TLS 1.3. This excludes all RSASSA-
PKCS1-v1_5 algorithms and combinations of Elliptic Curve Digital Signature Algorithm (ECDSA)
and hash algorithms that are not supported in TLS 1.3.

If an authenticator request is present, the signature algorithm be chosen from one of the
signature schemes present in the "signature_algorithms" extension of the authenticator request.
Otherwise, with spontaneous server authentication, the signature algorithm used be chosen
from the "signature_algorithms" sent by the peer in the ClientHello of the (D)TLS handshake. If
there are no available signature algorithms, then no authenticator should be constructed.

The signature is computed using the chosen signature scheme over the concatenation of:

a string that consists of octet 32 (0x20) repeated 64 times,
the context string "Exported Authenticator" (which is not NUL-terminated),
a single 0 octet that serves as the separator, and
the hashed authenticator transcript.

The authenticator transcript is the hash of the concatenated Handshake Context, authenticator
request (if present), and Certificate message:

Where Hash is the authenticator hash defined in Section 5.1. If the authenticator request is not
present, it is omitted from this construction, i.e., it is zero-length.

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

Section 4.2.3 of [RFC8446]

MUST

MUST

MUST

•
•
•
•

Hash(Handshake Context || authenticator request || Certificate)

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8446#section-4.2.3

If the party that generates the authenticator does so with a different connection than the party
that is validating it, then the Handshake Context will not match, resulting in a CertificateVerify
message that does not validate. This includes situations in which the application data is sent via
TLS-terminating proxy. Given a failed CertificateVerify validation, it may be helpful for the
application to confirm that both peers share the same connection using a value derived from the
connection secrets (such as the Handshake Context) before taking a user-visible action.

5.2.3. Finished

An HMAC over the hashed authenticator transcript is the concatenation of the
Handshake Context, authenticator request (if present), Certificate, and CertificateVerify. The
HMAC is computed using the authenticator hash, using the Finished MAC Key as a key.

[HMAC]

Finished = HMAC(Finished MAC Key, Hash(Handshake Context ||
 authenticator request || Certificate || CertificateVerify))

5.2.4. Authenticator Creation

An endpoint constructs an authenticator by serializing the Certificate, CertificateVerify, and
Finished as TLS handshake messages and concatenating the octets:

An authenticator is valid if the CertificateVerify message is correctly constructed given the
authenticator request (if used) and the Finished message matches the expected value. When
validating an authenticator, constant-time comparisons be used for signature and MAC
validation.

Certificate || CertificateVerify || Finished

SHOULD

6. Empty Authenticator
If, given an authenticator request, the endpoint does not have an appropriate identity or does not
want to return one, it constructs an authenticated refusal called an "empty authenticator". This is
a Finished message sent without a Certificate or CertificateVerify. This message is an HMAC over
the hashed authenticator transcript with a Certificate message containing no CertificateEntries
and the CertificateVerify message omitted. The HMAC is computed using the authenticator hash,
using the Finished MAC Key as a key. This message is encoded as a TLS handshake message,
including length and type field. It does not include TLS record-layer framing and is not encrypted
with a handshake or application-data key.

Finished = HMAC(Finished MAC Key, Hash(Handshake Context ||
 authenticator request || Certificate))

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 9

7. API Considerations
The creation and validation of both authenticator requests and authenticators be
implemented inside the (D)TLS library even if it is possible to implement it at the application
layer. (D)TLS implementations supporting the use of Exported Authenticators provide
application programming interfaces by which clients and servers may request and verify
Exported Authenticator messages.

Notwithstanding the success conditions described below, all APIs fail if:

the connection uses a (D)TLS version of 1.1 or earlier, or
the connection is (D)TLS 1.2 and the extended master secret extension was not
negotiated

The following sections describe APIs that are considered necessary to implement Exported
Authenticators. These are informative only.

SHOULD

SHOULD

MUST

•
• [RFC7627]

7.1. The "request" API
The "request" API takes as input:

certificate_request_context (from 0 to 255 octets)
the set of extensions to include (this include signature_algorithms) and the contents
thereof

It returns an authenticator request, which is a sequence of octets that comprises a
CertificateRequest or ClientCertificateRequest message.

•
• MUST

7.2. The "get context" API
The "get context" API takes as input:

authenticator or authenticator request

It returns the certificate_request_context.

•

7.3. The "authenticate" API
The "authenticate" API takes as input:

a reference to the initial connection
an identity, such as a set of certificate chains and associated extensions (OCSP , SCT

 (obsoleted by), etc.)
a signer (either the private key associated with the identity or the interface to perform
private key operations) for each chain
an authenticator request or certificate_request_context (from 0 to 255 octets)

•
• [RFC6960]

[RFC6962] [RFC9162]
•

•

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 10

It returns either the authenticator or an empty authenticator as a sequence of octets. It is
 that the logic for selecting the certificates and extensions to include in the

exporter be implemented in the TLS library. Implementing this in the TLS library lets the
implementer take advantage of existing extension and certificate selection logic, and the
implementer can more easily remember which extensions were sent in the ClientHello.

It is also possible to implement this API outside of the TLS library using TLS exporters. This may be
preferable in cases where the application does not have access to a TLS library with these APIs or
when TLS is handled independently of the application-layer protocol.

RECOMMENDED

7.4. The "validate" API
The "validate" API takes as input:

a reference to the initial connection
an optional authenticator request
an authenticator
a function for validating a certificate chain

It returns a status to indicate whether or not the authenticator is valid after applying the function
for validating the certificate chain to the chain contained in the authenticator. If validation is
successful, it also returns the identity, such as the certificate chain and its extensions.

The API should return a failure if the certificate_request_context of the authenticator was used in
a different authenticator that was previously validated. Well-formed empty authenticators are
returned as invalid.

When validating an authenticator, constant-time comparison should be used.

•
•
•
•

8. IANA Considerations

8.1. Update of the TLS ExtensionType Registry
IANA has updated the entry for server_name(0) in the "TLS ExtensionType Values" registry

 (defined in) by replacing the value in the "TLS 1.3" column with the value "CH, EE,
CR" and listing this document in the "Reference" column.

IANA has also added the following note to the registry:

The addition of the "CR" to the "TLS 1.3" column for the server_name(0) extension only
marks the extension as valid in a ClientCertificateRequest created as part of client-
generated authenticator requests.

[IANA-
TLS] [RFC8446]

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 11

8.2. Update of the TLS Exporter Labels Registry
IANA has added the following entries to the "TLS Exporter Labels" registry
(defined in): "EXPORTER-client authenticator handshake context", "EXPORTER-server
authenticator handshake context", "EXPORTER-client authenticator finished key" and
"EXPORTER-server authenticator finished key" with "DTLS-OK" and "Recommended" set to "Y" and
this document listed as the reference.

[IANA-EXPORT]
[RFC5705]

8.3. Update of the TLS HandshakeType Registry
IANA has added the following entry to the "TLS HandshakeType" registry
(defined in): "client_certificate_request" (17) with "DTLS-OK" set to "Y" and this
document listed as the reference. In addition, the following appears in the "Comment" column:

Used in TLS versions prior to 1.3.

[IANA-HANDSHAKE]
[RFC8446]

9. Security Considerations
The Certificate/Verify/Finished pattern intentionally looks like the TLS 1.3 pattern that now has
been analyzed several times. For example, presents a relevant framework for analysis,
and contains a comprehensive set of references.

Authenticators are independent and unidirectional. There is no explicit state change inside TLS
when an authenticator is either created or validated. The application in possession of a validated
authenticator can rely on any semantics associated with data in the certificate_request_context.

This property makes it difficult to formally prove that a server is jointly authoritative over
multiple identities, rather than individually authoritative over each.
There is no indication in (D)TLS about which point in time an authenticator was computed.
Any feedback about the time of creation or validation of the authenticator should be tracked
as part of the application-layer semantics if required.

The signatures generated with this API cover the context string "Exported Authenticator";
therefore, they cannot be transplanted into other protocols.

In TLS 1.3, the client cannot explicitly learn from the TLS layer whether its Finished message was
accepted. Because the application traffic keys are not dependent on the client's final flight,
receiving messages from the server does not prove that the server received the client's Finished
message. To avoid disagreement between the client and server on the authentication status of
Exported Authenticators, servers verify the client Finished message before sending an EA or
processing a received Exported Authenticator.

[SIGMAC]
Appendix E.1.6 of [RFC8446]

•

•

MUST

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc8446#appendix-E.1.6

[HMAC]

[RFC2119]

[RFC5246]

[RFC5705]

[RFC6066]

[RFC6347]

[RFC7627]

[RFC8174]

[RFC8446]

[RFC8447]

[IANA-EXPORT]

10. References

10.1. Normative References

, , and ,
, , , February 1997,

.

, , ,
, , March 1997,
.

 and ,
, , , August 2008,

.

, ,
, , March 2010,

.

,
, , , January 2011,

.

 and , ,
, , January 2012,
.

, , , , and ,

, , , September 2015,
.

, , ,
, , May 2017,
.

, , ,
, August 2018, .

 and , , ,
, August 2018, .

10.2. Informative References

, ,
.

Krawczyk, H. Bellare, M. R. Canetti "HMAC: Keyed-Hashing for Message
Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://
www.rfc-editor.org/info/rfc2104>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Rescorla, E. "Keying Material Exporters for Transport Layer Security (TLS)" RFC
5705 DOI 10.17487/RFC5705 <https://www.rfc-editor.org/info/
rfc5705>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension
Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-
editor.org/info/rfc6066>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Bhargavan, K., Ed. Delignat-Lavaud, A. Pironti, A. Langley, A. M. Ray
"Transport Layer Security (TLS) Session Hash and Extended Master Secret
Extension" RFC 7627 DOI 10.17487/RFC7627 <https://www.rfc-
editor.org/info/rfc7627>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Salowey, J. S. Turner "IANA Registry Updates for TLS and DTLS" RFC 8447
DOI 10.17487/RFC8447 <https://www.rfc-editor.org/info/rfc8447>

IANA "TLS Exporter Labels" <https://www.iana.org/assignments/tls-
parameters/>

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 13

https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8447
https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/tls-parameters/

[IANA-HANDSHAKE]

[IANA-TLS]

[RFC6960]

[RFC6962]

[RFC7250]

[RFC9001]

[RFC9113]

[RFC9162]

[SIGMAC]

, ,
.

, ,
.

, , , , , and ,
,

, , June 2013,
.

, , and , , ,
, June 2013, .

, , , , and ,

, , , June 2014,
.

 and , , ,
, May 2021, .

 and , , , ,
June 2022, .

, , and , ,
, , December 2021,

.

,
,

,
, August 2016, .

IANA "TLS HandshakeType" <https://www.iana.org/assignments/tls-
parameters/>

IANA "TLS ExtensionType Values" <https://www.iana.org/assignments/tls-
extensiontype-values/>

Santesson, S. Myers, M. Ankney, R. Malpani, A. Galperin, S. C. Adams "X.
509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"
RFC 6960 DOI 10.17487/RFC6960 <https://www.rfc-editor.org/info/
rfc6960>

Laurie, B. Langley, A. E. Kasper "Certificate Transparency" RFC 6962 DOI
10.17487/RFC6962 <https://www.rfc-editor.org/info/rfc6962>

Wouters, P., Ed. Tschofenig, H., Ed. Gilmore, J. Weiler, S. T. Kivinen "Using
Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)" RFC 7250 DOI 10.17487/RFC7250 <https://
www.rfc-editor.org/info/rfc7250>

Thomson, M., Ed. S. Turner, Ed. "Using TLS to Secure QUIC" RFC 9001 DOI
10.17487/RFC9001 <https://www.rfc-editor.org/info/rfc9001>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/RFC9113
<https://www.rfc-editor.org/info/rfc9113>

Laurie, B. Messeri, E. R. Stradling "Certificate Transparency Version 2.0"
RFC 9162 DOI 10.17487/RFC9162 <https://www.rfc-editor.org/
info/rfc9162>

Krawczyk, H. "A Unilateral-to-Mutual Authentication Compiler for Key
Exchange (with Applications to Client Authentication in TLS 1.3)" Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security
DOI 10.1145/2976749.2978325 <https://eprint.iacr.org/2016/711.pdf>

Acknowledgements
Comments on this proposal were provided by . Suggestions for Section 9 were
provided by .

Martin Thomson
Karthikeyan Bhargavan

Author's Address
Nick Sullivan
Cloudflare Inc.

 nick@cloudflare.com Email:

RFC 9261 TLS Exported Authenticator July 2022

Sullivan Standards Track Page 14

https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/tls-extensiontype-values/
https://www.iana.org/assignments/tls-extensiontype-values/
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6962
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9162
https://eprint.iacr.org/2016/711.pdf
mailto:nick@cloudflare.com

	RFC 9261
	Exported Authenticators in TLS
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. Message Sequences
	4. Authenticator Request
	5. Authenticator
	5.1. Authenticator Keys
	5.2. Authenticator Construction
	5.2.1. Certificate
	5.2.2. CertificateVerify
	5.2.3. Finished
	5.2.4. Authenticator Creation

	6. Empty Authenticator
	7. API Considerations
	7.1. The "request" API
	7.2. The "get context" API
	7.3. The "authenticate" API
	7.4. The "validate" API

	8. IANA Considerations
	8.1. Update of the TLS ExtensionType Registry
	8.2. Update of the TLS Exporter Labels Registry
	8.3. Update of the TLS HandshakeType Registry

	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgements
	Author's Address

