
RFC 9200

Authentication and Authorization for Constrained

Environments Using the OAuth 2.0 Framework (ACE-

OAuth)

Abstract

This specification defines a framework for authentication and authorization in Internet of Things

(IoT) environments called ACE‑OAuth. The framework is based on a set of building blocks

including OAuth 2.0 and the Constrained Application Protocol (CoAP), thus transforming a well-

known and widely used authorization solution into a form suitable for IoT devices. Existing

specifications are used where possible, but extensions are added and profiles are defined to

better serve the IoT use cases.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9200

Standards Track

August 2022

2070-1721

 L. Seitz

Combitech

G. Selander

Ericsson

E. Wahlstroem S. Erdtman

Spotify AB

H. Tschofenig

Arm Ltd.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9200

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Seitz, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9200
https://www.rfc-editor.org/info/rfc9200
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Overview

3.1. OAuth 2.0

3.2. CoAP

4. Protocol Interactions

5. Framework

5.1. Discovering Authorization Servers

5.2. Unauthorized Resource Request Message

5.3. AS Request Creation Hints

5.3.1. The Client-Nonce Parameter

5.4. Authorization Grants

5.5. Client Credentials

5.6. AS Authentication

5.7. The Authorization Endpoint

5.8. The Token Endpoint

5.8.1. Client-to-AS Request

5.8.2. AS-to-Client Response

5.8.3. Error Response

5.8.4. Request and Response Parameters

5.8.4.1. Grant Type

5.8.4.2. Token Type

5.8.4.3. Profile

5.8.4.4. Client-Nonce

5.8.5. Mapping Parameters to CBOR

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 2

5.9. The Introspection Endpoint

5.9.1. Introspection Request

5.9.2. Introspection Response

5.9.3. Error Response

5.9.4. Mapping Introspection Parameters to CBOR

5.10. The Access Token

5.10.1. The Authorization Information Endpoint

5.10.1.1. Verifying an Access Token

5.10.1.2. Protecting the Authorization Information Endpoint

5.10.2. Client Requests to the RS

5.10.3. Token Expiration

5.10.4. Key Expiration

6. Security Considerations

6.1. Protecting Tokens

6.2. Communication Security

6.3. Long-Term Credentials

6.4. Unprotected AS Request Creation Hints

6.5. Minimal Security Requirements for Communication

6.6. Token Freshness and Expiration

6.7. Combining Profiles

6.8. Unprotected Information

6.9. Identifying Audiences

6.10. Denial of Service Against or with Introspection

7. Privacy Considerations

8. IANA Considerations

8.1. ACE Authorization Server Request Creation Hints

8.2. CoRE Resource Types

8.3. OAuth Extensions Errors

8.4. OAuth Error Code CBOR Mappings

8.5. OAuth Grant Type CBOR Mappings

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 3

8.6. OAuth Access Token Types

8.7. OAuth Access Token Type CBOR Mappings

8.7.1. Initial Registry Contents

8.8. ACE Profiles

8.9. OAuth Parameters

8.10. OAuth Parameters CBOR Mappings

8.11. OAuth Introspection Response Parameters

8.12. OAuth Token Introspection Response CBOR Mappings

8.13. JSON Web Token Claims

8.14. CBOR Web Token Claims

8.15. Media Type Registration

8.16. CoAP Content-Formats

8.17. Expert Review Instructions

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Design Justification

Appendix B. Roles and Responsibilities

Appendix C. Requirements on Profiles

Appendix D. Assumptions on AS Knowledge about the C and RS

Appendix E. Differences to OAuth 2.0

Appendix F. Deployment Examples

F.1. Local Token Validation

F.2. Introspection Aided Token Validation

Acknowledgments

Authors' Addresses

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 4

1. Introduction

Authorization is the process for granting approval to an entity to access a generic resource

. The authorization task itself can best be described as granting access to a requesting

client for a resource hosted on a device, i.e., the resource server (RS). This exchange is mediated

by one or multiple authorization servers (ASes). Managing authorization for a large number of

devices and users can be a complex task.

While prior work on authorization solutions for the Web and for the mobile environment also

applies to the Internet of Things (IoT) environment, many IoT devices are constrained, for

example, in terms of processing capabilities, available memory, etc. For such devices, the

Constrained Application Protocol (CoAP) can alleviate some resource concerns when

used instead of HTTP to implement the communication flows of this specification.

Appendix A gives an overview of the constraints considered in this design, and a more detailed

treatment of constraints can be found in . This design aims to accommodate different

IoT deployments as well as a continuous range of device and network capabilities. Taking energy

consumption as an example, at one end, there are energy-harvesting or battery-powered devices

that have a tight power budget; on the other end, there are mains-powered devices; and all levels

exist in between.

Hence, IoT devices may be very different in terms of available processing and message exchange

capabilities, and there is a need to support many different authorization use cases .

This specification describes a framework for Authentication and Authorization for Constrained

Environments (ACE) built on reuse of OAuth 2.0 , thereby extending authorization to

Internet of Things devices. This specification contains the necessary building blocks for adjusting

OAuth 2.0 to IoT environments.

Profiles of this framework are available in separate specifications, such as or

. Such profiles may specify the use of the framework for a specific security protocol

and the underlying transports for use in a specific deployment environment to improve

interoperability. Implementations may claim conformance with a specific profile, whereby

implementations utilizing the same profile interoperate, while implementations of different

profiles are not expected to be interoperable. More powerful devices, such as mobile phones and

tablets, may implement multiple profiles and will therefore be able to interact with a wider

range of constrained devices. Requirements on profiles are described at contextually appropriate

places throughout this specification and also summarized in Appendix C.

[RFC4949]

[RFC7252]

[RFC7228]

[RFC7744]

[RFC6749]

[RFC9202]

[RFC9203]

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 5

Certain security-related terms, such as "authentication", "authorization", "confidentiality", "(data)

integrity", "message authentication code", and "verify", are taken from .

Since exchanges in this specification are described as RESTful protocol interactions, HTTP

 offers useful terminology. (Note that "RESTful" refers to the Representational State

Transfer (REST) architecture.)

Terminology for entities in the architecture is defined in OAuth 2.0 , such as client (C),

resource server (RS), and authorization server (AS).

Note that the term "endpoint" is used here following its OAuth definition, which is to denote

resources, such as token and introspection at the AS and authz-info at the RS (see Section 5.10.1

for a definition of the authz-info endpoint). The CoAP definition, which is "[a]n entity

participating in the CoAP protocol" , is not used in this specification.

The specification in this document is called the "framework" or "ACE framework". When

referring to "profiles of this framework", it refers to additional specifications that define the use

of this specification with concrete transport and communication security protocols (e.g., CoAP

over DTLS).

The term "Access Information" is used for parameters, other than the access token, provided to

the client by the AS to enable it to access the RS (e.g., public key of the RS or profile supported by

RS).

The term "authorization information" is used to denote all information, including the claims of

relevant access tokens, that an RS uses to determine whether an access request should be

granted.

Throughout this document, examples for CBOR data items are expressed in CBOR extended

diagnostic notation as defined in and

("diagnostic notation"), unless noted otherwise. We often use diagnostic notation comments to

provide a textual representation of the numeric parameter names and values.

[RFC4949]

[RFC9110]

[RFC6749]

[RFC7252]

Section 8 of [RFC8949] Appendix G of [RFC8610]

3. Overview

This specification defines the ACE framework for authorization in the Internet of Things

environment. It consists of a set of building blocks.

The basic block is the OAuth 2.0 framework, which enjoys widespread deployment.

Many IoT devices can support OAuth 2.0 without any additional extensions, but for certain

constrained settings, additional profiling is needed.

Another building block is the lightweight web transfer protocol CoAP , for those

communication environments where HTTP is not appropriate. CoAP typically runs on top of UDP,

which further reduces overhead and message exchanges. While this specification defines

extensions for the use of OAuth over CoAP, other underlying protocols are not prohibited from

being supported in the future, such as HTTP/2 , Message Queuing Telemetry Transport

(MQTT) , Bluetooth Low Energy (BLE) , and QUIC . Note that this

[RFC6749]

[RFC7252]

[RFC9113]

[MQTT5.0] [BLE] [RFC9000]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8949#section-8
https://www.rfc-editor.org/rfc/rfc8610#appendix-G

document specifies protocol exchanges in terms of RESTful verbs, such as GET and POST. Future

profiles using protocols that do not support these verbs specify how the corresponding

protocol messages are transmitted instead.

A third building block is the Concise Binary Object Representation (CBOR) , for

encodings where JSON is not sufficiently compact. CBOR is a binary encoding designed

for small code and message size. Self-contained tokens and protocol message payloads are

encoded in CBOR when CoAP is used. When CoAP is not used, the use of CBOR remains

.

A fourth building block is CBOR Object Signing and Encryption (COSE) , which enables

object-level layer security as an alternative or complement to transport layer security (DTLS

 or TLS). COSE is used to secure self-contained tokens, such as

proof-of-possession (PoP) tokens, which are an extension to the OAuth bearer tokens. The default

token format is defined in CBOR Web Token (CWT) . Application-layer security for

CoAP using COSE can be provided with Object Security for Constrained RESTful Environments

(OSCORE) .

With the building blocks listed above, solutions satisfying various IoT device and network

constraints are possible. A list of constraints is described in detail in , and a description

of how the building blocks mentioned above relate to the various constraints can be found in

Appendix A.

Luckily, not every IoT device suffers from all constraints. Nevertheless, the ACE framework takes

all these aspects into account and allows several different deployment variants to coexist, rather

than mandating a one-size-fits-all solution. It is important to cover the wide range of possible

interworking use cases and the different requirements from a security point of view. Once IoT

deployments mature, popular deployment variants will be documented in the form of ACE

profiles.

MUST

[RFC8949]

[RFC8259]

RECOMMENDED

[RFC8152]

[RFC6347] [RFC9147] [RFC8446]

[RFC8392]

[RFC8613]

[RFC7228]

3.1. OAuth 2.0

The OAuth 2.0 authorization framework enables a client to obtain scoped access to a resource

with the permission of a resource owner. Authorization information, or references to it, is passed

between the nodes using access tokens. These access tokens are issued to clients by an

authorization server with the approval of the resource owner. The client uses the access token to

access the protected resources hosted by the resource server.

A number of OAuth 2.0 terms are used within this specification:

Access Tokens:

Access tokens are credentials needed to access protected resources. An access token is a data

structure representing authorization permissions issued by the AS to the client. Access tokens

are generated by the AS and consumed by the RS. The access token content is opaque to the

client.

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 7

Access tokens can have different formats and various methods of utilization (e.g.,

cryptographic properties) based on the security requirements of the given deployment.

Introspection:

Introspection is a method for a resource server, or potentially a client, to query the

authorization server for the active state and content of a received access token. This is

particularly useful in those cases where the authorization decisions are very dynamic and/or

where the received access token itself is an opaque reference, rather than a self-contained

token. More information about introspection in OAuth 2.0 can be found in .

Refresh Tokens:

Refresh tokens are credentials used to obtain access tokens. Refresh tokens are issued to the

client by the authorization server and are used to obtain a new access token when the current

access token expires or to obtain additional access tokens with identical or narrower scope

(such access tokens may have a shorter lifetime and fewer permissions than authorized by

the resource owner). Issuing a refresh token is optional at the discretion of the authorization

server. If the authorization server issues a refresh token, it is included when issuing an access

token (i.e., step (B) in Figure 1).

A refresh token in OAuth 2.0 is a string representing the authorization granted to the client by

the resource owner. The string is usually opaque to the client. The token denotes an identifier

used to retrieve the authorization information. Unlike access tokens, refresh tokens are

intended for use only with authorization servers and are never sent to resource servers. In

this framework, refresh tokens are encoded in binary instead of strings, if used.

Proof-of-Possession Tokens:

A token may be bound to a cryptographic key, which is then used to bind the token to a

request authorized by the token. Such tokens are called proof-of-possession tokens (or PoP

tokens).

The proof-of-possession security concept used here assumes that the AS acts as a trusted third

party that binds keys to tokens. In the case of access tokens, these so-called PoP keys are then

used by the client to demonstrate the possession of the secret to the RS when accessing the

resource. The RS, when receiving an access token, needs to verify that the key used by the

client matches the one bound to the access token. When this specification uses the term

"access token", it is assumed to be a PoP access token unless specifically stated otherwise.

The key bound to the token (the PoP key) may use either symmetric or asymmetric

cryptography. The appropriate choice of the kind of cryptography depends on the constraints

of the IoT devices as well as on the security requirements of the use case.

Symmetric PoP key:

The AS generates a random, symmetric PoP key. The key is either stored to be returned on

introspection calls or included in the token. Either the whole token or only the key

be encrypted in the latter case. The PoP key is also returned to client together with the

token, protected by the secure channel.

[RFC7662]

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 8

Asymmetric PoP key:

An asymmetric key pair is generated by the client and the public key is sent to the AS (if it

does not already have knowledge of the client's public key). Information about the public

key, which is the PoP key in this case, is either stored to be returned on introspection calls

or included inside the token and sent back to the client. The resource server consuming

the token can identify the public key from the information in the token, which allows the

client to use the corresponding private key for the proof of possession.

The token is either a simple reference or a structured information object (e.g., CWT

) protected by a cryptographic wrapper (e.g., COSE). The choice of PoP

key does not necessarily imply a specific credential type for the integrity protection of the

token.

Scopes and Permissions:

In OAuth 2.0, the client specifies the type of permissions it is seeking to obtain (via the scope

parameter) in the access token request. In turn, the AS may use the scope response parameter

to inform the client of the scope of the access token issued. As the client could be a

constrained device as well, this specification defines the use of CBOR encoding (see Section 5)

for such requests and responses.

The values of the scope parameter in OAuth 2.0 are expressed as a list of space-delimited,

case-sensitive strings with a semantic that is well known to the AS and the RS. More details

about the concept of scopes are found under .

Claims:

Information carried in the access token or returned from introspection, called claims, is in the

form of name-value pairs. An access token may, for example, include a claim identifying the

AS that issued the token (via the iss claim) and what audience the access token is intended

for (via the aud claim). The audience of an access token can be a specific resource, one

resource, or many resource servers. The resource owner policies influence what claims are

put into the access token by the authorization server.

While the structure and encoding of the access token varies throughout deployments, a

standardized format has been defined with the JSON Web Token (JWT) , where

claims are encoded as a JSON object. In , the CBOR Web Token (CWT) has been

defined as an equivalent format using CBOR encoding.

Token and Introspection Endpoints:

The AS hosts the token endpoint that allows a client to request access tokens. The client makes

a POST request to the token endpoint on the AS and receives the access token in the response

(if the request was successful).

In some deployments, a token introspection endpoint is provided by the AS, which can be

used by the RS and potentially the client, if they need to request additional information

regarding a received access token. The requesting entity makes a POST request to the

introspection endpoint on the AS and receives information about the access token in the

response. (See "Introspection" above.)

[RFC8392] [RFC8152]

Section 3.3 of [RFC6749]

[RFC7519]

[RFC8392]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc6749#section-3.3

3.2. CoAP

CoAP is an application-layer protocol similar to HTTP but specifically designed for constrained

environments. CoAP typically uses datagram-oriented transport, such as UDP, where reordering

and loss of packets can occur. A security solution needs to take the latter aspects into account.

While HTTP uses headers and query strings to convey additional information about a request,

CoAP encodes such information into header parameters called 'options'.

CoAP supports application-layer fragmentation of the CoAP payloads through block-wise

transfers . However, block-wise transfer does not increase the size limits of CoAP

options; therefore, data encoded in options has to be kept small.

Transport layer security for CoAP can be provided by DTLS or TLS

. CoAP defines a number of proxy operations that require transport layer security to be

terminated at the proxy. One approach for protecting CoAP communication end-to-end through

proxies, and also to support security for CoAP over a different transport in a uniform way, is to

provide security at the application layer using an object-based security mechanism, such as COSE

.

One application of COSE is OSCORE , which provides end-to-end confidentiality,

integrity and replay protection, and a secure binding between CoAP request and response

messages. In OSCORE, the CoAP messages are wrapped in COSE objects and sent using CoAP.

In this framework, the use of CoAP as replacement for HTTP is for use in

constrained environments. For communication security, this framework does not make an

explicit protocol recommendation, since the choice depends on the requirements of the specific

application. DTLS and OSCORE are mentioned as examples; other

protocols fulfilling the requirements from Section 6.5 are also applicable.

[RFC7959]

[RFC6347] [RFC8446]

[RFC9147]

[RFC8152]

[RFC8613]

RECOMMENDED

[RFC6347] [RFC9147] [RFC8613]

4. Protocol Interactions

The ACE framework is based on the OAuth 2.0 protocol interactions using the token endpoint and

optionally the introspection endpoint. A client obtains an access token, and optionally a refresh

token, from an AS using the token endpoint and subsequently presents the access token to an RS

to gain access to a protected resource. In most deployments, the RS can process the access token

locally; however, in some cases, the RS may present it to the AS via the introspection endpoint to

get fresh information. These interactions are shown in Figure 1. An overview of various OAuth

concepts is provided in Section 3.1.

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 10

(1)

Requesting an Access Token (A):

The client makes an access token request to the token endpoint at the AS. This framework

assumes the use of PoP access tokens (see Section 3.1 for a short description) wherein the AS

binds a key to an access token. The client may include permissions it seeks to obtain and

information about the credentials it wants to use for proof of possession (e.g., symmetric/

asymmetric cryptography or a reference to a specific key) of the access token.

Access Token Response (B):

If the request from the client has been successfully verified, authenticated, and authorized,

the AS returns an access token and optionally a refresh token. Note that only certain grant

types support refresh tokens. The AS can also return additional parameters, referred to as

"Access Information". In addition to the response parameters defined by OAuth 2.0 and the

PoP access token extension, this framework defines parameters that can be used to inform the

client about capabilities of the RS, e.g., the profile the RS supports. More information about

these parameters can be found in Section 5.8.4.

Resource Request (C):

The client interacts with the RS to request access to the protected resource and provides the

access token. The protocol to use between the client and the RS is not restricted to CoAP. HTTP,

HTTP/2 , QUIC , MQTT , Bluetooth Low Energy , etc., are

also viable candidates.

Depending on the device limitations and the selected protocol, this exchange may be split up

into two parts:

the client sends the access token containing, or referencing, the authorization

information to the RS that will be used for subsequent resource requests by the client,

and

Figure 1: Basic Protocol Flow

+--------+ +---------------+

| |---(A)-- Token Request ------->| |

| | | Authorization |

| |<--(B)-- Access Token ---------| Server |

| | + Access Information | |

| | + Refresh Token (optional) +---------------+

| | ^ |

| | Introspection Request (D)| |

| Client | Response | |(E)

| | (optional exchange) | |

| | | v

| | +--------------+

| |---(C)-- Token + Request ----->| |

| | | Resource |

| |<--(F)-- Protected Resource ---| Server |

| | | |

+--------+ +--------------+

[RFC9113] [RFC9000] [MQTT5.0] [BLE]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 11

(2) the client makes the resource access request using the communication security protocol

and other Access Information obtained from the AS.

The client and the RS mutually authenticate using the security protocol specified in the profile

(see step (B)) and the keys obtained in the access token or the Access Information. The RS

verifies that the token is integrity protected and originated by the AS. It then compares the

claims contained in the access token with the resource request. If the RS is online, validation

can be handed over to the AS using token introspection (see messages (D) and (E)) over HTTP

or CoAP.

Token Introspection Request (D):

A resource server may be configured to introspect the access token by including it in a request

to the introspection endpoint at that AS. Token introspection over CoAP is defined in Section

5.9 and for HTTP in .

Note that token introspection is an optional step and can be omitted if the token is self-

contained and the resource server is prepared to perform the token validation on its own.

Token Introspection Response (E):

The AS validates the token and returns the most recent parameters, such as scope, audience,

validity, etc., associated with it back to the RS. The RS then uses the received parameters to

process the request to either accept or to deny it.

Protected Resource (F):

If the request from the client is authorized, the RS fulfills the request and returns a response

with the appropriate response code. The RS uses the dynamically established keys to protect

the response according to the communication security protocol used.

The OAuth 2.0 framework defines a number of "protocol flows" via grant types, which have been

extended further with extensions to OAuth 2.0 (such as and). What grant

type works best depends on the usage scenario; describes many different IoT use

cases, but there are two grant types that cover a majority of these scenarios, namely the

authorization code grant (described in) and the client credentials grant

(described in). The authorization code grant is a good fit for use with

apps running on smartphones and tablets that request access to IoT devices, a common scenario

in the smart home environment, where users need to go through an authentication and

authorization phase (at least during the initial setup phase). The native apps guidelines described

in are applicable to this use case. The client credentials grant is a good fit for use with

IoT devices where the OAuth client itself is constrained. In such a case, the resource owner has

prearranged access rights for the client with the authorization server, which is often

accomplished using a commissioning tool.

The consent of the resource owner, for giving a client access to a protected resource, can be

provided dynamically as in the classical OAuth flows, or it could be preconfigured by the

resource owner as authorization policies at the AS, which the AS evaluates when a token request

arrives. The resource owner and the requesting party (i.e., client owner) are not shown in Figure

1.

[RFC7662]

[RFC7521] [RFC8628]

[RFC7744]

Section 4.1 of [RFC6749]

Section 4.4 of [RFC6749]

[RFC8252]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc6749#section-4.1
https://www.rfc-editor.org/rfc/rfc6749#section-4.4

This framework supports a wide variety of communication security mechanisms between the

ACE entities, such as the client, AS, and RS. It is assumed that the client has been registered (also

called enrolled or onboarded) to an AS using a mechanism defined outside the scope of this

document. In practice, various techniques for onboarding have been used, such as factory-based

provisioning or the use of commissioning tools. Regardless of the onboarding technique, this

provisioning procedure implies that the client and the AS exchange credentials and

configuration parameters. These credentials are used to mutually authenticate each other and to

protect messages exchanged between the client and the AS.

It is also assumed that the RS has been registered with the AS, potentially in a similar way as the

client has been registered with the AS. Established keying material between the AS and the RS

allows the AS to apply cryptographic protection to the access token to ensure that its content

cannot be modified and, if needed, that the content is confidentiality protected. Confidentiality

protection of the access token content would be provided on top of confidentiality protection via

a communication security protocol.

The keying material necessary for establishing communication security between the C and RS is

dynamically established as part of the protocol described in this document.

At the start of the protocol, there is an optional discovery step where the client discovers the

resource server and the resources this server hosts. In this step, the client might also determine

what permissions are needed to access the protected resource. A generic procedure is described

in Section 5.1; profiles define other procedures for discovery.

In Bluetooth Low Energy, for example, advertisements are broadcast by a peripheral, including

information about the primary services. In CoAP, as a second example, a client can make a

request to "/.well-known/core" to obtain information about available resources, which are

returned in a standardized format, as described in .

MAY

[RFC6690]

5. Framework

The following sections detail the profiling and extensions of OAuth 2.0 for constrained

environments, which constitutes the ACE framework.

Credential Provisioning

In constrained environments, it cannot be assumed that the client and the RS are part of a

common key infrastructure. Therefore, the AS provisions credentials and associated

information to allow mutual authentication between the client and the RS. The resulting

security association between the client and the RS may then also be used to bind these

credentials to the access tokens the client uses.

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 13

Proof of Possession

The ACE framework, by default, implements proof of possession for access tokens, i.e., that the

token holder can prove being a holder of the key bound to the token. The binding is provided

by the cnf (confirmation) claim , indicating what key is used for proof of

possession. If a client needs to submit a new access token, e.g., to obtain additional access

rights, they can request that the AS binds this token to the same key as the previous one.

ACE Profiles

The client or RS may be limited in the encodings or protocols it supports. To support a variety

of different deployment settings, specific interactions between the client and RS are defined in

an ACE profile. In the ACE framework, the AS is expected to manage the matching of

compatible profile choices between a client and an RS. The AS informs the client of the

selected profile using the ace_profile parameter in the token response.

OAuth 2.0 requires the use of TLS to protect the communication between the AS and client when

requesting an access token between the client and RS when accessing a resource and between

the AS and RS if introspection is used. In constrained settings, TLS is not always feasible or

desirable. Nevertheless, it is that the communications named above are encrypted,

integrity protected, and protected against message replay. It is also that the

communicating endpoints perform mutual authentication. Furthermore, it be assured that

responses are bound to the requests in the sense that the receiver of a response can be certain

that the response actually belongs to a certain request. Note that setting up such a secure

communication may require some unprotected messages to be exchanged first (e.g., sending the

token from the client to the RS).

Profiles specify a communication security protocol between the client and RS that provides

the features required above. Profiles specify a communication security protocol

 to be used between the client and AS that provides the features required above.

Profiles specify, for introspection, a communication security protocol to be

used between the RS and AS that provides the features required above. These recommendations

enable interoperability between different implementations without the need to define a new

profile if the communication between the C and AS, or between the RS and AS, is protected with a

different security protocol complying with the security requirements above.

In OAuth 2.0, the communication with the Token and the Introspection endpoints at the AS is

assumed to be via HTTP and may use Uri-query parameters. When profiles of this framework use

CoAP instead, it is to use of the following alternative instead of Uri-query parameters:

The sender (client or RS) encodes the parameters of its request as a CBOR map and submits that

map as the payload of the POST request. The CBOR encoding for a number of OAuth 2.0

parameters is specified in this document; if a profile needs to use other OAuth 2.0 parameters

with CoAP, it specify their CBOR encoding.

Profiles that use CBOR encoding of protocol message parameters at the outermost encoding layer

 use the Content-Format "application/ace+cbor". If CoAP is used for communication, the

Content-Format be abbreviated with the ID: 19 (see Section 8.16).

[RFC8747]

REQUIRED

REQUIRED

MUST

MUST

MUST

RECOMMENDED

MUST RECOMMENDED

REQUIRED

MUST

MUST

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 14

The OAuth 2.0 AS uses a JSON structure in the payload of its responses both to the client and RS.

If CoAP is used, it is to use CBOR instead of JSON. Depending on the profile,

the CBOR payload be enclosed in a non-CBOR cryptographic wrapper.

REQUIRED [RFC8949]

MAY

5.1. Discovering Authorization Servers

The C must discover the AS in charge of the RS to determine where to request the access token.

To do so, the C 1) must find out the AS URI to which the token request message must be sent and

2) validate that the AS with this URI is authorized to provide access tokens for this RS.

In order to determine the AS URI, the C send an initial Unauthorized Resource Request

message to the RS. The RS then denies the request and sends the address of its AS back to the C

(see Section 5.2). How the C validates the AS authorization is not in scope for this document. The

C may, for example, ask its owner if this AS is authorized for this RS. The C may also use a

mechanism that addresses both problems at once (e.g., by querying a dedicated secure service

provided by the client owner) .

MUST

MAY

5.2. Unauthorized Resource Request Message

An Unauthorized Resource Request message is a request for any resource hosted by the RS for

which the client does not have authorization granted. The RSs treat any request for a

protected resource as an Unauthorized Resource Request message when any of the following

hold:

The request has been received on an unsecured channel.

The RS has no valid access token for the sender of the request regarding the requested action

on that resource.

The RS has a valid access token for the sender of the request, but that token does not

authorize the requested action on the requested resource.

Note: These conditions ensure that the RS can handle requests autonomously once access was

granted and a secure channel has been established between the C and RS. The authz-info

endpoint, as part of the process for authorizing to protected resources, is not itself a protected

resource and be protected as specified above (cf. Section 5.10.1).

Unauthorized Resource Request messages be denied with an "unauthorized_client" error

response. In this response, the resource server provide proper AS Request Creation

Hints to enable the client to request an access token from the RS's AS, as described in Section 5.3.

The handling of all client requests (including unauthorized ones) by the RS is described in

Section 5.10.2.

MUST

•

•

•

MUST NOT

MUST

SHOULD

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 15

5.3. AS Request Creation Hints

The AS Request Creation Hints are sent by an RS as a response to an Unauthorized Resource

Request message (see Section 5.2) to help the sender of the Unauthorized Resource Request

message acquire a valid access token. The AS Request Creation Hints are a CBOR or JSON map,

with an element AS specifying an absolute URI (see) that

identifies the appropriate AS for the RS.

The message can also contain the following parameters:

An audience element contains an identifier the client should request at the AS, as suggested

by the RS. With this parameter, when included in the access token request to the AS, the AS is

able to restrict the use of the access token to specific RSs. See Section 6.9 for a discussion of

this parameter.

A kid (key identifier) element contains the key identifier of a key used in an existing security

association between the client and the RS. The RS expects the client to request an access

token bound to this key in order to avoid having to reestablish the security association.

A cnonce element contains a client-nonce. See Section 5.3.1.

A scope element contains the suggested scope that the client should request towards the AS.

Table 1 summarizes the parameters that may be part of the AS Request Creation Hints.

Note that the schema part of the AS parameter may need to be adapted to the security protocol

that is used between the client and the AS. Thus, the example AS value "coap://as.example.com/

token" might need to be transformed to "coaps://as.example.com/token". It is assumed that the

client can determine the correct schema part on its own depending on the way it communicates

with the AS.

Figure 2 shows an example for an AS Request Creation Hints payload using diagnostic notation.

OPTIONAL Section 4.3 of [RFC3986]

OPTIONAL

•

•

•

•

Name CBOR Key Value Type

AS 1 text string

kid 2 byte string

audience 5 text string

scope 9 text or byte string

cnonce 39 byte string

Table 1: AS Request Creation Hints

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc3986#section-4.3

In the example above, the response parameter AS points the receiver of this message to the URI

"coaps://as.example.com/token" to request access tokens. The RS sending this response uses an

internal clock that is not synchronized with the clock of the AS. Therefore, it cannot reliably

verify the expiration time of access tokens it receives. Nevertheless, to ensure a certain level of

access token freshness, the RS has included a cnonce parameter (see Section 5.3.1) in the

response. (The hex sequence of the cnonce parameter is encoded in CBOR-based notation in this

example.)

Figure 3 illustrates the mandatory use of binary encoding of the message payload shown in

Figure 2.

Figure 2: AS Request Creation Hints Payload Example

 4.01 Unauthorized

 Content-Format: application/ace+cbor

 Payload :

 {

 / AS / 1 : "coaps://as.example.com/token",

 / audience / 5 : "coaps://rs.example.com",

 / scope / 9 : "rTempC",

 / cnonce / 39 : h'e0a156bb3f'

 }

Figure 3: AS Request Creation Hints Example Encoded in CBOR

a4 # map(4)

 01 # unsigned(1) (=AS)

 78 1c # text(28)

 636f6170733a2f2f61732e657861

 6d706c652e636f6d2f746f6b656e # "coaps://as.example.com/token"

 05 # unsigned(5) (=audience)

 76 # text(22)

 636f6170733a2f2f72732e657861

 6d706c652e636f6d # "coaps://rs.example.com"

 09 # unsigned(9) (=scope)

 66 # text(6)

 7254656d7043 # "rTempC"

 18 27 # unsigned(39) (=cnonce)

 45 # bytes(5)

 e0a156bb3f #

5.3.1. The Client-Nonce Parameter

If the RS does not synchronize its clock with the AS, it could be tricked into accepting old access

tokens that are either expired or have been compromised. In order to ensure some level of token

freshness in that case, the RS can use the cnonce (client-nonce) parameter. The processing

requirements for this parameter are as follows:

An RS sending a cnonce parameter in an AS Request Creation Hints message store

information to validate that a given cnonce is fresh. How this is implemented internally is

• MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 17

out of scope for this specification. Expiration of client-nonces should be based roughly on the

time it would take a client to obtain an access token after receiving the AS Request Creation

Hints, with some allowance for unexpected delays.

A client receiving a cnonce parameter in an AS Request Creation Hints message

include this in the parameters when requesting an access token at the AS, using the cnonce

parameter from Section 5.8.4.4.

If an AS grants an access token request containing a cnonce parameter, it include this

value in the access token, using the cnonce claim specified in Section 5.10.

An RS that is using the client-nonce mechanism and that receives an access token

verify that this token contains a cnonce claim, with a client-nonce value that is fresh

according to the information stored at the first step above. If the cnonce claim is not present

or if the cnonce claim value is not fresh, the RS discard the access token. If this was an

interaction with the authz-info endpoint, the RS also respond with an error message

using a response code equivalent to the CoAP code 4.01 (Unauthorized).

• MUST

• MUST

• MUST

MUST

MUST

5.4. Authorization Grants

To request an access token, the client obtains authorization from the resource owner or uses its

client credentials as a grant. The authorization is expressed in the form of an authorization

grant.

The OAuth framework defines four grant types. The grant types can be split up into

two groups: those granted on behalf of the resource owner (password, authorization code,

implicit) and those for the client (client credentials). Further grant types have been added later,

such as an assertion-based authorization grant defined in .

The grant type is selected depending on the use case. In cases where the client acts on behalf of

the resource owner, the authorization code grant is recommended. If the client acts on behalf of

the resource owner but does not have any display or has very limited interaction possibilities, it

is recommended to use the device code grant defined in . In cases where the client acts

autonomously, the client credentials grant is recommended.

For details on the different grant types, see . The OAuth 2.0 framework

provides an extension mechanism for defining additional grant types, so profiles of this

framework define additional grant types, if needed.

[RFC6749]

[RFC7521]

[RFC8628]

Section 1.3 of [RFC6749]

MAY

5.5. Client Credentials

Authentication of the client is mandatory independent of the grant type when requesting an

access token from the token endpoint. In the case of the client credentials grant type, the

authentication and grant coincide.

Client registration and provisioning of client credentials to the client is out of scope for this

specification.

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc6749#section-1.3

The OAuth framework defines one client credential type in that

comprises the client_id and client_secret values. adds raw public key and pre-

shared key to the client credentials type. Profiles of this framework extend it with an

additional client credentials type using client certificates.

Section 2.3.1 of [RFC6749]

[OAUTH-RPCC]

MAY

5.6. AS Authentication

The client credentials grant does not, by default, authenticate the AS that the client connects to.

In classic OAuth, the AS is authenticated with a TLS server certificate.

Profiles of this framework specify how clients authenticate the AS and how

communication security is implemented. By default, server side TLS certificates, as defined by

OAuth 2.0, are required.

MUST

5.7. The Authorization Endpoint

The OAuth 2.0 authorization endpoint is used to interact with the resource owner and obtain an

authorization grant in certain grant flows. The primary use case for the ACE-OAuth framework is

for machine-to-machine interactions that do not involve the resource owner in the authorization

flow; therefore, this endpoint is out of scope here. Future profiles may define constrained

adaptation mechanisms for this endpoint as well. Nonconstrained clients interacting with

constrained resource servers can use the specification in and the attack

countermeasures suggested in .

Section 3.1 of [RFC6749]

Section 4.2 of [RFC6819]

5.8. The Token Endpoint

In standard OAuth 2.0, the AS provides the token endpoint for submitting access token requests.

This framework extends the functionality of the token endpoint, giving the AS the possibility to

help the client and RS establish shared keys or exchange their public keys. Furthermore, this

framework defines encodings using CBOR as a substitute for JSON.

The endpoint may also be exposed over HTTPS, as in classical OAuth or even other transports. A

profile define the details of the mapping between the fields described below and these

transports. If HTTPS with JSON is used, the semantics of Sections 4.1.3 and 4.1.4 of the OAuth 2.0

specification be followed (with additions as described below). If CBOR is used as

the payload format, the semantics described in this section be followed.

For the AS to be able to issue a token, the client be authenticated and present a valid grant

for the scopes requested. Profiles of this framework specify how the AS authenticates the

client and how the communication between the client and AS is protected, fulfilling the

requirements specified in Section 5.

The default name of this endpoint in a url-path be '/token'. However, implementations

are not required to use this name and can define their own instead.

MUST

[RFC6749] MUST

MUST

MUST

MUST

SHOULD

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc6749#section-2.3.1
https://www.rfc-editor.org/rfc/rfc6749#section-3.1
https://www.rfc-editor.org/rfc/rfc6819#section-4.2
https://www.rfc-editor.org/rfc/rfc6749#section-4.1.3
https://www.rfc-editor.org/rfc/rfc6749#section-4.1.4

5.8.1. Client-to-AS Request

The client sends a POST request to the token endpoint at the AS. The profile specify how the

communication is protected. The content of the request consists of the parameters specified in

the relevant subsection of Section 4 of the OAuth 2.0 specification , depending on the

grant type, with the following exceptions and additions:

The grant_type parameter is in the context of this framework (as opposed to

 in). If that parameter is missing, the default value "client_credentials" is

implied.

The audience parameter from is to request an access token bound to a

specific audience.

The cnonce parameter defined in Section 5.8.4.4 is if the RS provided a client-

nonce in the AS Request Creation Hints message (Section 5.3).

The scope parameter be encoded as a byte string instead of the string encoding

specified in or in order to allow compact encoding of complex

scopes. The syntax of such a binary encoding is explicitly not specified here and left to

profiles or applications. Note specifically that a binary encoded scope does not necessarily

use the space character '0x20' to delimit scope-tokens.

The client can send an empty (null value) ace_profile parameter to indicate that it wants

the AS to include the ace_profile parameter in the response. See Section 5.8.4.3.

A client be able to use the parameters from in an access token request to the

token endpoint, and the AS be able to process these additional parameters.

The default behavior is that the AS generates a symmetric proof-of-possession key for the client.

In order to use an asymmetric key pair or to reuse a key previously established with the RS, the

client is supposed to use the req_cnf parameter from .

If CoAP is used, then these parameters be provided in a CBOR map (see Table 5).

When HTTP is used as a transport, then the client makes a request to the token endpoint; the

parameters be encoded as defined in .

The following examples illustrate different types of requests for proof-of-possession tokens.

Figure 4 shows a request for a token with a symmetric proof-of-possession key, using diagnostic

notation.

MUST

[RFC6749]

• OPTIONAL

REQUIRED [RFC6749]

• [RFC8693] OPTIONAL

• REQUIRED

• MAY

Section 3.3 of [RFC6749]

•

• MUST [RFC9201]

MUST

[RFC9201]

MUST

MUST Appendix B of [RFC6749]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc6749#section-4
https://www.rfc-editor.org/rfc/rfc6749#section-3.3
https://www.rfc-editor.org/rfc/rfc6749#appendix-B

Figure 5 shows a request for a token with an asymmetric proof-of-possession key. Note that, in

this example, OSCORE is used to provide object-security; therefore, the Content-

Format is "application/oscore" wrapping the "application/ace+cbor" type content. The OSCORE

option has a decoded interpretation appended in parentheses for the reader's convenience. Also

note that, in this example, the audience is implicitly known by both the client and AS.

Furthermore, note that this example uses the req_cnf parameter from .

Figure 6 shows a request for a token where a previously communicated proof-of-possession key

is only referenced using the req_cnf parameter from .

Figure 4: Example Request for an Access Token Bound to a Symmetric Key

Header: POST (Code=0.02)

Uri-Host: "as.example.com"

Uri-Path: "token"

Content-Format: application/ace+cbor

Payload:

{

 / client_id / 24 : "myclient",

 / audience / 5 : "tempSensor4711"

}

[RFC8613]

[RFC9201]

Figure 5: Example Token Request Bound to an Asymmetric Key

Header: POST (Code=0.02)

Uri-Host: "as.example.com"

Uri-Path: "token"

OSCORE: 0x09, 0x05, 0x44, 0x6C

 (h=0, k=1, n=001, partialIV= 0x05, kid=[0x44, 0x6C])

Content-Format: application/oscore

Payload:

 0x44025d1/ ... (full payload omitted for brevity) ... /68b3825e

Decrypted payload:

{

 / client_id / 24 : "myclient",

 / req_cnf / 4 : {

 / COSE_Key / 1 : {

 / kty / 1 : 2 / EC2 /,

 / kid / 2 : h'11',

 / crv / -1 : 1 / P-256 /,

 / x / -2 : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',

 / y / -3 : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'

 }

 }

}

[RFC9201]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 21

Refresh tokens are typically not stored as securely as proof-of-possession keys in requesting

clients. Proof-of-possession-based refresh token requests request different proof-of-

possession keys or different audiences in token requests. Refresh token requests can only be used

to request access tokens bound to the same proof-of-possession key and the same audience as

access tokens issued in the initial token request.

Figure 6: Example Request for an Access Token Bound to a Key Reference

Header: POST (Code=0.02)

Uri-Host: "as.example.com"

Uri-Path: "token"

Content-Format: application/ace+cbor

Payload:

{

 / client_id / 24 : "myclient",

 / audience / 5 : "valve424",

 / scope / 9 : "read",

 / req_cnf / 4 : {

 / kid / 3 : b64'6kg0dXJM13U'

 }

}

MUST NOT

5.8.2. AS-to-Client Response

If the access token request has been successfully verified by the AS and the client is authorized to

obtain an access token corresponding to its access token request, the AS sends a response with

the response code equivalent to the CoAP response code 2.01 (Created). If the client request was

invalid, or not authorized, the AS returns an error response, as described in Section 5.8.3.

Note that the AS decides which token type and profile to use when issuing a successful response.

It is assumed that the AS has prior knowledge of the capabilities of the client and the RS (see

Appendix D). This prior knowledge may, for example, be set by the use of a dynamic client

registration protocol exchange . If the client has requested a specific proof-of-

possession key using the req_cnf parameter from , this may also influence which

profile the AS selects, as it needs to support the use of the key type requested by the client.

The content of the successful reply is the Access Information. When using CoAP, the payload

 be encoded as a CBOR map; when using HTTP, the encoding is a JSON map, as specified in

. In both cases, the parameters specified in are

used, with the following additions and changes:

ace_profile:

This parameter is unless the request included an empty ace_profile

parameter, in which case it is MANDATORY. This indicates the profile that the client

use towards the RS. See Section 5.8.4.3 for the formatting of this parameter. If this

parameter is absent, the AS assumes that the client implicitly knows which profile to use

towards the RS.

[RFC7591]

[RFC9201]

MUST

Section 5.1 of [RFC6749] Section 5.1 of [RFC6749]

OPTIONAL

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 22

https://www.rfc-editor.org/rfc/rfc6749#section-5.1
https://www.rfc-editor.org/rfc/rfc6749#section-5.1

token_type:

This parameter is , as opposed to in . By default,

implementations of this framework assume that the token_type is "PoP". If a

specific use case requires another token_type (e.g., "Bearer") to be used, then this

parameter is .

Furthermore, defines additional parameters that the AS be able to use when

responding to a request to the token endpoint.

Table 2 summarizes the parameters that can currently be part of the Access Information. Future

extensions may define additional parameters.

Figure 7 shows a response containing a token and a cnf parameter with a symmetric proof-of-

possession key, which is defined in . Note that the key identifier kid is only used to

simplify indexing and retrieving the key, and no assumptions should be made that it is unique in

the domains of either the client or the RS.

OPTIONAL REQUIRED [RFC6749]

SHOULD

REQUIRED

[RFC9201] MUST

Parameter name Specified in

access_token

token_type

expires_in

refresh_token

scope

state

error

error_description

error_uri

ace_profile RFC 9200

cnf

rs_cnf

Table 2: Access Information Parameters

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC9201]

[RFC9201]

[RFC9201]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 23

Figure 7: Example AS Response with an Access Token Bound to a Symmetric Key

Header: Created (Code=2.01)

Content-Format: application/ace+cbor

Payload:

{

 / access_token / 1 : b64'SlAV32hk'/ ...

 (remainder of CWT omitted for brevity;

 CWT contains COSE_Key in the cnf claim)/,

 / ace_profile / 38 : "coap_dtls",

 / expires_in / 2 : 3600,

 / cnf / 8 : {

 / COSE_Key / 1 : {

 / kty / 1 : 4 / Symmetric /,

 / kid / 2 : b64'39Gqlw',

 / k / -1 : b64'hJtXhkV8FJG+Onbc6mxC'

 }

 }

}

5.8.3. Error Response

The error responses for interactions with the AS are generally equivalent to the ones defined in

, with the following exceptions:

When using CoAP, the payload be encoded as a CBOR map, with the Content-Format

"application/ace+cbor". When using HTTP, the payload is encoded in JSON, as specified in

.

A response code equivalent to the CoAP code 4.00 (Bad Request) be used for all error

responses, except for invalid_client, where a response code equivalent to the CoAP code 4.01

(Unauthorized) be used under the same conditions as specified in

.

The parameters error, error_description, and error_uri be abbreviated using the

codes specified in Table 5, when a CBOR encoding is used.

The error code (i.e., value of the error parameter) be abbreviated, as specified in Table

3, when a CBOR encoding is used.

Section 5.2 of [RFC6749]

• MUST

Section 5.2 of [RFC6749]

• MUST

MAY Section 5.2 of

[RFC6749]

• MUST

• MUST

Name CBOR Values Original Specification

invalid_request 1

invalid_client 2

invalid_grant 3

unauthorized_client 4

unsupported_grant_type 5

Section 5.2 of [RFC6749]

Section 5.2 of [RFC6749]

Section 5.2 of [RFC6749]

Section 5.2 of [RFC6749]

Section 5.2 of [RFC6749]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 24

https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2

In addition to the error responses defined in OAuth 2.0, the following behavior be

implemented by the AS:

If the client submits an asymmetric key in the token request that the RS cannot process, the

AS reject that request with a response code equivalent to the CoAP code 4.00 (Bad

Request), including the error code "unsupported_pop_key" specified in Table 3.

If the client and the RS it has requested an access token for do not share a common profile,

the AS reject that request with a response code equivalent to the CoAP code 4.00 (Bad

Request), including the error code "incompatible_ace_profiles" specified in Table 3.

Name CBOR Values Original Specification

invalid_scope 6

unsupported_pop_key 7 RFC 9200

incompatible_ace_profiles 8 RFC 9200

Table 3: CBOR Abbreviations for Common Error Codes

Section 5.2 of [RFC6749]

MUST

•

MUST

•

MUST

5.8.4. Request and Response Parameters

This section provides more detail about the new parameters that can be used in access token

requests and responses, as well as abbreviations for more compact encoding of existing

parameters and common parameter values.

5.8.4.1. Grant Type

The abbreviations specified in the registry defined in Section 8.5 be used in CBOR

encodings instead of the string values defined in if CBOR payloads are used.

MUST

[RFC6749]

Name CBOR Value Original Specification

password 0

authorization_code 1

client_credentials 2

refresh_token 3

Table 4: CBOR Abbreviations for Common Grant Types

Section 4.3.2 of [RFC6749]

Section 4.1.3 of [RFC6749]

Section 4.4.2 of [RFC6749]

Section 6 of [RFC6749]

5.8.4.2. Token Type

The token_type parameter, defined in , allows the AS to indicate to the

client which type of access token it is receiving (e.g., a bearer token).

Section 5.1 of [RFC6749]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-4.3.2
https://www.rfc-editor.org/rfc/rfc6749#section-4.1.3
https://www.rfc-editor.org/rfc/rfc6749#section-4.4.2
https://www.rfc-editor.org/rfc/rfc6749#section-6
https://www.rfc-editor.org/rfc/rfc6749#section-5.1

This document registers the new value "PoP" for the "OAuth Access Token Types" registry,

specifying a proof-of-possession token. How the proof of possession by the client to the RS is

performed be specified by the profiles.

The values in the token_type parameter use the CBOR abbreviations defined in the

registry specified by Section 8.7 if a CBOR encoding is used.

In this framework, the "pop" value for the token_type parameter is the default. The AS may,

however, provide a different value from those registered in .

MUST

MUST

[IANA.OAuthAccessTokenTypes]

5.8.4.3. Profile

Profiles of this framework define the communication protocol and the communication

security protocol between the client and the RS. The security protocol provide encryption,

integrity, and replay protection. It also provide a binding between requests and responses.

Furthermore, profiles define a list of allowed proof-of-possession methods if they support

proof-of-possession tokens.

A profile specify an identifier that be used to uniquely identify itself in the

ace_profile parameter. The textual representation of the profile identifier is intended for

human readability and for JSON-based interactions; it be used for CBOR-based

interactions. Profiles register their identifier in the registry defined in Section 8.8.

Profiles define additional parameters for both the token request and the Access Information

in the access token response in order to support negotiation or signaling of profile-specific

parameters.

Clients that want the AS to provide them with the ace_profile parameter in the access token

response can indicate that by sending an ace_profile parameter with a null value for CBOR-

based interactions, or an empty string if CBOR is not used, in the access token request.

MUST

MUST

MUST

MUST

MUST MUST

MUST NOT

MUST

MAY

5.8.4.4. Client-Nonce

This parameter be sent from the client to the AS if it previously received a cnonce

parameter in the AS Request Creation Hints (Section 5.3). The parameter is encoded as a byte

string for CBOR-based interactions and as a string (base64url without padding encoded binary

) if CBOR is not used. It copy the value from the cnonce parameter in the AS

Request Creation Hints.

MUST

[RFC4648] MUST

5.8.5. Mapping Parameters to CBOR

If CBOR encoding is used, all OAuth parameters in access token requests and responses be

mapped to CBOR types, as specified in the registry defined by Section 8.10, using the given

integer abbreviation for the map keys.

Note that we have aligned the abbreviations corresponding to claims with the abbreviations

defined in .

MUST

[RFC8392]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 26

Note also that abbreviations from -24 to 23 have a 1-byte encoding size in CBOR. We have thus

chosen to assign abbreviations in that range to parameters we expect to be used most frequently

in constrained scenarios.

Name CBOR Key Value Type Original Specification

access_token 1 byte string

expires_in 2 unsigned integer

audience 5 text string

scope 9 text or byte string

client_id 24 text string

client_secret 25 byte string

response_type 26 text string

redirect_uri 27 text string

state 28 text string

code 29 byte string

error 30 integer

error_description 31 text string

error_uri 32 text string

grant_type 33 unsigned integer

token_type 34 integer

username 35 text string

password 36 text string

refresh_token 37 byte string

ace_profile 38 integer RFC 9200

cnonce 39 byte string RFC 9200

Table 5: CBOR Mappings Used in Token Requests and Responses

[RFC6749]

[RFC6749]

[RFC8693]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

[RFC6749]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 27

5.9. The Introspection Endpoint

Token introspection be implemented by the AS and the RS. When implemented, it

 be used by the RS and to query the AS for metadata about a given token, e.g., validity or

scope. Analogous to the protocol defined in for HTTP and JSON, this section defines

adaptations to more constrained environments using CBOR and leaving the choice of the

application protocol to the profile. The client MAY also implement and use introspection

analogously to the RS to obtain information about a given token.

Communication between the requesting entity and the introspection endpoint at the AS be

integrity protected and encrypted. The communication security protocol also provide a

binding between requests and responses. Furthermore, the two interacting parties

perform mutual authentication. Finally, the AS verify that the requesting entity has the

right to access introspection information about the provided token. Profiles of this framework

that support introspection specify how authentication and communication security

between the requesting entity and the AS is implemented.

The default name of this endpoint in a url-path be '/introspect'. However,

implementations are not required to use this name and can define their own instead.

[RFC7662] MAY

MAY

[RFC7662]

MUST

MUST

MUST

SHOULD

MUST

SHOULD

5.9.1. Introspection Request

The requesting entity sends a POST request to the introspection endpoint at the AS. The profile

 specify how the communication is protected. If CoAP is used, the payload be encoded

as a CBOR map with a token entry containing the access token. Further optional parameters

representing additional context that is known by the requesting entity to aid the AS in its

response be included.

For CoAP-based interaction, all messages use the content type "application/ace+cbor". For

HTTP, the encoding defined in is used.

The same parameters are required and optional as in .

For example, Figure 8 shows an RS calling the token introspection endpoint at the AS to query

about an OAuth 2.0 proof-of-possession token. Note that object security based on OSCORE

 is assumed in this example; therefore, the Content-Format is "application/oscore".

Figure 9 shows the decoded payload.

MUST MUST

MAY

MUST

Section 2.1 of [RFC7662]

Section 2.1 of [RFC7662]

[RFC8613]

Figure 8: Example Introspection Request

Header: POST (Code=0.02)

Uri-Host: "as.example.com"

Uri-Path: "introspect"

OSCORE: 0x09, 0x05, 0x25

Content-Format: application/oscore

Payload:

... COSE content ...

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 28

https://www.rfc-editor.org/rfc/rfc7662#section-2.1
https://www.rfc-editor.org/rfc/rfc7662#section-2.1

Figure 9: Decoded Payload

{

 / token / 11 : b64'7gj0dXJQ43U',

 / token_type_hint / 33 : 2 / PoP /

}

5.9.2. Introspection Response

If the introspection request is authorized and successfully processed, the AS sends a response

with the response code equivalent to the CoAP code 2.01 (Created). If the introspection request

was invalid, not authorized, or couldn't be processed, the AS returns an error response, as

described in Section 5.9.3.

In a successful response, the AS encodes the response parameters in a map. If CoAP is used, this

 be encoded as a CBOR map; if HTTP is used, the JSON encoding specified in

 is used. The map containing the response payload includes the same required and

optional parameters as in , with the following additions:

ace_profile

This parameter is . This indicates the profile that the RS use with the client.

See Section 5.8.4.3 for more details on the formatting of this parameter. If this parameter is

absent, the AS assumes that the RS implicitly knows which profile to use towards the client.

cnonce

This parameter is . This is a client-nonce provided to the AS by the client. The RS

 verify that this corresponds to the client-nonce previously provided to the client in the

AS Request Creation Hints. See Sections 5.3 and 5.8.4.4. Its value is a byte string when encoded

in CBOR and is the base64url encoding of this byte string without padding when encoded in

JSON .

cti

This parameter is . This is the cti claim associated to this access token. This

parameter has the same meaning and processing rules as the jti parameter defined in

 except that its value is a byte string when encoded in CBOR and is

the base64url encoding of this byte string without padding when encoded in JSON .

exi

This parameter is . This is the expires_in claim associated to this access token. See

Section 5.10.3.

Furthermore, defines more parameters that the AS be able to use when

responding to a request to the introspection endpoint.

For example, Figure 10 shows an AS response to the introspection request in Figure 8. Note that

this example contains the cnf parameter defined in .

MUST Section 2.2 of

[RFC7662]

Section 2.2 of [RFC7662]

OPTIONAL MUST

OPTIONAL

MUST

[RFC4648]

OPTIONAL

Section 3.1.2 of [RFC7662]

[RFC4648]

OPTIONAL

[RFC9201] MUST

[RFC9201]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 29

https://www.rfc-editor.org/rfc/rfc7662#section-2.2
https://www.rfc-editor.org/rfc/rfc7662#section-2.2
https://www.rfc-editor.org/rfc/rfc7662#section-3.1.2

Figure 10: Example Introspection Response

Header: Created (Code=2.01)

Content-Format: application/ace+cbor

Payload:

{

 / active / 10 : true,

 / scope / 9 : "read",

 / ace_profile / 38 : 1 / coap_dtls /,

 / cnf / 8 : {

 / COSE_Key / 1 : {

 / kty / 1 : 4 / Symmetric /,

 / kid / 2 : b64'39Gqlw',

 / k / -1 : b64'hJtXhkV8FJG+Onbc6mxC'

 }

 }

}

5.9.3. Error Response

The error responses for CoAP-based interactions with the AS are equivalent to the ones for HTTP-

based interactions, as defined in , with the following differences:

If content is sent and CoAP is used, the payload be encoded as a CBOR map and the

Content-Format "application/ace+cbor" be used. For HTTP, the encoding defined in

 is used.

If the credentials used by the requesting entity (usually the RS) are invalid, the AS

respond with the response code equivalent to the CoAP code 4.01 (Unauthorized) and use the

required and optional parameters from .

If the requesting entity does not have the right to perform this introspection request, the AS

 respond with a response code equivalent to the CoAP code 4.03 (Forbidden). In this

case, no payload is returned.

The parameters error, error_description, and error_uri be abbreviated using the

codes specified in Table 5.

The error codes be abbreviated using the codes specified in the registry defined by

Section 8.4.

Note that a properly formed and authorized query for an inactive or otherwise invalid token

does not warrant an error response by this specification. In these cases, the authorization server

 instead respond with an introspection response with the active field set to "false".

Section 2.3 of [RFC7662]

• MUST

MUST

Section 2.3 of [RFC6749]

• MUST

Section 2.3 of [RFC7662]

•

MUST

• MUST

• MUST

MUST

5.9.4. Mapping Introspection Parameters to CBOR

If CBOR is used, the introspection request and response parameters be mapped to CBOR

types, as specified in the registry defined by Section 8.12, using the given integer abbreviation for

the map key.

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 30

https://www.rfc-editor.org/rfc/rfc7662#section-2.3
https://www.rfc-editor.org/rfc/rfc6749#section-2.3
https://www.rfc-editor.org/rfc/rfc7662#section-2.3

Note that we have aligned abbreviations that correspond to a claim with the abbreviations

defined in and the abbreviations of parameters with the same name from Section

5.8.5.

[RFC8392]

Parameter name CBOR

Key

Value Type Original

Specification

iss 1 text string

sub 2 text string

aud 3 text string

exp 4 integer or floating-point

number

nbf 5 integer or floating-point

number

iat 6 integer or floating-point

number

cti 7 byte string RFC 9200

scope 9 text or byte string

active 10 True or False

token 11 byte string

client_id 24 text string

error 30 integer

error_description 31 text string

error_uri 32 text string

token_type_hint 33 text string

token_type 34 integer

username 35 text string

ace_profile 38 integer RFC 9200

cnonce 39 byte string RFC 9200

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

[RFC7662]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 31

Parameter name CBOR

Key

Value Type Original

Specification

exi 40 unsigned integer RFC 9200

Table 6: CBOR Mappings for Token Introspection Parameters

5.10. The Access Token

In this framework, the use of CBOR Web Token (CWT) as specified in is

.

In order to facilitate offline processing of access tokens, this document uses the cnf claim from

 and the scope claim from for JWT- and CWT-encoded tokens. In addition to

string encoding specified for the scope claim, a binary encoding be used. The syntax of such

an encoding is explicitly not specified here and left to profiles or applications, specifically note

that a binary encoded scope does not necessarily use the space character '0x20' to delimit scope-

tokens.

If the AS needs to convey a hint to the RS about which profile it should use to communicate with

the client, the AS include an ace_profile claim in the access token, with the same syntax

and semantics as defined in Section 5.8.4.3.

If the client submitted a cnonce parameter in the access token request (Section 5.8.4.4), the AS

 include the value of this parameter in the cnonce claim specified here. The cnonce claim

uses binary encoding.

[RFC8392]

RECOMMENDED

[RFC8747] [RFC8693]

MAY

MAY

MUST

5.10.1. The Authorization Information Endpoint

The access token, containing authorization information and information about the proof-of-

possession method used by the client, needs to be transported to the RS so that the RS can

authenticate and authorize the client request.

This section defines a method for transporting the access token to the RS using a RESTful

protocol, such as CoAP. Profiles of this framework define other methods for token transport.

The method consists of an authz-info endpoint, implemented by the RS. A client using this

method make a POST request to the authz-info endpoint at the RS with the access token in

the payload. The CoAP Content-Format or HTTP media type reflect the format of the token,

e.g., "application/cwt", for CBOR Web Tokens; if no Content-Format or media type is defined for

the token format, "application/octet-stream" be used.

The RS receiving the token verify the validity of the token. If the token is valid, the RS

respond to the POST request with a response code equivalent to CoAP code 2.01 (Created). Section

5.10.1.1 outlines how an RS proceed to verify the validity of an access token.

The RS be prepared to store at least one access token for future use. This is a difference as

to how access tokens are handled in OAuth 2.0, where the access token is typically sent along

with each request and therefore not stored at the RS.

MAY

MUST

MUST

MUST

MUST MUST

MUST

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 32

When using this framework, it is that an RS stores only one token per proof-of-

possession key. This means that an additional token linked to the same key will supersede any

existing token at the RS by replacing the corresponding authorization information. The reason is

that this greatly simplifies (constrained) implementations, with respect to required storage and

resolving a request to the applicable token. The use of multiple access tokens for a single client

increases the strain on the resource server, as it must consider every access token and calculate

the actual permissions of the client. Also, tokens may contradict each other, which may lead the

server to enforce wrong permissions. If one of the access tokens expires earlier than others, the

resulting permissions may offer insufficient protection.

If the payload sent to the authz-info endpoint does not parse to a token, the RS respond

with a response code equivalent to the CoAP code 4.00 (Bad Request).

The RS make an introspection request to validate the token before responding to the POST

request to the authz-info endpoint, e.g., if the token is an opaque reference. Some transport

protocols may provide a way to indicate that the RS is busy and the client should retry after an

interval; this type of status update would be appropriate while the RS is waiting for an

introspection response.

Profiles specify whether the authz-info endpoint is protected, including whether error

responses from this endpoint are protected. Note that since the token contains information that

allows the client and the RS to establish a security context in the first place, mutual

authentication may not be possible at this point.

The default name of this endpoint in a url-path is '/authz-info'; however, implementations are not

required to use this name and can define their own instead.

RECOMMENDED

MUST

MAY

MUST

5.10.1.1. Verifying an Access Token

When an RS receives an access token, it verify it before storing it. The details of token

verification depends on various aspects, including the token encoding, the type of token, the

security protection applied to the token, and the claims. The token encoding matters since the

security protection differs between the token encodings. For example, a CWT token uses COSE,

while a JWT token uses JSON Object Signing and Encryption (JOSE). The type of token also has an

influence on the verification procedure since tokens may be self-contained, whereby token

verification may happen locally at the RS, while a reference token requires further interaction

with the authorization server, for example, using token introspection, to obtain the claims

associated with the token reference. Self-contained tokens at least be integrity protected,

but they also be encrypted.

For self-contained tokens, the RS process the security protection of the token first, as

specified by the respective token format. For CWT, the description can be found in ; for

JWT, the relevant specification is . This include a verification that security

protection (and thus the token) was generated by an AS that has the right to issue access tokens

for this RS.

MUST

MUST

MAY

MUST

[RFC8392]

[RFC7519] MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 33

In case the token is communicated by reference, the RS needs to obtain the claims first. When the

RS uses token introspection, the relevant specification is with CoAP transport specified

in Section 5.9.

Errors may happen during this initial processing stage:

If the verification of the security wrapper fails, or the token was issued by an AS that does

not have the right to issue tokens for the receiving RS, the RS discard the token and, if

this was an interaction with authz-info, return an error message with a response code

equivalent to the CoAP code 4.01 (Unauthorized).

If the claims cannot be obtained, the RS discard the token and, in case of an interaction

via the authz-info endpoint, return an error message with a response code equivalent to the

CoAP code 4.00 (Bad Request).

Next, the RS verify claims, if present, contained in the access token. Errors are returned

when claim checks fail, in the order of priority of this list:

iss

The iss claim (if present) must identify the AS that has produced the security protection for

the access token. If that is not the case, the RS discard the token. If this was an

interaction with authz-info, the RS also respond with a response code equivalent to the

CoAP code 4.01 (Unauthorized).

exp

The expiration date must be in the future. If that is not the case, the RS discard the

token. If this was an interaction with authz-info, the RS also respond with a response

code equivalent to the CoAP code 4.01 (Unauthorized). Note that the RS has to terminate

access rights to the protected resources at the time when the tokens expire.

aud

The aud claim must refer to an audience that the RS identifies with. If that is not the case, the

RS discard the token. If this was an interaction with authz-info, the RS also

respond with a response code equivalent to the CoAP code 4.03 (Forbidden).

scope

The RS must recognize value of the scope claim. If that is not the case, the RS discard

the token. If this was an interaction with authz-info, the RS also respond with a

response code equivalent to the CoAP code 4.00 (Bad Request). The RS provide additional

information in the error response to clarify what went wrong.

Additional processing may be needed for other claims in a way specific to a profile or the

underlying application.

Note that the sub (Subject) claim cannot always be verified when the token is submitted to the RS

since the client may not have authenticated yet. Also note that a counter for the exi (expires in)

claim be initialized when the RS first verifies this token.

[RFC7662]

•

MUST

• MUST

MUST

MUST

MUST

MUST

MUST

MUST MUST

MUST

MUST

MAY

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 34

Also note that profiles of this framework may define access token transport mechanisms that do

not allow for error responses. Therefore, the error messages specified here only apply if the

token was sent to the authz-info endpoint.

When sending error responses, the RS use the error codes from to

provide additional details to the client.

MAY Section 3.1 of [RFC6750]

5.10.1.2. Protecting the Authorization Information Endpoint

As this framework can be used in RESTful environments, it is important to make sure that

attackers cannot perform unauthorized requests on the authz-info endpoints, other than

submitting access tokens.

Specifically, it be possible to perform GET, DELETE, or PUT on the authz-info

endpoint.

The RS implement rate-limiting measures to mitigate attacks aiming to overload the

processing capacity of the RS by repeatedly submitting tokens. For CoAP-based communication,

the RS could use the mechanisms from to indicate that it is overloaded.

SHOULD NOT

SHOULD

[RFC8516]

5.10.2. Client Requests to the RS

Before sending a request to an RS, the client verify that the keys used to protect this

communication are still valid. See Section 5.10.4 for details on how the client determines the

validity of the keys used.

If an RS receives a request from a client and the target resource requires authorization, the RS

 first verify that it has an access token that authorizes this request and that the client has

performed the proof-of-possession binding for that token to the request.

The response code be 4.01 (Unauthorized) in case the client has not performed the proof of

possession or if the RS has no valid access token for the client. If the RS has an access token for

the client but the token does not authorize access for the resource that was requested, the RS

 reject the request with a 4.03 (Forbidden). If the RS has an access token for the client but it

does not cover the action that was requested on the resource, the RS reject the request with

a 4.05 (Method Not Allowed).

Note: The use of the response codes 4.03 and 4.05 is intended to prevent infinite loops where a

client optimistically tries to access a requested resource with any access token received from AS.

As malicious clients could pretend to be the C to determine the C's privileges, these detailed

response codes must be used only when a certain level of security is already available, which can

be achieved only when the client is authenticated.

Note: The RS use introspection for timely validation of an access token at the time when a

request is presented.

Note: Matching the claims of the access token (e.g., scope) to a specific request is application

specific.

MUST

MUST

MUST

MUST

MUST

MAY

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 35

https://www.rfc-editor.org/rfc/rfc6750#section-3.1

If the request matches a valid token and the client has performed the proof of possession for that

token, the RS continues to process the request as specified by the underlying application.

5.10.3. Token Expiration

Depending on the capabilities of the RS, there are various ways in which it can verify the

expiration of a received access token. The following is a list of the possibilities including what

functionality they require of the RS.

The token is a CWT and includes an exp claim and possibly the nbf claim. The RS verifies

these by comparing them to values from its internal clock, as defined in . In this

case, the RS's internal clock must reflect the current date and time or at least be

synchronized with the AS's clock. How this clock synchronization would be performed is out

of scope for this specification.

The RS verifies the validity of the token by performing an introspection request, as specified

in Section 5.9. This requires the RS to have a reliable network connection to the AS and to be

able to handle two secure sessions in parallel (C to RS and RS to AS).

In order to support token expiration for devices that have no reliable way of synchronizing

their internal clocks, this specification defines the following approach: The claim exi

(expires in) can be used to provide the RS with the lifetime of the token in seconds from the

time the RS first receives the token. This mechanism only works for self-contained tokens,

i.e., CWTs and JWTs. For CWTs, this parameter is encoded as an unsigned integer, while JWTs

encode this as JSON number.

Processing this claim requires that the RS does the following:

For each token the RS receives that contains an exi claim, keep track of the time it

received that token and revisit that list regularly to expunge expired tokens.

Keep track of the identifiers of tokens containing the exi claim that have expired (in order

to avoid accepting them again). In order to avoid an unbounded memory usage growth,

this be implemented in the following way when the exi claim is used:

When creating the token, the AS add a cti claim (or jti for JWTs) to the access

token. The value of this claim be created as the binary representation of the

concatenation of the identifier of the RS with a sequence number counting the tokens

containing an exi claim, issued by this AS for the RS.

The RS store the highest sequence number of an expired token containing the exi

claim that it has seen and treat tokens with lower sequence numbers as expired. Note

that this could lead to discarding valid tokens with lower sequence numbers if the AS

where to issue tokens of different validity time for the same RS. The assumption is that

typically tokens in such a scenario would all have the same validity time.

If a token that authorizes a long-running request, such as a CoAP Observe , expires, the

RS send an error response with the response code equivalent to the CoAP code 4.01

(Unauthorized) to the client and then terminate processing the long-running request.

•

[RFC7519]

•

•

•

◦

◦

MUST

▪ MUST

MUST

▪ MUST

[RFC7641]

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 36

5.10.4. Key Expiration

The AS provides the client with key material that the RS uses. This can either be a common

symmetric PoP key or an asymmetric key used by the RS to authenticate towards the client. Since

there is currently no expiration metadata associated to those keys, the client has no way of

knowing if these keys are still valid. This may lead to situations where the client sends requests

containing sensitive information to the RS using a key that is expired and possibly in the hands

of an attacker or where the client accepts responses from the RS that are not properly protected

and could possibly have been forged by an attacker.

In order to prevent this, the client must assume that those keys are only valid as long as the

related access token is. Since the access token is opaque to the client, one of the following

methods be used to inform the client about the validity of an access token:

The client knows a default validity time for all tokens it is using (i.e., how long a token is

valid after being issued). This information could be provisioned to the client when it is

registered at the AS or published by the AS in a way that the client can query.

The AS informs the client about the token validity using the expires_in parameter in the

Access Information.

A client that is not able to obtain information about the expiration of a token use this

token.

MUST

•

•

MUST NOT

6. Security Considerations

Security considerations applicable to authentication and authorization in RESTful environments

provided in OAuth 2.0 apply to this work. Furthermore, provides additional

security considerations for OAuth, which apply to IoT deployments as well. If the introspection

endpoint is used, the security considerations from also apply.

The following subsections address issues specific to this document and its use in constrained

environments.

[RFC6749] [RFC6819]

[RFC7662]

6.1. Protecting Tokens

A large range of threats can be mitigated by protecting the contents of the access token by using a

digital signature or a keyed message digest, e.g., a Message Authentication Code (MAC) or an

Authenticated Encryption with Associated Data (AEAD) algorithm. Consequently, the token

integrity protection be applied to prevent the token from being modified, particularly since

it contains a reference to the symmetric key or the asymmetric key used for proof of possession.

If the access token contains the symmetric key, this symmetric key be encrypted by the

authorization server so that only the resource server can decrypt it. Note that using an AEAD

algorithm is preferable over using a MAC unless the token needs to be publicly readable.

MUST

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 37

If the token is intended for multiple recipients (i.e., an audience that is a group), integrity

protection of the token with a symmetric key, shared between the AS and the recipients, is not

sufficient, since any of the recipients could modify the token undetected by the other recipients.

Therefore, a token with a multirecipient audience be protected with an asymmetric

signature.

It is important for the authorization server to include the identity of the intended recipient (the

audience), typically a single resource server (or a list of resource servers), in the token. The same

shared secret be used as a proof-of-possession key with multiple resource servers,

since the benefit from using the proof-of-possession concept is then significantly reduced.

If clients are capable of doing so, they should frequently request fresh access tokens, as this

allows the AS to keep the lifetime of the tokens short. This allows the AS to use shorter proof-of-

possession key sizes, which translate to a performance benefit for the client and for the resource

server. Shorter keys also lead to shorter messages (particularly with asymmetric keying

material).

When authorization servers bind symmetric keys to access tokens, they scope these

access tokens to a specific permission.

In certain situations, it may be necessary to revoke an access token that is still valid. Client-

initiated revocation is specified in for OAuth 2.0. Other revocation mechanisms are

currently not specified, as the underlying assumption in OAuth is that access tokens are issued

with a relatively short lifetime. This may not hold true for disconnected constrained devices

needing access tokens with relatively long lifetimes and would therefore necessitate further

standardization work that is out of scope for this document.

MUST

MUST NOT

SHOULD

[RFC7009]

6.2. Communication Security

Communication with the authorization server use confidentiality protection. This step is

extremely important since the client or the RS may obtain the proof-of-possession key from the

authorization server for use with a specific access token. Not using confidentiality protection

exposes this secret (and the access token) to an eavesdropper, thereby completely negating proof-

of-possession security. The requirements for communication security of profiles are specified in

Section 5.

Additional protection for the access token can be applied by encrypting it, for example,

encryption of CWTs is specified in . Such additional protection can be

necessary if the token is later transferred over an insecure connection (e.g., when it is sent to the

authz-info endpoint).

Care must be taken by developers to prevent leakage of the PoP credentials (i.e., the private key

or the symmetric key). An adversary in possession of the PoP credentials bound to the access

token will be able to impersonate the client. Be aware that this is a real risk with many

constrained environments, since adversaries may get physical access to the devices and can

MUST

Section 7.1 of [RFC8392]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc8392#section-7.1

therefore use physical extraction techniques to gain access to memory contents. This risk can be

mitigated to some extent by making sure that keys are refreshed frequently, by using software

isolation techniques, and by using hardware security.

6.3. Long-Term Credentials

Both the clients and RSs have long-term credentials that are used to secure communications and

authenticate to the AS. These credentials need to be protected against unauthorized access. In

constrained devices deployed in publicly accessible places, such protection can be difficult to

achieve without specialized hardware (e.g., secure key storage memory).

If credentials are lost or compromised, the operator of the affected devices needs to have

procedures to invalidate any access these credentials give and needs to revoke tokens linked to

such credentials. The loss of a credential linked to a specific device lead to a

compromise of other credentials not linked to that device; therefore, secret keys used for

authentication be shared between more than two parties.

Operators of the clients or RSs have procedures in place to replace credentials that are

suspected to have been compromised or that have been lost.

Operators also have procedures for decommissioning devices that include securely

erasing credentials and other security-critical material in the devices being decommissioned.

MUST NOT

MUST NOT

SHOULD

SHOULD

6.4. Unprotected AS Request Creation Hints

Initially, no secure channel exists to protect the communication between the C and RS. Thus, the

C cannot determine if the AS Request Creation Hints contained in an unprotected response from

the RS to an unauthorized request (see Section 5.3) are authentic. Therefore, the C

determine if an AS is authorized to provide access tokens for a certain RS. How this

determination is implemented is out of scope for this document and left to the applications.

MUST

6.5. Minimal Security Requirements for Communication

This section summarizes the minimal requirements for the communication security of the

different protocol interactions.

C-AS

All communication between the client and the authorization server be encrypted and

integrity and replay protected. Furthermore, responses from the AS to the client be

bound to the client's request to avoid attacks where the attacker swaps the intended response

for an older one valid for a previous request. This requires that the client and the

authorization server have previously exchanged either a shared secret or their public keys in

order to negotiate a secure communication. Furthermore, the client be able to

determine whether an AS has the authority to issue access tokens for a certain RS. This can,

for example, be done through preconfigured lists or through an online lookup mechanism

that in turn also must be secured.

MUST

MUST

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 39

RS-AS

The communication between the resource server and the authorization server via the

introspection endpoint be encrypted and integrity and replay protected. Furthermore,

responses from the AS to the RS be bound to the RS's request. This requires that the RS

and the authorization server have previously exchanged either a shared secret or their public

keys in order to negotiate a secure communication. Furthermore, the RS be able to

determine whether an AS has the authority to issue access tokens itself. This is usually

configured out of band but could also be performed through an online lookup mechanism,

provided that it is also secured in the same way.

C-RS

The initial communication between the client and the resource server cannot be secured in

general, since the RS is not in possession of on access token for that client, which would carry

the necessary parameters. If both parties support DTLS without client authentication, it is

 to use this mechanism for protecting the initial communication. After the

client has successfully transmitted the access token to the RS, a secure communication

protocol be established between the client and RS for the actual resource request. This

protocol provide confidentiality, integrity, and replay protection, as well as a binding

between requests and responses. This requires that the client learned either the RS's public

key or received a symmetric proof-of-possession key bound to the access token from the AS.

The RS must have learned either the client's public key, a shared symmetric key from the

claims in the token, or an introspection request. Since ACE does not provide profile

negotiation between the C and RS, the client have learned what profile the RS supports

(e.g., from the AS or preconfigured) and initiated the communication accordingly.

MUST

MUST

MUST

RECOMMENDED

MUST

MUST

MUST

6.6. Token Freshness and Expiration

An RS that is offline faces the problem of clock drift. Since it cannot synchronize its clock with

the AS, it may be tricked into accepting old access tokens that are no longer valid or have been

compromised. In order to prevent this, an RS may use the nonce-based mechanism (cnonce)

defined in Section 5.3 to ensure freshness of an Access Token subsequently presented to this RS.

Another problem with clock drift is that evaluating the standard token expiration claim exp can

give unpredictable results.

Acceptable ranges of clock drift are highly dependent on the concrete application. Important

factors are how long access tokens are valid and how critical timely expiration of the access

token is.

The expiration mechanism implemented by the exi claim, based on the first time the RS sees the

token, was defined to provide a more predictable alternative. The exi approach has some

drawbacks that need to be considered:

A malicious client may hold back tokens with the exi claim in order to prolong their

lifespan.

If an RS loses state (e.g., due to an unscheduled reboot), it may lose the current values of

counters tracking the exi claims of tokens it is storing.

•

•

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 40

The first drawback is inherent to the deployment scenario and the exi solution. It can therefore

not be mitigated without requiring the RS be online at times. The second drawback can be

mitigated by regularly storing the value of exi counters to persistent memory.

6.7. Combining Profiles

There may be use cases where different transport and security protocols are allowed for the

different interactions, and, if that is not explicitly covered by an existing profile, it corresponds to

combining profiles into a new one. For example, a new profile could specify that a previously

defined MQTT-TLS profile is used between the client and the RS in combination with a previously

defined CoAP-DTLS profile for interactions between the client and the AS. The new profile that

combines existing profiles specify how the existing profiles' security requirements remain

satisfied. Therefore, any profile clearly specify its security requirements and

document if its security depends on the combination of various protocol interactions.

MUST

MUST MUST

6.8. Unprotected Information

Communication with the authz-info endpoint, as well as the various error responses defined in

this framework, potentially includes sending information over an unprotected channel. These

messages may leak information to an adversary or may be manipulated by active attackers to

induce incorrect behavior. For example, error responses for requests to the authorization

information endpoint can reveal information about an otherwise opaque access token to an

adversary who has intercepted this token.

As far as error messages are concerned, this framework is written under the assumption that, in

general, the benefits of detailed error messages outweigh the risk due to information leakage. For

particular use cases where this assessment does not apply, detailed error messages can be

replaced by more generic ones.

In some scenarios, it may be possible to protect the communication with the authz-info endpoint

(e.g., through DTLS with only server-side authentication). In cases where this is not possible, it is

 to use encrypted CWTs or tokens that are opaque references and need to be

subjected to introspection by the RS.

If the initial Unauthorized Resource Request message (see Section 5.2) is used, the client

make sure that it is not sending sensitive content in this request. While GET and DELETE

requests only reveal the target URI of the resource, POST and PUT requests would reveal the

whole payload of the intended operation.

Since the client is not authenticated at the point when it is submitting an access token to the

authz-info endpoint, attackers may be pretending to be a client and trying to trick an RS to use an

obsolete profile that in turn specifies a vulnerable security mechanism via the authz-info

endpoint. Such an attack would require a valid access token containing an ace_profile claim

requesting the use of said obsolete profile. Resource owners should update the configuration of

their RSs to prevent them from using such obsolete profiles.

RECOMMENDED

MUST

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 41

6.9. Identifying Audiences

The aud claim, as defined in , and the equivalent audience parameter from

are intentionally vague on how to match the audience value to a specific RS. This is intended to

allow application-specific semantics to be used. This section attempts to give some general

guidance for the use of audiences in constrained environments.

URLs are not a good way of identifying mobile devices that can switch networks and thus be

associated with new URLs. If the audience represents a single RS and asymmetric keys are used,

the RS can be uniquely identified by a hash of its public key. If this approach is used, it is

 to apply the procedure from .

If the audience addresses a group of resource servers, the mapping of a group identifier to an

individual RS has to be provisioned to each RS before the group-audience is usable. Managing

dynamic groups could be an issue if any RS is not always reachable when the groups'

memberships change. Furthermore, issuing access tokens bound to symmetric proof-of-

possession keys that apply to a group-audience is problematic, as an RS that is in possession of

the access token can impersonate the client towards the other RSs that are part of the group. It is

therefore to issue access tokens bound to a group-audience and symmetric

proof-of possession keys.

Even the client must be able to determine the correct values to put into the audience parameter

in order to obtain a token for the intended RS. Errors in this process can lead to the client

inadvertently obtaining a token for the wrong RS. The correct values for audience can either be

provisioned to the client as part of its configuration or dynamically looked up by the client in

some directory. In the latter case, the integrity and correctness of the directory data must be

assured. Note that the audience hint provided by the RS as part of the AS Request Creation Hints

(Section 5.3) is not typically source authenticated and integrity protected and should therefore

not be treated a trusted value.

[RFC7519] [RFC8693]

RECOMMENDED Section 3 of [RFC6920]

NOT RECOMMENDED

6.10. Denial of Service Against or with Introspection

The optional introspection mechanism provided by OAuth and supported in the ACE framework

allows for two types of attacks that need to be considered by implementers.

First, an attacker could perform a denial-of-service attack against the introspection endpoint at

the AS in order to prevent validation of access tokens. To maintain the security of the system, an

RS that is configured to use introspection allow access based on a token for which it

couldn't reach the introspection endpoint.

Second, an attacker could use the fact that an RS performs introspection to perform a denial-of-

service attack against that RS by repeatedly sending tokens to its authz-info endpoint that require

an introspection call. The RS can mitigate such attacks by implementing rate limits on how many

introspection requests they perform in a given time interval for a certain client IP address

MUST NOT

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc6920#section-3

submitting tokens to /authz-info. When that limit has been reached, incoming requests from that

address are rejected for a certain amount of time. A general rate limit on the introspection

requests should also be considered in order to mitigate distributed attacks.

7. Privacy Considerations

Implementers and users should be aware of the privacy implications of the different possible

deployments of this framework.

The AS is in a very central position and can potentially learn sensitive information about the

clients requesting access tokens. If the client credentials grant is used, the AS can track what kind

of access the client intends to perform. With other grants, this can be prevented by the resource

owner. To do so, the resource owner needs to bind the grants it issues to anonymous, ephemeral

credentials that do not allow the AS to link different grants and thus different access token

requests by the same client.

The claims contained in a token can reveal privacy-sensitive information about the client and the

RS to any party having access to them (whether by processing the content of a self-contained

token or by introspection). The AS be configured to minimize the information about

clients and RSs disclosed in the tokens it issues.

If tokens are only integrity protected and not encrypted, they may reveal information to

attackers listening on the wire or be able to acquire the access tokens in some other way. In the

case of CWTs, the token may, e.g., reveal the audience, the scope, and the confirmation method

used by the client. The latter may reveal the identity of the device or application running the

client. This may be linkable to the identity of the person using the client (if there is a person and

not a machine-to-machine interaction).

Clients using asymmetric keys for proof of possession should be aware of the consequences of

using the same key pair for proof of possession towards different RSs. A set of colluding RSs or an

attacker able to obtain the access tokens will be able to link the requests or even to determine the

client's identity.

An unprotected response to an unauthorized request (see Section 5.3) may disclose information

about the RS and/or its existing relationship with the C. It is advisable to include as little

information as possible in an unencrypted response. Even the absolute URI of the AS may reveal

sensitive information about the service that the RS provides. Developers must ensure that the RS

does not disclose information that has an impact on the privacy of the stakeholders in the AS

Request Creation Hints. They may choose to use a different mechanism for the discovery of the

AS if necessary. If means of encrypting communication between the C and RS already exist, more

detailed information may be included with an error response to provide the C with sufficient

information to react on that particular error.

SHOULD

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 43

8. IANA Considerations

This document creates several registries with a registration policy of Expert Review; guidelines

to the experts are given in Section 8.17.

Name:

CBOR Key:

Value Type:

Reference:

8.1. ACE Authorization Server Request Creation Hints

This specification establishes the IANA "ACE Authorization Server Request Creation Hints"

registry.

The columns of the registry are:

The name of the parameter.

CBOR map key for the parameter. Different ranges of values use different

registration policies . Integer values from -256 to 255 are designated as Standards

Action. Integer values from -65536 to -257 and from 256 to 65535 are designated as

Specification Required. Integer values greater than 65535 are designated as Expert Review.

Integer values less than -65536 are marked as Private Use.

The CBOR data types allowable for the values of this parameter.

This contains a pointer to the public specification of the Request Creation Hint

abbreviation, if one exists.

This registry has been initially populated by the values in Table 1. The Reference column for all

of these entries is this document.

[RFC8126]

Value:

Description:

Reference:

8.2. CoRE Resource Types

IANA has registered a new Resource Type (rt=) Link Target Attribute in the "Resource Type (rt=)

Link Target Attribute Values" subregistry under the "Constrained RESTful Environments (CoRE)

Parameters" registry:

ace.ai

ACE-OAuth authz-info endpoint resource.

RFC 9200

Specific ACE-OAuth profiles can use this common resource type for defining their profile-specific

discovery processes.

[IANA.CoreParameters]

8.3. OAuth Extensions Errors

This specification registers the following error values in the "OAuth Extensions Error Registry"

.[IANA.OAuthExtensionsErrorRegistry]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 44

Name:

Usage Location:

Protocol Extension:

Change Controller:

Reference:

Name:

Usage Location:

Protocol Extension:

Change Controller:

Reference:

unsupported_pop_key

token error response

RFC 9200

IETF

Section 5.8.3 of RFC 9200

incompatible_ace_profiles

token error response

RFC 9200

IETF

Section 5.8.3 of RFC 9200

Name:

CBOR Value:

Reference:

Original Specification:

8.4. OAuth Error Code CBOR Mappings

This specification establishes the IANA "OAuth Error Code CBOR Mappings" registry.

The columns of the registry are:

The OAuth Error Code name, refers to the name in , e.g.,

"invalid_request".

CBOR abbreviation for this error code. Integer values less than -65536 are marked

as Private Use; all other values use the registration policy Expert Review .

This contains a pointer to the public specification of the error code abbreviation, if

one exists.

This contains a pointer to the public specification of the error code, if

one exists.

This registry has been initially populated by the values in Table 3. The Reference column for all

of these entries is this document.

Section 5.2 of [RFC6749]

[RFC8126]

Name:

CBOR Value:

Reference:

8.5. OAuth Grant Type CBOR Mappings

This specification establishes the IANA "OAuth Grant Type CBOR Mappings" registry.

The columns of this registry are:

The name of the grant type, as specified in .

CBOR abbreviation for this grant type. Integer values less than -65536 are marked

as Private Use; all other values use the registration policy Expert Review .

This contains a pointer to the public specification of the grant type abbreviation, if

one exists.

Section 1.3 of [RFC6749]

[RFC8126]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 45

https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-1.3

Original Specification: This contains a pointer to the public specification of the grant type, if one

exists.

This registry has been initially populated by the values in Table 4. The Reference column for all

of these entries is this document.

Name:

Additional Token Endpoint Response Parameters:

HTTP Authentication Scheme(s):

Change Controller:

Reference:

8.6. OAuth Access Token Types

This section registers the following new token type in the "OAuth Access Token Types" registry

.

PoP

cnf, rs_cnf (see and

).

N/A

IETF

RFC 9200

[IANA.OAuthAccessTokenTypes]

Section 3.1 of [RFC8747]

Section 3.2 of [RFC9201]

Name:

CBOR Value:

Reference:

Original Specification:

8.7. OAuth Access Token Type CBOR Mappings

This specification establishes the IANA "OAuth Access Token Type CBOR Mappings" registry.

The columns of this registry are:

The name of the token type, as registered in the "OAuth Access Token Types" registry,

e.g., "Bearer".

CBOR abbreviation for this token type. Integer values less than -65536 are marked

as Private Use; all other values use the registration policy Expert Review .

This contains a pointer to the public specification of the OAuth token type

abbreviation, if one exists.

This contains a pointer to the public specification of the OAuth token

type, if one exists.

[RFC8126]

Name:

CBOR Value:

Reference:

Original Specification:

Name:

CBOR Value:

Reference:

Original Specification:

8.7.1. Initial Registry Contents

Bearer

1

RFC 9200

PoP

2

RFC 9200

RFC 9200

[RFC6749]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 46

https://www.rfc-editor.org/rfc/rfc8747#section-3.1
https://www.rfc-editor.org/rfc/rfc9201#section-3.2

Name:

Description:

CBOR Value:

Reference:

8.8. ACE Profiles

This specification establishes the IANA "ACE Profile" registry.

The columns of this registry are:

The name of the profile to be used as the value of the profile attribute.

Text giving an overview of the profile and the context it is developed for.

CBOR abbreviation for this profile name. Different ranges of values use different

registration policies . Integer values from -256 to 255 are designated as Standards

Action. Integer values from -65536 to -257 and from 256 to 65535 are designated as

Specification Required. Integer values greater than 65535 are designated as Expert Review.

Integer values less than -65536 are marked as Private Use.

This contains a pointer to the public specification of the profile abbreviation, if one

exists.

[RFC8126]

Name:

Parameter Usage Location:

Change Controller:

Reference:

8.9. OAuth Parameters

This specification registers the following parameter in the "OAuth Parameters" registry

:

ace_profile

token response

IETF

Sections 5.8.2 and 5.8.4.3 of RFC 9200

[IANA.OAuthParameters]

Name:

CBOR Key:

Value Type:

Reference:

8.10. OAuth Parameters CBOR Mappings

This specification establishes the IANA "OAuth Parameters CBOR Mappings" registry.

The columns of this registry are:

The OAuth Parameter name, refers to the name in the OAuth parameter registry, e.g.,

client_id.

CBOR map key for this parameter. Integer values less than -65536 are marked as

Private Use; all other values use the registration policy Expert Review .

The allowable CBOR data types for values of this parameter.

This contains a pointer to the public specification of the OAuth parameter

abbreviation, if one exists.

[RFC8126]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 47

Original Specification This contains a pointer to the public specification of the OAuth

parameter, if one exists.

This registry has been initially populated by the values in Table 5. The Reference column for all

of these entries is this document.

Name:

Description:

Change Controller:

Reference:

Name:

Description:

Change Controller:

Reference:

Name

Description

Change Controller

Reference

Name:

Description:

Change Controller:

Reference:

8.11. OAuth Introspection Response Parameters

This specification registers the following parameters in the "OAuth Token Introspection

Response" registry .

ace_profile

The ACE profile used between the client and RS.

IETF

Section 5.9.2 of RFC 9200

cnonce

"client-nonce". A nonce previously provided to the AS by the RS via the client. Used

to verify token freshness when the RS cannot synchronize its clock with the AS.

IETF

Section 5.9.2 of RFC 9200

cti

"CWT ID". The identifier of a CWT as defined in .

IETF

Section 5.9.2 of RFC 9200

exi

"Expires in". Lifetime of the token in seconds from the time the RS first sees it. Used

to implement a weaker form of token expiration for devices that cannot synchronize their

internal clocks.

IETF

Section 5.9.2 of RFC 9200

[IANA.TokenIntrospectionResponse]

[RFC8392]

Name:

8.12. OAuth Token Introspection Response CBOR Mappings

This specification establishes the IANA "OAuth Token Introspection Response CBOR Mappings"

registry.

The columns of this registry are:

The OAuth Parameter name, refers to the name in the OAuth parameter registry, e.g.,

client_id.

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 48

CBOR Key:

Value Type:

Reference:

Original Specification

CBOR map key for this parameter. Integer values less than -65536 are marked as

Private Use; all other values use the registration policy Expert Review .

The allowable CBOR data types for values of this parameter.

This contains a pointer to the public specification of the introspection response

parameter abbreviation, if one exists.

This contains a pointer to the public specification of the OAuth Token

Introspection parameter, if one exists.

This registry has been initially populated by the values in Table 6. The Reference column for all

of these entries is this document.

Note that the mappings of parameters corresponding to claim names intentionally coincide with

the CWT claim name mappings from .

[RFC8126]

[RFC8392]

Claim Name:

Claim Description:

Change Controller:

Reference:

Claim Name:

Claim Description:

Change Controller:

Reference:

Claim Name:

Claim Description:

Change Controller:

Reference:

8.13. JSON Web Token Claims

This specification registers the following new claims in the "JSON Web Token Claims" subregistry

under the "JSON Web Token (JWT)" registry :

ace_profile

The ACE profile a token is supposed to be used with.

IETF

Section 5.10 of RFC 9200

cnonce

"client-nonce". A nonce previously provided to the AS by the RS via the

client. Used to verify token freshness when the RS cannot synchronize its clock with the AS.

IETF

Section 5.10 of RFC 9200

exi

"Expires in". Lifetime of the token in seconds from the time the RS first sees

it. Used to implement a weaker form of token expiration for devices that cannot synchronize

their internal clocks.

IETF

Section 5.10.3 of RFC 9200

[IANA.JsonWebTokenClaims]

Claim Name:

8.14. CBOR Web Token Claims

This specification registers the following new claims in the "CBOR Web Token (CWT) Claims"

registry .

ace_profile

[IANA.CborWebTokenClaims]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 49

Claim Description:

JWT Claim Name:

Claim Key:

Claim Value Type:

Change Controller:

Reference:

Claim Name:

Claim Description:

JWT Claim Name:

Claim Key:

Claim Value Type:

Change Controller:

Reference:

Claim Name:

Claim Description:

JWT Claim Name:

Claim Key:

Claim Value Type:

Change Controller:

Reference:

Claim Name:

Claim Description:

JWT Claim Name:

Claim Key:

Claim Value Type:

Change Controller:

Reference:

The ACE profile a token is supposed to be used with.

ace_profile

38

integer

IETF

Section 5.10 of RFC 9200

cnonce

The client-nonce sent to the AS by the RS via the client.

cnonce

39

byte string

IETF

Section 5.10 of RFC 9200

exi

The expiration time of a token measured from when it was received at the

RS in seconds.

exi

40

unsigned integer

IETF

Section 5.10.3 of RFC 9200

scope

The scope of an access token, as defined in .

scope

9

byte string or text string

IETF

[RFC6749]

Section 4.2 of [RFC8693]

Type name:

Subtype name:

Required parameters:

Optional parameters:

8.15. Media Type Registration

This specification registers the "application/ace+cbor" media type for messages of the protocols

defined in this document carrying parameters encoded in CBOR. This registration follows the

procedures specified in .

application

ace+cbor

N/A

N/A

[RFC6838]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 50

https://www.rfc-editor.org/rfc/rfc8693#section-4.2

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Must be encoded as a CBOR map containing the protocol parameters

defined in RFC 9200.

See Section 6 of RFC 9200

N/A

RFC 9200

The type is used by authorization servers, clients, and

resource servers that support the ACE framework with CBOR encoding, as specified in RFC

9200.

N/A

N/A

IESG <iesg@ietf.org>

COMMON

none

Ludwig Seitz <ludwig.seitz@combitech.se>

IETF

Media Type:

Encoding:

ID:

Reference:

8.16. CoAP Content-Formats

The following entry has been registered in the "CoAP Content-Formats" registry:

application/ace+cbor

-

19

RFC 9200

8.17. Expert Review Instructions

All of the IANA registries established in this document are defined to use a registration policy of

Expert Review. This section gives some general guidelines for what the experts should be looking

for, but they are being designated as experts for a reason, so they should be given substantial

latitude.

Expert Reviewers should take into consideration the following points:

Point squatting should be discouraged. Reviewers are encouraged to get sufficient

information for registration requests to ensure that the usage is not going to duplicate one

that is already registered and that the point is likely to be used in deployments. The zones

tagged as Private Use are intended for testing purposes and closed environments; code

points in other ranges should not be assigned for testing.

•

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 51

[IANA.CborWebTokenClaims]

[IANA.CoreParameters]

[IANA.JsonWebTokenClaims]

[IANA.OAuthAccessTokenTypes]

[IANA.OAuthExtensionsErrorRegistry]

[IANA.OAuthParameters]

[IANA.TokenIntrospectionResponse]

[RFC2119]

[RFC3986]

9. References

9.1. Normative References

, ,

.

, ,

.

, ,

.

, ,

.

, ,

.

, ,

.

, ,

.

, , ,

, , March 1997,

.

, , and ,

, , , , January 2005,

.

Specifications are needed for the first-come, first-serve range if they are expected to be used

outside of closed environments in an interoperable way. When specifications are not

provided, the description provided needs to have sufficient information to identify what the

point is being used for.

Experts should take into account the expected usage of fields when approving point

assignment. The fact that there is a range for Standards Track documents does not mean that

a Standards Track document cannot have points assigned outside of that range. The length of

the encoded value should be weighed against how many code points of that length are left,

i.e., the size of device it will be used on.

Since a high degree of overlap is expected between these registries and the contents of the

OAuth parameters registries, experts should require new

registrations to maintain alignment with parameters from OAuth that have comparable

functionality. Deviation from this alignment should only be allowed if there are functional

differences that are motivated by the use case and that cannot be easily or efficiently

addressed by comparable OAuth parameters.

•

•

•

[IANA.OAuthParameters]

IANA "CBOR Web Token (CWT) Claims" <https://www.iana.org/

assignments/cwt>

IANA "Constrained RESTful Environments (CoRE) Parameters"

<https://www.iana.org/assignments/core-parameters>

IANA "JSON Web Token Claims" <https://www.iana.org/

assignments/jwt>

IANA "OAuth Access Token Types" <https://www.iana.org/

assignments/oauth-parameters>

IANA "OAuth Extensions Error Registry" <https://

www.iana.org/assignments/oauth-parameters>

IANA "OAuth Parameters" <https://www.iana.org/assignments/

oauth-parameters>

IANA "OAuth Token Introspection Response" <https://

www.iana.org/assignments/oauth-parameters>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 52

https://www.iana.org/assignments/cwt
https://www.iana.org/assignments/cwt
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/jwt
https://www.iana.org/assignments/jwt
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986

[RFC4648]

[RFC6347]

[RFC6749]

[RFC6750]

[RFC6838]

[RFC6920]

[RFC7252]

[RFC7519]

[RFC7662]

[RFC8126]

[RFC8152]

[RFC8174]

[RFC8392]

[RFC8610]

, , ,

, October 2006, .

 and , ,

, , January 2012,

.

, , ,

, October 2012, .

 and ,

, , , October 2012,

.

, , and ,

, , , , January 2013,

.

, , , , , and

, , , , April

2013, .

, , and ,

, , , June 2014,

.

, , and , , ,

, May 2015, .

, , , ,

October 2015, .

, , and ,

, , , , June

2017, .

, , ,

, July 2017, .

, ,

, , , May 2017,

.

, , , and ,

, , , May 2018,

.

, , and ,

, ,

, June 2019, .

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI

10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"

RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/

rfc6347>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI

10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token

Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-

editor.org/info/rfc6750>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration

Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://

www.rfc-editor.org/info/rfc6838>

Farrell, S. Kutscher, D. Dannewitz, C. Ohlman, B. Keranen, A. P. Hallam-

Baker "Naming Things with Hashes" RFC 6920 DOI 10.17487/RFC6920

<https://www.rfc-editor.org/info/rfc6920>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol

(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-

editor.org/info/rfc7252>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI

10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Richer, J., Ed. "OAuth 2.0 Token Introspection" RFC 7662 DOI 10.17487/RFC7662

<https://www.rfc-editor.org/info/rfc7662>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Schaad, J. "CBOR Object Signing and Encryption (COSE)" RFC 8152 DOI

10.17487/RFC8152 <https://www.rfc-editor.org/info/rfc8152>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Jones, M. Wahlstroem, E. Erdtman, S. H. Tschofenig "CBOR Web Token

(CWT)" RFC 8392 DOI 10.17487/RFC8392 <https://www.rfc-editor.org/

info/rfc8392>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language

(CDDL): A Notational Convention to Express Concise Binary Object

Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/

RFC8610 <https://www.rfc-editor.org/info/rfc8610>

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 53

https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6920
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8610

[RFC8693]

[RFC8747]

[RFC8949]

[RFC9201]

[BLE]

[DCAF]

[Margi10impact]

[MQTT5.0]

[OAUTH-RPCC]

[POP-KEY-DIST]

[RFC4949]

, , , , and ,

, , , January 2020,

.

, , , , and ,

, ,

, March 2020, .

 and , ,

, , , December 2020,

.

,

, , , August

2022, .

9.2. Informative References

, , , July 2021,

.

, , and ,

, ,

, 19 October 2015,

.

, , , , ,

, , and ,

,

,

, August 2010,

.

, , , and , ,

, March 2019,

.

, , and ,

, ,

, 21 November 2017,

.

, , , , and ,

,

, , 27 March 2019,

.

, , , ,

, August 2007, .

Jones, M. Nadalin, A. Campbell, B., Ed. Bradley, J. C. Mortimore "OAuth 2.0

Token Exchange" RFC 8693 DOI 10.17487/RFC8693 <https://

www.rfc-editor.org/info/rfc8693>

Jones, M. Seitz, L. Selander, G. Erdtman, S. H. Tschofenig "Proof-of-

Possession Key Semantics for CBOR Web Tokens (CWTs)" RFC 8747 DOI

10.17487/RFC8747 <https://www.rfc-editor.org/info/rfc8747>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"

STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-

editor.org/info/rfc8949>

Seitz, L. "Additional OAuth Parameters for Authentication and Authorization in

Constrained Environments (ACE)" RFC 9201 DOI 10.17487/RFC9201

<https://www.rfc-editor.org/info/rfc9201>

Bluetooth Special Interest Group "Core Specification 5.3" Section 4.4

<https://www.bluetooth.com/specifications/bluetooth-core-specification/>

Gerdes, S. Bergmann, O. C. Bormann "Delegated CoAP Authentication and

Authorization Framework (DCAF)" Work in Progress Internet-Draft, draft-

gerdes-ace-dcaf-authorize-04 <https://datatracker.ietf.org/doc/

html/draft-gerdes-ace-dcaf-authorize-04>

Margi, C. de Oliveira, B. de Sousa, G. Simplicio Jr, M. Barreto, P. Carvalho,

T. Naeslund, M. R. Gold "Impact of Operating Systems on Wireless Sensor

Networks (Security) Applications and Testbeds" Proceedings of the 19th

International Conference on Computer Communications and Networks DOI

10.1109/ICCCN.2010.5560028 <https://doi.org/10.1109/ICCCN.

2010.5560028>

Banks, A. Briggs, E. Borgendale, K. R. Gupta "MQTT Version 5.0" OASIS

Standard <https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-

v5.0.html>

Seitz, L. Erdtman, S. M. Tiloca "Raw-Public-Key and Pre-Shared-Key as

OAuth client credentials" Work in Progress Internet-Draft, draft-erdtman-

oauth-rpcc-00 <https://datatracker.ietf.org/doc/html/draft-

erdtman-oauth-rpcc-00>

Bradley, J. Hunt, P. Jones, M. Tschofenig, H. M. Meszaros "OAuth 2.0

Proof-of-Possession: Authorization Server to Client Key Distribution" Work in

Progress Internet-Draft, draft-ietf-oauth-pop-key-distribution-07

<https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-07>

Shirey, R. "Internet Security Glossary, Version 2" FYI 36 RFC 4949 DOI

10.17487/RFC4949 <https://www.rfc-editor.org/info/rfc4949>

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 54

https://www.rfc-editor.org/info/rfc8693
https://www.rfc-editor.org/info/rfc8693
https://www.rfc-editor.org/info/rfc8747
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9201
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://datatracker.ietf.org/doc/html/draft-gerdes-ace-dcaf-authorize-04
https://datatracker.ietf.org/doc/html/draft-gerdes-ace-dcaf-authorize-04
https://doi.org/10.1109/ICCCN.2010.5560028
https://doi.org/10.1109/ICCCN.2010.5560028
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://datatracker.ietf.org/doc/html/draft-erdtman-oauth-rpcc-00
https://datatracker.ietf.org/doc/html/draft-erdtman-oauth-rpcc-00
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-pop-key-distribution-07
https://www.rfc-editor.org/info/rfc4949

[RFC6690]

[RFC6819]

[RFC7009]

[RFC7228]

[RFC7521]

[RFC7591]

[RFC7641]

[RFC7744]

[RFC7959]

[RFC8252]

[RFC8259]

[RFC8414]

[RFC8446]

, , ,

, August 2012, .

, , and ,

, , , January 2013,

.

, , and , ,

, , August 2013,

.

, , and ,

, , , May 2014,

.

, , , and ,

, ,

, May 2015, .

, , , , and ,

, , , July

2015, .

,

, , , September 2015,

.

, , , , and ,

, ,

, January 2016, .

 and ,

, , , August 2016,

.

 and , , , ,

, October 2017, .

, ,

, , , December 2017,

.

, , and ,

, , , June 2018,

.

, , ,

, August 2018, .

Shelby, Z. "Constrained RESTful Environments (CoRE) Link Format" RFC 6690

DOI 10.17487/RFC6690 <https://www.rfc-editor.org/info/rfc6690>

Lodderstedt, T., Ed. McGloin, M. P. Hunt "OAuth 2.0 Threat Model and

Security Considerations" RFC 6819 DOI 10.17487/RFC6819

<https://www.rfc-editor.org/info/rfc6819>

Lodderstedt, T., Ed. Dronia, S. M. Scurtescu "OAuth 2.0 Token Revocation"

RFC 7009 DOI 10.17487/RFC7009 <https://www.rfc-editor.org/info/

rfc7009>

Bormann, C. Ersue, M. A. Keranen "Terminology for Constrained-Node

Networks" RFC 7228 DOI 10.17487/RFC7228 <https://www.rfc-

editor.org/info/rfc7228>

Campbell, B. Mortimore, C. Jones, M. Y. Goland "Assertion Framework for

OAuth 2.0 Client Authentication and Authorization Grants" RFC 7521 DOI

10.17487/RFC7521 <https://www.rfc-editor.org/info/rfc7521>

Richer, J., Ed. Jones, M. Bradley, J. Machulak, M. P. Hunt "OAuth 2.0

Dynamic Client Registration Protocol" RFC 7591 DOI 10.17487/RFC7591

<https://www.rfc-editor.org/info/rfc7591>

Hartke, K. "Observing Resources in the Constrained Application Protocol

(CoAP)" RFC 7641 DOI 10.17487/RFC7641 <https://www.rfc-

editor.org/info/rfc7641>

Seitz, L., Ed. Gerdes, S., Ed. Selander, G. Mani, M. S. Kumar "Use Cases for

Authentication and Authorization in Constrained Environments" RFC 7744 DOI

10.17487/RFC7744 <https://www.rfc-editor.org/info/rfc7744>

Bormann, C. Z. Shelby, Ed. "Block-Wise Transfers in the Constrained

Application Protocol (CoAP)" RFC 7959 DOI 10.17487/RFC7959

<https://www.rfc-editor.org/info/rfc7959>

Denniss, W. J. Bradley "OAuth 2.0 for Native Apps" BCP 212 RFC 8252 DOI

10.17487/RFC8252 <https://www.rfc-editor.org/info/rfc8252>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

Jones, M. Sakimura, N. J. Bradley "OAuth 2.0 Authorization Server

Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-

editor.org/info/rfc8414>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 55

https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7521
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7744
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8252
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8446

[RFC8516]

[RFC8613]

[RFC8628]

[RFC9000]

[RFC9110]

[RFC9113]

[RFC9147]

[RFC9202]

[RFC9203]

,

, , , January 2019,

.

, , , and ,

, ,

, July 2019, .

, , , and ,

, , , August 2019,

.

 and ,

, , , May 2021,

.

, , and , ,

, , , June 2022,

.

 and , , ,

, June 2022, .

, , and ,

, , , April

2022, .

, , , , and ,

, , , August

2022, .

, , , and ,

, ,

, August 2022, .

Keranen, A. ""Too Many Requests" Response Code for the Constrained

Application Protocol" RFC 8516 DOI 10.17487/RFC8516 <https://

www.rfc-editor.org/info/rfc8516>

Selander, G. Mattsson, J. Palombini, F. L. Seitz "Object Security for

Constrained RESTful Environments (OSCORE)" RFC 8613 DOI 10.17487/

RFC8613 <https://www.rfc-editor.org/info/rfc8613>

Denniss, W. Bradley, J. Jones, M. H. Tschofenig "OAuth 2.0 Device

Authorization Grant" RFC 8628 DOI 10.17487/RFC8628 <https://

www.rfc-editor.org/info/rfc8628>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer

Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Gerdes, S. Bergmann, O. Bormann, C. Selander, G. L. Seitz "Datagram

Transport Layer Security (DTLS) Profile for Authentication and Authorization

for Constrained Environments (ACE)" RFC 9202 DOI 10.17487/RFC9202

<https://www.rfc-editor.org/info/rfc9202>

Palombini, F. Seitz, L. Selander, G. M. Gunnarsson "The Object Security for

Constrained RESTful Environments (OSCORE) Profile of the Authentication and

Authorization for Constrained Environments (ACE) Framework" RFC 9203 DOI

10.17487/RFC9203 <https://www.rfc-editor.org/info/rfc9203>

Appendix A. Design Justification

This section provides further insight into the design decisions of the solution documented in this

document. Section 3 lists several building blocks and briefly summarizes their importance. The

justification for offering some of those building blocks, as opposed to using OAuth 2.0 as is, is

given below.

Common IoT constraints are:

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 56

https://www.rfc-editor.org/info/rfc8516
https://www.rfc-editor.org/info/rfc8516
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9202
https://www.rfc-editor.org/info/rfc9203

Low Power Radio:

Many IoT devices are equipped with a small battery that needs to last for a long time. For

many constrained wireless devices, the highest energy cost is associated to transmitting or

receiving messages (roughly by a factor of 10 compared to AES) . It is

therefore important to keep the total communication overhead low, including minimizing the

number and size of messages sent and received, which has an impact of choice on the

message format and protocol. By using CoAP over UDP and CBOR-encoded messages, some of

these aspects are addressed. Security protocols contribute to the communication overhead

and can, in some cases, be optimized. For example, authentication and key establishment

may, in certain cases where security requirements allow, be replaced by the provisioning of

security context by a trusted third party, using transport or application-layer security.

Low CPU Speed:

Some IoT devices are equipped with processors that are significantly slower than those found

in most current devices on the Internet. This typically has implications on what timely

cryptographic operations a device is capable of performing, which in turn impacts, e.g.,

protocol latency. Symmetric key cryptography may be used instead of the computationally

more expensive public key cryptography where the security requirements so allow, but this

may also require support for trusted, third-party-assisted secret key establishment using

transport- or application-layer security.

Small Amount of Memory:

Microcontrollers embedded in IoT devices are often equipped with only a small amount of

RAM and flash memory, which places limitations on what kind of processing can be

performed and how much code can be put on those devices. To reduce code size, fewer and

smaller protocol implementations can be put on the firmware of such a device. In this case,

CoAP may be used instead of HTTP, symmetric-key cryptography may be used instead of

public-key cryptography, and CBOR may be used instead of JSON. An authentication and key

establishment protocol, e.g., the DTLS handshake, in comparison with assisted key

establishment, also has an impact on memory and code footprints.

User Interface Limitations:

Protecting access to resources is both an important security as well as privacy feature. End

users and enterprise customers may not want to give access to the data collected by their IoT

device or to functions it may offer to third parties. Since the classical approach of requesting

permissions from end users via a rich user interface does not work in many IoT deployment

scenarios, these functions need to be delegated to user-controlled devices that are better

suitable for such tasks, such as smartphones and tablets.

Communication Constraints:

In certain constrained settings, an IoT device may not be able to communicate with a given

device at all times. Devices may be sleeping or just disconnected from the Internet because of

general lack of connectivity in the area, cost reasons, or security reasons, e.g., to avoid an

entry point for denial-of-service attacks.

[Margi10impact]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 57

The communication interactions this framework builds upon (as shown graphically in Figure

1) may be accomplished using a variety of different protocols, and not all parts of the message

flow are used in all applications due to the communication constraints. Deployments making

use of CoAP are expected, but this framework is not limited to them. Other protocols, such as

HTTP or Bluetooth Smart communication, that do not necessarily use IP could also be used.

The latter raises the need for application-layer security over the various interfaces.

In the light of these constraints, we have made the following design decisions:

CBOR, COSE, CWT:

When using this framework, it is to use CBOR as the data format.

Where CBOR data needs to be protected, the use of COSE is .

Furthermore, where self-contained tokens are needed, it is to use CWT

. These measures aim at reducing the size of messages sent over the wire, the RAM

size of data objects that need to be kept in memory, and the size of libraries that devices need

to support.

CoAP:

When using this framework, it is to use CoAP instead of HTTP. This

does not preclude the use of other protocols specifically aimed at constrained devices, e.g.,

Bluetooth Low Energy (see Section 3.2). This aims again at reducing the size of messages sent

over the wire, the RAM size of data objects that need to be kept in memory, and the size of

libraries that devices need to support.

Access Information:

This framework defines the name "Access Information" for data concerning the RS that the AS

returns to the client in an access token response (see Section 5.8.2). This aims at enabling

scenarios where a powerful client supporting multiple profiles needs to interact with an RS

for which it does not know the supported profiles and the raw public key.

Proof of Possession:

This framework makes use of proof-of-possession tokens, using the cnf claim . A

request parameter cnf and a Response parameter cnf, both having a value space

semantically and syntactically identical to the cnf claim, are defined for the token endpoint to

allow requesting and stating confirmation keys. This aims at making token theft harder.

Token theft is specifically relevant in constrained use cases, as communication often passes

through middleboxes, which could be able to steal bearer tokens and use them to gain

unauthorized access.

Authz-Info endpoint:

This framework introduces a new way of providing access tokens to an RS by exposing an

authz-info endpoint to which access tokens can be POSTed. This aims at reducing the size of

the request message and the code complexity at the RS. The size of the request message is

problematic, since many constrained protocols have severe message size limitations at the

physical layer (e.g., in the order of 100 bytes). This means that larger packets get fragmented,

RECOMMENDED [RFC8949]

[RFC8152] RECOMMENDED

RECOMMENDED

[RFC8392]

RECOMMENDED [RFC7252]

[RFC8747]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 58

which in turn combines badly with the high rate of packet loss and the need to retransmit the

whole message if one packet gets lost. Thus, separating sending of the request and sending of

the access tokens helps to reduce fragmentation.

Client Credentials Grant:

In this framework, the use of the client credentials grant is for machine-to-

machine communication use cases, where manual intervention of the resource owner to

produce a grant token is not feasible. The intention is that the resource owner would instead

prearrange authorization with the AS based on the client's own credentials. The client can

then (without manual intervention) obtain access tokens from the AS.

Introspection:

In this framework, the use of access token introspection is in cases where the

client is constrained in a way that it cannot easily obtain new access tokens (i.e., it has

connectivity issues that prevent it from communicating with the AS). In that case, it is

 to use a long-term token that could be a simple reference. The RS is assumed

to be able to communicate with the AS and can therefore perform introspection in order to

learn the claims associated with the token reference. The advantage of such an approach is

that the resource owner can change the claims associated to the token reference without

having to be in contact with the client, thus granting or revoking access rights.

RECOMMENDED

RECOMMENDED

RECOMMENDED

Appendix B. Roles and Responsibilities

Resource Owner

Make sure that the RS is registered at the AS. This includes making known to the AS which

profiles, token_type, scopes, and key types (symmetric/asymmetric) the RS supports. Also

making it known to the AS which audience(s) the RS identifies itself with.

Make sure that clients can discover the AS that is in charge of the RS.

If the client-credentials grant is used, make sure that the AS has the necessary, up-to-date

access control policies for the RS.

Requesting Party

Make sure that the client is provisioned the necessary credentials to authenticate to the

AS.

Make sure that the client is configured to follow the security requirements of the

requesting party when issuing requests (e.g., minimum communication security

requirements or trust anchors).

Register the client at the AS. This includes making known to the AS which profiles,

token_types, and key types (symmetric/asymmetric) for the client.

Authorization Server

Register the RS and manage corresponding security contexts.

Register clients and authentication credentials.

Allow resource owners to configure and update access control policies related to their

registered RSs.

•

•

•

•

•

•

•

•

•

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 59

Expose the token endpoint to allow clients to request tokens.

Authenticate clients that wish to request a token.

Process a token request using the authorization policies configured for the RS.

Optionally, expose the introspection endpoint that allows RSs to submit token

introspection requests.

If providing an introspection endpoint, authenticate RSs that wish to get an introspection

response.

If providing an introspection endpoint, process token introspection requests.

Optionally, handle token revocation.

Optionally, provide discovery metadata. See .

Optionally, handle refresh tokens.

Client

Discover the AS in charge of the RS that is to be targeted with a request.

Submit the token request (see step (A) of Figure 1).

Authenticate to the AS.

Optionally (if not preconfigured), specify which RS, which resource(s), and which

action(s) the request(s) will target.

If raw public keys (RPKs) or certificates are used, make sure the AS has the right RPK or

certificate for this client.

Process the access token and Access Information (see step (B) of Figure 1).

Check that the Access Information provides the necessary security parameters (e.g., PoP

key or information on communication security protocols supported by the RS).

Safely store the proof-of-possession key.

If provided by the AS, safely store the refresh token.

Send the token and request to the RS (see step (C) of Figure 1).

Authenticate towards the RS (this could coincide with the proof-of-possession process).

Transmit the token as specified by the AS (default is to the authz-info endpoint;

alternative options are specified by profiles).

Perform the proof-of-possession procedure as specified by the profile in use (this may

already have been taken care of through the authentication procedure).

Process the RS response (see step (F) of Figure 1) of the RS.

Resource Server

Expose a way to submit access tokens. By default, this is the authz-info endpoint.

Process an access token.

Verify the token is from a recognized AS.

Check the token's integrity.

Verify that the token applies to this RS.

Check that the token has not expired (if the token provides expiration information).

•

•

•

•

•

•

•

• [RFC8414]

•

•

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

•

•

◦

◦

◦

◦

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 60

Store the token so that it can be retrieved in the context of a matching request.

Note: The order proposed here is not normative; any process that arrives at an equivalent

result can be used. A noteworthy consideration is whether one can use cheap operations

early on to quickly discard nonapplicable or invalid tokens before performing expensive

cryptographic operations (e.g., doing an expiration check before verifying a signature).

Process a request.

Set up communication security with the client.

Authenticate the client.

Match the client against existing tokens.

Check that tokens belonging to the client actually authorize the requested action.

Optionally, check that the matching tokens are still valid, using introspection (if this is

possible.)

Send a response following the agreed upon communication security mechanism(s).

Safely store credentials, such as raw public keys, for authentication or proof-of-possession

keys linked to access tokens.

◦

•

◦

◦

◦

◦

◦

•

•

Appendix C. Requirements on Profiles

This section lists the requirements on profiles of this framework for the convenience of profile

designers.

Optionally, define new methods for the client to discover the necessary permissions and AS

for accessing a resource different from the one proposed in Sections 5.1 and 4

Optionally, specify new grant types (Section 5.4).

Optionally, define the use of client certificates as client credential type (Section 5.5).

Specify the communication protocol the client and RS must use (e.g., CoAP) (Sections 5 and

5.8.4.3).

Specify the security protocol the client and RS must use to protect their communication (e.g.,

OSCORE or DTLS). This must provide encryption and integrity and replay protection (Section

5.8.4.3).

Specify how the client and the RS mutually authenticate (Section 4).

Specify the proof-of-possession protocol(s) and how to select one if several are available. Also

specify which key types (e.g., symmetric/asymmetric) are supported by a specific proof-of-

possession protocol (Section 5.8.4.2).

Specify a unique ace_profile identifier (Section 5.8.4.3).

If introspection is supported, specify the communication and security protocol for

introspection (Section 5.9).

Specify the communication and security protocol for interactions between the client and AS.

This must provide encryption, integrity protection, replay protection, and a binding between

requests and responses (Sections 5 and 5.8).

•

•

•

•

•

•

•

•

•

•

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 61

Specify how/if the authz-info endpoint is protected, including how error responses are

protected (Section 5.10.1).

Optionally, define other methods of token transport than the authz-info endpoint (Section

5.10.1).

•

•

Appendix D. Assumptions on AS Knowledge about the C and

RS

This section lists the assumptions on what an AS should know about a client and an RS in order

to be able to respond to requests to the token and introspection endpoints. How this information

is established is out of scope for this document.

The identifier of the client or RS.

The profiles that the client or RS supports.

The scopes that the RS supports.

The audiences that the RS identifies with.

The key types (e.g., pre-shared symmetric key, raw public key, key length, and other key

parameters) that the client or RS supports.

The types of access tokens the RS supports (e.g., CWT).

If the RS supports CWTs, the COSE parameters for the crypto wrapper (e.g., algorithm, key-

wrap algorithm, and key-length) that the RS supports.

The expiration time for access tokens issued to this RS (unless the RS accepts a default time

chosen by the AS).

The symmetric key shared between the client and AS (if any).

The symmetric key shared between the RS and AS (if any).

The raw public key of the client or RS (if any).

Whether the RS has synchronized time (and thus is able to use the exp claim) or not.

•

•

•

•

•

•

•

•

•

•

•

•

Appendix E. Differences to OAuth 2.0

This document adapts OAuth 2.0 to be suitable for constrained environments. This section lists

the main differences from the normative requirements of OAuth 2.0.

Use of TLS

OAuth 2.0 requires the use of TLS to protect the communication between the AS and client

when requesting an access token, between the client and RS when accessing a resource, and

between the AS and RS if introspection is used. This framework requires similar security

properties but does not require that they be realized with TLS. See Section 5.

Cardinality of grant_type parameter

In client-to-AS requests using OAuth 2.0, the grant_type parameter is required (per

). In this framework, this parameter is optional. See Section 5.8.1. [RFC6749]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 62

Encoding of scope parameter

In client-to-AS requests using OAuth 2.0, the scope parameter is string encoded (per

). In this framework, this parameter may also be encoded as a byte string. See

Section 5.8.1.

Cardinality of token_type parameter

In AS-to-client responses using OAuth 2.0, the token_type parameter is required (per

). In this framework, this parameter is optional. See Section 5.8.2.

Access token retention

In OAuth 2.0, the access token may be sent with every request to the RS. The exact use of

access tokens depends on the semantics of the application and the session management

concept it uses. In this framework, the RS must be able to store these tokens for later use. See

Section 5.10.1.

[RFC6749]

[RFC6749]

Appendix F. Deployment Examples

There is a large variety of IoT deployments, as is indicated in Appendix A, and this section

highlights a few common variants. This section is not normative but illustrates how the

framework can be applied.

For each of the deployment variants, there are a number of possible security setups between

clients, resource servers, and authorization servers. The main focus in the following subsections

is on how authorization of a client request for a resource hosted by an RS is performed. This

requires the security of the requests and responses between the clients and the RS to be

considered.

Note: CBOR diagnostic notation is used for examples of requests and responses.

A:

F.1. Local Token Validation

In this scenario, the case where the resource server is offline is considered, i.e., it is not

connected to the AS at the time of the access request. This access procedure involves steps (A),

(B), (C), and (F) of Figure 1.

Since the resource server must be able to verify the access token locally, self-contained access

tokens must be used.

This example shows the interactions between a client, the authorization server, and a

temperature sensor acting as a resource server. Message exchanges A and B are shown in Figure

11.

The client first generates a public-private key pair used for communication security with the

RS.

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 63

B:

The client sends a CoAP POST request to the token endpoint at the AS. The security of this

request can be transport or application layer. It is up the communication security profile to

define. In the example, it is assumed that both the client and AS have performed mutual

authentication, e.g., via DTLS. The request contains the public key of the client and the

audience parameter set to "tempSensorInLivingRoom", a value that the temperature sensor

identifies itself with. The AS evaluates the request and authorizes the client to access the

resource.

The AS responds with a 2.05 (Content) response containing the Access Information, including

the access token. The PoP access token contains the public key of the client, and the Access

Information contains the public key of the RS. For communication security, this example uses

DTLS RawPublicKey between the client and the RS. The issued token will have a short

validity time, i.e., exp close to iat, in order to mitigate attacks using stolen client credentials.

The token includes claims, such as scope, with the authorized access that an owner of the

temperature device can enjoy. In this example, the scope claim issued by the AS informs the

RS that the owner of the token that can prove the possession of a key is authorized to make a

GET request against the /temperature resource and a POST request on the /firmware

resource. Note that the syntax and semantics of the scope claim are application specific.

Note: In this example, it is assumed that the client knows what resource it wants to access

and is therefore able to request specific audience and scope claims for the access token.

The information contained in the Request-Payload and the Response-Payload is shown in Figure

12. Note that the parameter rs_cnf from is used to inform the client about the

resource server's public key.

Figure 11: Token Request and Response Using Client Credentials

 Authorization

 Client Server

 | |

 |<=======>| DTLS Connection Establishment

 | | and mutual authentication

 | |

A: +-------->| Header: POST (Code=0.02)

 | POST | Uri-Path:"token"

 | | Content-Format: application/ace+cbor

 | | Payload: <Request-Payload>

 | |

B: |<--------+ Header: 2.05 Content

 | 2.05 | Content-Format: application/ace+cbor

 | | Payload: <Response-Payload>

 | |

[RFC9201]

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 64

The content of the access token is shown in Figure 13.

Messages C and F are shown in Figures 14 and 15.

Figure 12: Request and Response Payload Details

Request-Payload :

{

 / audience / 5 : "tempSensorInLivingRoom",

 / client_id / 24 : "myclient",

 / req_cnf / 4 : {

 / COSE_Key / 1 : {

 / kid / 2 : b64'1Bg8vub9tLe1gHMzV76e',

 / kty / 1 : 2 / EC2 /,

 / crv / -1 : 1 / P-256 /,

 / x / -2 : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',

 / y / -3 : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'

 }

 }

}

Response-Payload :

{

 / access_token / 1 : b64'0INDoQEKoQVNKkXfb7xaWqMT'/ .../,

 / rs_cnf / 41 : {

 / COSE_Key / 1 : {

 / kid / 2 : b64'c29tZSBwdWJsaWMga2V5IGlk',

 / kty / 1 : 2 / EC2 /,

 / crv / -1 : 1 / P-256 /,

 / x / -2 : b64'MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4',

 / y / -3 : b64'4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM'

 }

 }

}

Figure 13: Access Token Including Public Key of the Client

{

 / aud / 3 : "tempSensorInLivingRoom",

 / iat / 6 : 1563451500,

 / exp / 4 : 1563453000,

 / scope / 9 : "temperature_g firmware_p",

 / cnf / 8 : {

 / COSE_Key / 1 : {

 / kid / 2 : b64'1Bg8vub9tLe1gHMzV76e',

 / kty / 1 : 2 / EC2 /,

 / crv / -1 : 1 / P-256 /,

 / x / -2 : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',

 / y / -3 : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'

 }

 }

}

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 65

C:

F:

The client then sends the PoP access token to the authz-info endpoint at the RS. This is a plain

CoAP POST request, i.e., no transport or application-layer security is used between the client

and RS since the token is integrity protected between the AS and RS. The RS verifies that the

PoP access token was created by a known and trusted AS, which it applies to this RS, and that

it is valid. The RS caches the security context together with authorization information about

this client contained in the PoP access token.

The client and the RS runs the DTLS handshake using the raw public keys established in steps B

and C.

The client sends a CoAP GET request to /temperature on the RS over DTLS. The RS verifies that

the request is authorized based on previously established security context.

The RS responds over the same DTLS channel with a CoAP 2.05 Content response containing

a resource representation as payload.

Figure 14: Access Token Provisioning to the RS

 Resource

 Client Server

 | |

C: +-------->| Header: POST (Code=0.02)

 | POST | Uri-Path:"authz-info"

 | | Payload: 0INDoQEKoQVN ...

 | |

 |<--------+ Header: 2.04 Changed

 | 2.04 |

 | |

Figure 15: Resource Request and Response Protected by DTLS

 Resource

 Client Server

 | |

 |<=======>| DTLS Connection Establishment

 | | using Raw Public Keys

 | |

 +-------->| Header: GET (Code=0.01)

 | GET | Uri-Path: "temperature"

 | |

 | |

 | |

F: |<--------+ Header: 2.05 Content

 | 2.05 | Payload: <sensor value>

 | |

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 66

A:

B:

F.2. Introspection Aided Token Validation

In this deployment scenario, it is assumed that a client is not able to access the AS at the time of

the access request, whereas the RS is assumed to be connected to the back-end infrastructure.

Thus, the RS can make use of token introspection. This access procedure involves steps (A)-(F) of

Figure 1 but assumes steps (A) and (B) have been carried out during a phase when the client had

connectivity to the AS.

Since the client is assumed to be offline, at least for a certain period of time, a preprovisioned

access token has to be long lived. Since the client is constrained, the token will not be self-

contained (i.e., not a CWT) but instead just a reference. The resource server uses its connectivity

to learn about the claims associated to the access token by using introspection, which is shown in

the example below.

In the example, interactions between an offline client (key fob), an RS (online lock), and an AS is

shown. It is assumed that there is a provisioning step where the client has access to the AS. This

corresponds to message exchanges A and B, which are shown in Figure 16.

Authorization consent from the resource owner can be preconfigured, but it can also be

provided via an interactive flow with the resource owner. An example of this for the key fob case

could be that the resource owner has a connected car and buys a generic key to use with the car.

To authorize the key fob, the owner connects it to a computer that then provides the UI for the

device. After that, OAuth 2.0 implicit flow can be used to authorize the key for the car at the car

manufacturer's AS.

Note: In this example, the client does not know the exact door it will be used to access since the

token request is not sent at the time of access. So the scope and audience parameters are set

quite wide to start with, while tailored values narrowing down the claims to the specific RS being

accessed can be provided to that RS during an introspection step.

The client sends a CoAP POST request to the token endpoint at the AS. The request contains

the audience parameter set to "PACS1337" (Physical Access System (PACS)), a value that

identifies the physical access control system to which the individual doors are connected.

The AS generates an access token as an opaque string, which it can match to the specific

client and the targeted audience. It furthermore generates a symmetric proof-of-possession

key. The communication security and authentication between the client and AS is assumed to

have been provided at the transport layer (e.g., via DTLS) using a pre-shared security context

(pre-shared key (PSK), RPK, or certificate).

The AS responds with a CoAP 2.05 Content response, containing as payload the Access

Information, including the access token and the symmetric proof-of-possession key.

Communication security between the C and RS will be DTLS and PreSharedKey. The PoP key

is used as the PreSharedKey.

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 67

C:

Note: In this example, we are using a symmetric key for a multi-RS audience, which is not

recommended normally (see Section 6.9). However, in this case, the risk is deemed to be

acceptable, since all the doors are part of the same physical access control system; therefore, the

risk of a malicious RS impersonating the client towards another RS is low.

The information contained in the Request-Payload and the Response-Payload is shown in Figure

17.

In this case, the access token is just an opaque byte string referencing the authorization

information at the AS.

Figure 16: Token Request and Response Using Client Credentials

 Authorization

 Client Server

 | |

 |<=======>| DTLS Connection Establishment

 | | and mutual authentication

 | |

A: +-------->| Header: POST (Code=0.02)

 | POST | Uri-Path:"token"

 | | Content-Format: application/ace+cbor

 | | Payload: <Request-Payload>

 | |

B: |<--------+ Header: 2.05 Content

 | | Content-Format: application/ace+cbor

 | 2.05 | Payload: <Response-Payload>

 | |

Figure 17: Request and Response Payload for the C Offline

Request-Payload:

{

 / client_id / 24 : "keyfob",

 / audience / 5 : "PACS1337"

}

Response-Payload:

{

 / access_token / 1 : b64'VGVzdCB0b2tlbg',

 / cnf / 8 : {

 / COSE_Key / 1 : {

 / kid / 2 : b64'c29tZSBwdWJsaWMga2V5IGlk',

 / kty / 1 : 4 / Symmetric /,

 / k / -1 : b64'ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE'

 }

 }

}

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 68

D:

E:

Next, the client POSTs the access token to the authz-info endpoint in the RS. This is a plain

CoAP request, i.e., no DTLS between the client and RS. Since the token is an opaque string,

the RS cannot verify it on its own, and thus defers to respond to the client with a status code

until after step E.

The RS sends the token to the introspection endpoint on the AS using a CoAP POST request.

In this example, the RS and AS are assumed to have performed mutual authentication using

a pre-shared security context (PSK, RPK, or certificate) with the RS acting as the DTLS client.

The AS provides the introspection response (2.05 Content) containing parameters about the

token. This includes the confirmation key (cnf) parameter that allows the RS to verify the

client's proof of possession in step F. Note that our example in Figure 19 assumes a

preestablished key (e.g., one used by the client and the RS for a previous token) that is now

only referenced by its key identifier kid.

After receiving message E, the RS responds to the client's POST in step C with the CoAP

response code 2.01 (Created).

The information contained in the Request-Payload and the Response-Payload is shown in Figure

19.

Figure 18: Token Introspection for the C Offline

 Resource

 Client Server

 | |

C: +-------->| Header: POST (T=CON, Code=0.02)

 | POST | Uri-Path:"authz-info"

 | | Payload: b64'VGVzdCB0b2tlbg'

 | |

 | | Authorization

 | | Server

 | | |

 | D: +--------->| Header: POST (Code=0.02)

 | | POST | Uri-Path: "introspect"

 | | | Content-Format: application/ace+cbor

 | | | Payload: <Request-Payload>

 | | |

 | E: |<---------+ Header: 2.05 Content

 | | 2.05 | Content-Format: application/ace+cbor

 | | | Payload: <Response-Payload>

 | | |

 | |

 |<--------+ Header: 2.01 Created

 | 2.01 |

 | |

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 69

F:

The client uses the symmetric PoP key to establish a DTLS PreSharedKey secure connection to the

RS. The CoAP request PUT is sent to the uri-path /state on the RS, changing the state of the door to

locked.

The RS responds with an appropriate response over the secure DTLS channel.

Figure 19: Request and Response Payload for Introspection

Request-Payload:

{

 / token / 11 : b64'VGVzdCB0b2tlbg',

 / client_id / 24 : "FrontDoor"

}

Response-Payload:

{

 / active / 10 : true,

 / aud / 3 : "lockOfDoor4711",

 / scope / 9 : "open close",

 / iat / 6 : 1563454000,

 / cnf / 8 : {

 / kid / 3 : b64'c29tZSBwdWJsaWMga2V5IGlk'

 }

}

Figure 20: Resource Request and Response Protected by OSCORE

 Resource

 Client Server

 | |

 |<=======>| DTLS Connection Establishment

 | | using Pre Shared Key

 | |

 +-------->| Header: PUT (Code=0.03)

 | PUT | Uri-Path: "state"

 | | Payload: <new state for the lock>

 | |

F: |<--------+ Header: 2.04 Changed

 | 2.04 | Payload: <new state for the lock>

 | |

Acknowledgments

This document is a product of the ACE Working Group of the IETF.

Thanks to for her contributions to the use of OAuth 2.0 and Unlicensed Mobile Access

(UMA) in IoT scenarios, for his discussion input, and for his input

on the predecessors of this proposal.

Eve Maler

Robert Taylor Mališa Vučinić

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 70

Thanks to the authors of " OAuth 2.0 Proof-of-Possession: Authorization Server to

Client Key Distribution" , from where parts of the security considerations where

copied.

Thanks to , , and for contributing their work on

AS discovery from "Delegated CoAP Authentication and Authorization Framework (DCAF)"

 (see Section 5.1) and the considerations on multiple access tokens.

Thanks to and for their comprehensive reviews.

Thanks to for his input on various questions related to this work.

Thanks to for some very useful review comments.

Thanks to for contributing the text for the CoRE Resource Type registry.

Thanks to for suggesting Appendix E (including its contents).

 and worked on this document as part of the CelticPlus project

CyberWI, with funding from Vinnova. has also received further funding for this

work by Vinnova in the context of the CelticNext project CRITISEC.

[POP-KEY-DIST]

[POP-KEY-DIST]

Stefanie Gerdes Olaf Bergmann Carsten Bormann

[DCAF]

Jim Schaad Mike Jones

Benjamin Kaduk

Cigdem Sengul

Carsten Bormann

Roman Danyliw

Ludwig Seitz Göran Selander

Ludwig Seitz

Authors' Addresses

Ludwig Seitz

Combitech

Djäknegatan 31

SE- 211 35 Malmö

Sweden

 ludwig.seitz@combitech.com Email:

Göran Selander

Ericsson

SE- 164 80 Kista

Sweden

 goran.selander@ericsson.com Email:

Erik Wahlstroem

Sweden

 erik@wahlstromstekniska.se Email:

Samuel Erdtman

Spotify AB

Birger Jarlsgatan 61, 4tr

SE- 113 56 Stockholm

Sweden

 erdtman@spotify.com Email:

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 71

mailto:ludwig.seitz@combitech.com
mailto:goran.selander@ericsson.com
mailto:erik@wahlstromstekniska.se
mailto:erdtman@spotify.com

Hannes Tschofenig

Arm Ltd.

 6067 Absam

Austria

 Hannes.Tschofenig@arm.com Email:

RFC 9200 ACE-OAuth August 2022

Seitz, et al. Standards Track Page 72

mailto:Hannes.Tschofenig@arm.com

	RFC 9200
	Authentication and Authorization for Constrained Environments Using the OAuth 2.0 Framework (ACE-OAuth)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview
	3.1. OAuth 2.0
	3.2. CoAP

	4. Protocol Interactions
	5. Framework
	5.1. Discovering Authorization Servers
	5.2. Unauthorized Resource Request Message
	5.3. AS Request Creation Hints
	5.3.1. The Client-Nonce Parameter

	5.4. Authorization Grants
	5.5. Client Credentials
	5.6. AS Authentication
	5.7. The Authorization Endpoint
	5.8. The Token Endpoint
	5.8.1. Client-to-AS Request
	5.8.2. AS-to-Client Response
	5.8.3. Error Response
	5.8.4. Request and Response Parameters
	5.8.4.1. Grant Type
	5.8.4.2. Token Type
	5.8.4.3. Profile
	5.8.4.4. Client-Nonce

	5.8.5. Mapping Parameters to CBOR

	5.9. The Introspection Endpoint
	5.9.1. Introspection Request
	5.9.2. Introspection Response
	5.9.3. Error Response
	5.9.4. Mapping Introspection Parameters to CBOR

	5.10. The Access Token
	5.10.1. The Authorization Information Endpoint
	5.10.1.1. Verifying an Access Token
	5.10.1.2. Protecting the Authorization Information Endpoint

	5.10.2. Client Requests to the RS
	5.10.3. Token Expiration
	5.10.4. Key Expiration

	6. Security Considerations
	6.1. Protecting Tokens
	6.2. Communication Security
	6.3. Long-Term Credentials
	6.4. Unprotected AS Request Creation Hints
	6.5. Minimal Security Requirements for Communication
	6.6. Token Freshness and Expiration
	6.7. Combining Profiles
	6.8. Unprotected Information
	6.9. Identifying Audiences
	6.10. Denial of Service Against or with Introspection

	7. Privacy Considerations
	8. IANA Considerations
	8.1. ACE Authorization Server Request Creation Hints
	8.2. CoRE Resource Types
	8.3. OAuth Extensions Errors
	8.4. OAuth Error Code CBOR Mappings
	8.5. OAuth Grant Type CBOR Mappings
	8.6. OAuth Access Token Types
	8.7. OAuth Access Token Type CBOR Mappings
	8.7.1. Initial Registry Contents

	8.8. ACE Profiles
	8.9. OAuth Parameters
	8.10. OAuth Parameters CBOR Mappings
	8.11. OAuth Introspection Response Parameters
	8.12. OAuth Token Introspection Response CBOR Mappings
	8.13. JSON Web Token Claims
	8.14. CBOR Web Token Claims
	8.15. Media Type Registration
	8.16. CoAP Content-Formats
	8.17. Expert Review Instructions

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Design Justification
	Appendix B. Roles and Responsibilities
	Appendix C. Requirements on Profiles
	Appendix D. Assumptions on AS Knowledge about the C and RS
	Appendix E. Differences to OAuth 2.0
	Appendix F. Deployment Examples
	F.1. Local Token Validation
	F.2. Introspection Aided Token Validation

	Acknowledgments
	Authors' Addresses

