
RFC 9101
The OAuth 2.0 Authorization Framework: JWT-
Secured Authorization Request (JAR)

Abstract
The authorization request in OAuth 2.0 described in RFC 6749 utilizes query parameter
serialization, which means that authorization request parameters are encoded in the URI of the
request and sent through user agents such as web browsers. While it is easy to implement, it
means that a) the communication through the user agents is not integrity protected and thus, the
parameters can be tainted, b) the source of the communication is not authenticated, and c) the
communication through the user agents can be monitored. Because of these weaknesses, several
attacks to the protocol have now been put forward.

This document introduces the ability to send request parameters in a JSON Web Token (JWT)
instead, which allows the request to be signed with JSON Web Signature (JWS) and encrypted
with JSON Web Encryption (JWE) so that the integrity, source authentication, and confidentiality
properties of the authorization request are attained. The request can be sent by value or by
reference.

Stream: Internet Engineering Task Force (IETF)
RFC: 9101
Category: Standards Track
Published: August 2021
ISSN: 2070-1721
Authors: N. Sakimura

NAT.Consulting
J. Bradley
Yubico

M. Jones
Microsoft

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9101

Sakimura, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9101
https://www.rfc-editor.org/info/rfc9101

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Requirements Language

2. Terminology

2.1. Request Object

2.2. Request Object URI

3. Symbols and Abbreviated Terms

4. Request Object

5. Authorization Request

5.1. Passing a Request Object by Value

5.2. Passing a Request Object by Reference

5.2.1. URI Referencing the Request Object

5.2.2. Request Using the "request_uri" Request Parameter

5.2.3. Authorization Server Fetches Request Object

6. Validating JWT-Based Requests

6.1. JWE Encrypted Request Object

6.2. JWS-Signed Request Object

6.3. Request Parameter Assembly and Validation

7. Authorization Server Response

8. TLS Requirements

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

9. IANA Considerations

9.1. OAuth Parameters Registration

9.2. OAuth Authorization Server Metadata Registry

9.3. OAuth Dynamic Client Registration Metadata Registry

9.4. Media Type Registration

9.4.1. Registry Contents

10. Security Considerations

10.1. Choice of Algorithms

10.2. Request Source Authentication

10.3. Explicit Endpoints

10.4. Risks Associated with request_uri

10.4.1. DDoS Attack on the Authorization Server

10.4.2. Request URI Rewrite

10.5. Downgrade Attack

10.6. TLS Security Considerations

10.7. Parameter Mismatches

10.8. Cross-JWT Confusion

11. Privacy Considerations

11.1. Collection Limitation

11.2. Disclosure Limitation

11.2.1. Request Disclosure

11.2.2. Tracking Using Request Object URI

12. References

12.1. Normative References

12.2. Informative References

Acknowledgements

Authors' Addresses

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 3

(a)

(b)
(c)

(1)
(2)
(3)
(4)

1. Introduction
The authorization request in utilizes query parameter serialization and is
typically sent through user agents such as web browsers.

For example, the parameters response_type, client_id, state, and redirect_uri are encoded
in the URI of the request:

While it is easy to implement, the encoding in the URI does not allow application-layer security to
be used to provide confidentiality and integrity protection. While TLS is used to offer
communication security between the client and the user agent as well as the user agent and the
authorization server, TLS sessions are terminated in the user agent. In addition, TLS sessions
may be terminated prematurely at some middlebox (such as a load balancer).

As a result, the authorization request of has shortcomings in that:

the communication through the user agents is not integrity protected, and thus, the
parameters can be tainted (integrity protection failure);
the source of the communication is not authenticated (source authentication failure);
the communication through the user agents can be monitored (containment/
confidentiality failure).

Due to these inherent weaknesses, several attacks against the protocol, such as redirection URI
rewriting, have been identified.

The use of application-layer security mitigates these issues.

The use of application-layer security allows requests to be prepared by a trusted third party so
that a client application cannot request more permissions than previously agreed upon.

Furthermore, passing the request by reference allows the reduction of over-the-wire overhead.

The encoding has been chosen because of:

its close relationship with JSON, which is used as OAuth's response format
its developer friendliness due to its textual nature
its relative compactness compared to XML
its development status as a Proposed Standard, along with the associated signing and
encryption methods

OAuth 2.0 [RFC6749]

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
 Host: server.example.com

[RFC6749]

JWT [RFC7519]

[RFC7515] [RFC7516]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 4

(5)

(a)

(b)
(c)

(d)

the relative ease of JWS and JWE compared to XML Signature and Encryption.

The parameters request and request_uri are introduced as additional authorization request
parameters for the flows. The request parameter is a

 whose JWT Claims Set holds the JSON-encoded OAuth 2.0 authorization request
parameters. Note that, in contrast to RFC 7519, the elements of the Claims Set are encoded OAuth
request parameters , supplemented with only a few of the IANA-
managed JSON Web Token Claims , in particular, iss and aud. The JWT in the
request parameter is integrity protected and source authenticated using JWS.

The can be passed to the authorization endpoint by reference, in which case the
parameter request_uri is used instead of request.

Using as the request encoding instead of query parameters has several
advantages:

Integrity protection. The request can be signed so that the integrity of the request can be
checked.
Source authentication. The request can be signed so that the signer can be authenticated.
Confidentiality protection. The request can be encrypted so that end-to-end confidentiality
can be provided even if the TLS connection is terminated at one point or another
(including at and before user agents).
Collection minimization. The request can be signed by a trusted third party attesting that
the authorization request is compliant with a certain policy. For example, a request can be
pre-examined by a trusted third party to confirm that all the personal data requested is
strictly necessary to perform the process that the end user asked for; the request would
then be signed by that trusted third party. The authorization server then examines the
signature and shows the conformance status to the end user who would have some
assurance as to the legitimacy of the request when authorizing it. In some cases, it may
even be desirable to skip the authorization dialogue under such circumstances.

There are a few cases where request by reference is useful, such as:

when it is desirable to reduce the size of a transmitted request. The use of application-layer
security increases the size of the request particularly when public-key cryptography is used.
when the client does not want to do the application-level cryptography. The authorization
server may provide an endpoint to accept the authorization request through direct
communication with the client, so that the client is authenticated and the channel is TLS
protected.

This capability is in use by OpenID Connect .

OAuth 2.0 [RFC6749] JSON Web Token
(JWT) [RFC7519]

[IANA.OAuth.Parameters]
[IANA.JWT.Claims]

JWT [RFC7519]

JWT [RFC7519]

1.

2.

[OpenID.Core]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 5

1.1. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Terminology
For the purposes of this specification, the following terms and definitions apply in addition to
what is defined in , , and

.
OAuth 2.0 Framework [RFC6749] JSON Web Signature [RFC7515] JSON

Web Encryption [RFC7516]

2.1. Request Object
A Request Object is a whose JWT Claims Set holds the JSON-
encoded OAuth 2.0 authorization request parameters.

JSON Web Token (JWT) [RFC7519]

2.2. Request Object URI
A Request Object URI is an absolute URI that references the set of parameters comprising an
OAuth 2.0 authorization request. The content of the resource referenced by the URI is a

, unless the URI was provided to the client by the same authorization server,
in which case the content is an implementation detail at the discretion of the authorization
server. The content being a Request Object is to ensure interoperability in cases where the
provider of the request_uri is a separate entity from the consumer, such as when a client
provides a URI referencing a Request Object stored on the client's backend service that is made
accessible via HTTPS. In the latter case, where the authorization server is both provider and
consumer of the URI, such as when it offers an endpoint that provides a URI in exchange for a
Request Object, this interoperability concern does not apply.

Request
Object (Section 2.1)

JSON:

JWT:

JWS:

JWE:

URI:

URL:

3. Symbols and Abbreviated Terms
The following abbreviations are common to this specification.

JavaScript Object Notation

JSON Web Token

JSON Web Signature

JSON Web Encryption

Uniform Resource Identifier

Uniform Resource Locator

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 6

4. Request Object
A is used to provide authorization request parameters for an OAuth
2.0 authorization request. It contain all the parameters (including extension parameters)
used to process the authorization request except the request and
request_uri parameters that are defined in this document. The parameters are represented as
the JWT Claims of the object. Parameter names and string values be included as JSON
strings. Since Request Objects are handled across domains and potentially outside of a closed
ecosystem, per , these JSON strings be encoded using UTF-8

. Numerical values be included as JSON numbers. The Request Object
include any extension parameters. This object constitutes the JWT Claims Set
defined in . The JWT Claims Set is then signed or signed and encrypted.

To sign, is used. The result is a JWS-signed .
If signed, the Authorization Request Object contain the Claims iss (issuer) and aud
(audience) as members with their semantics being the same as defined in the
specification. The value of aud should be the value of the authorization server (AS) issuer, as
defined in .

To encrypt, is used. When both signature and encryption are being applied, the
JWT be signed, then encrypted, as described in . The result is a
Nested JWT, as defined in .

The client determines the algorithms used to sign and encrypt Request Objects. The algorithms
chosen need to be supported by both the client and the authorization server. The client can
inform the authorization server of the algorithms that it supports in its dynamic client
registration metadata , specifically, the metadata values
request_object_signing_alg, request_object_encryption_alg, and
request_object_encryption_enc. Likewise, the authorization server can inform the client of
the algorithms that it supports in its authorization server metadata , specifically, the
metadata values request_object_signing_alg_values_supported,
request_object_encryption_alg_values_supported, and
request_object_encryption_enc_values_supported.

The Request Object be sent by value, as described in Section 5.1, or by reference, as
described in Section 5.2. request and request_uri parameters be included in Request
Objects.

A has the media type application/oauth-authz-req
+jwt. Note that some existing deployments may alternatively be using the type application/
jwt.

Request Object (Section 2.1)
MUST

OAuth 2.0 [RFC6749]

MUST

Section 8.1 of [RFC8259] MUST
[RFC3629] MUST MAY

JSON [RFC8259]
JWT [RFC7519]

JSON Web Signature (JWS) [RFC7515] JWT [RFC7519]
SHOULD

JWT [RFC7519]

RFC 8414 [RFC8414]

JWE [RFC7516]
MUST Section 11.2 of [RFC7519]

[RFC7519]

[RFC7591]

[RFC8414]

MAY
MUST NOT

Request Object (Section 2.1) [RFC2046]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8259#section-8.1
https://www.rfc-editor.org/rfc/rfc7519#section-11.2

The following is an example of the Claims in a Request Object before base64url
encoding and signing. Note that it includes the extension parameters nonce and max_age.

Signing it with the RS256 algorithm results in this Request Object value (with line
wraps within values for display purposes only):

The following RSA public key, represented in JSON Web Key (JWK) format, can be used to
validate the Request Object signature in this and subsequent Request Object examples (with line
wraps within values for display purposes only):

[RFC7515]

 {
 "iss": "s6BhdRkqt3",
 "aud": "https://server.example.com",
 "response_type": "code id_token",
 "client_id": "s6BhdRkqt3",
 "redirect_uri": "https://client.example.org/cb",
 "scope": "openid",
 "state": "af0ifjsldkj",
 "nonce": "n-0S6_WzA2Mj",
 "max_age": 86400
 }

[RFC7518]

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6ICJzNkJoZF
 JrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLAog
 ICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAgICAiY2xpZW50X2
 lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6ICJodHRwczovL2Ns
 aWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAib3BlbmlkIiwKICAgIC
 JzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2UiOiAibi0wUzZfV3pBMk1q
 IiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VUElVaPjqW_ToI1yrEJ67BgK
 b5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC0iQJwXu5YVY-vnW0_PLJb1C2
 HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKzuKzqSb1wAZALo5f89B_p6QA6j6
 JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3EYLYaCb4ik4I1zGXE4fvim9FIMs8O
 CMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W9typPf846lGwA8h9G9oNTIuX8Ft2jf
 pnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3j1i7tLR_5Nz-g

 {
 "kty":"RSA",
 "kid":"k2bdc",
 "n":"x5RbkAZkmpRxia65qRQ1wwSMSxQUnS7gcpVTV_cdHmfmG2ltd2yabEO9XadD8
 pJNZubINPpmgHh3J1aD9WRwS05ucmFq3CfFsluLt13_7oX5yDRSKX7poXmT_5
 ko8k4NJZPMAO8fPToDTH7kHYbONSE2FYa5GZ60CUsFhSonI-dcMDJ0Ary9lxI
 w5k2z4TAdARVWcS7sD07VhlMMshrwsPHBQgTatlkxyIHXbYdtak8fqvNAwr7O
 lVEvM_Ipf5OfmdB8Sd-wjzaBsyP4VhJKoi_qdgSzpC694XZeYPq45Sw-q51iF
 UlcOlTCI7z6jltUtnR6ySn6XDGFnzH5Fe5ypw",
 "e":"AQAB"
 }

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 8

(a)
(b)

5. Authorization Request
The client constructs the authorization request URI by adding the following parameters to the
query component of the authorization endpoint URI using the application/x-www-form-
urlencoded format:

request
 unless request_uri is specified. The that holds

authorization request parameters stated in (OAuth 2.0). If this
parameter is present in the authorization request, request_uri be present.

request_uri
 unless request is specified. The absolute URI, as defined by ,

that is the referencing the authorization request parameters
stated in (OAuth 2.0). If this parameter is present in the authorization
request, request be present.

client_id
. client_id. The value match the request or

request_uri client_id.

The client directs the resource owner to the constructed URI using an HTTP redirection response
or by other means available to it via the user agent.

For example, the client directs the end user's user agent to make the following HTTPS request:

The value for the request parameter is abbreviated for brevity.

The Authorization Request Object be one of the following:

JWS signed
JWS signed and JWE encrypted

The client send the parameters included in the Request Object duplicated in the query
parameters as well for backward compatibility, etc. However, the authorization server
supporting this specification only use the parameters included in the Request Object.

REQUIRED Request Object (Section 2.1)
Section 4 of [RFC6749]

MUST NOT

REQUIRED RFC 3986 [RFC3986]
Request Object URI (Section 2.2)

Section 4 of [RFC6749]
MUST NOT

REQUIRED OAuth 2.0 [RFC6749] MUST
Request Object's (Section 2.1)

GET /authz?client_id=s6BhdRkqt3&request=eyJhbG..AlMGzw HTTP/1.1
Host: server.example.com

MUST

MAY

MUST

5.1. Passing a Request Object by Value
The client sends the authorization request as a Request Object to the authorization endpoint as
the request parameter value.

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc6749#section-4
https://www.rfc-editor.org/rfc/rfc6749#section-4

The following is an example of an authorization request using the request parameter (with line
wraps within values for display purposes only):

 https://server.example.com/authorize?client_id=s6BhdRkqt3&
 request=eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6
 ICJzNkJoZFJrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBs
 ZS5jb20iLAogICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAg
 ICAiY2xpZW50X2lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6
 ICJodHRwczovL2NsaWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAi
 b3BlbmlkIiwKICAgICJzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2Ui
 OiAibi0wUzZfV3pBMk1qIiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VU
 ElVaPjqW_ToI1yrEJ67BgKb5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC
 0iQJwXu5YVY-vnW0_PLJb1C2HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKz
 uKzqSb1wAZALo5f89B_p6QA6j6JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3E
 YLYaCb4ik4I1zGXE4fvim9FIMs8OCMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W
 9typPf846lGwA8h9G9oNTIuX8Ft2jfpnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3
 j1i7tLR_5Nz-g

5.2. Passing a Request Object by Reference
The request_uri authorization request parameter enables OAuth authorization requests to be
passed by reference rather than by value. This parameter is used identically to the request
parameter, except that the Request Object value is retrieved from the resource identified by the
specified URI rather than passed by value.

The entire Request URI exceed 512 ASCII characters. There are two reasons for this
restriction:

Many phones on the market as of this writing still do not accept large payloads. The
restriction is typically either 512 or 1024 ASCII characters.
On a slow connection such as a 2G mobile connection, a large URL would cause a slow
response; therefore, the use of such is not advisable from the user-experience point of view.

The contents of the resource referenced by the request_uri be a Request Object and
be reachable by the authorization server unless the URI was provided to the client by the
authorization server. In the first case, the request_uri be an https URI, as specified in

. In the second case, it be a URN, as specified in .

SHOULD NOT

1.

2.

MUST MUST

MUST
Section 2.7.2 of [RFC7230] MUST [RFC8141]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc7230#section-2.7.2

The following is an example of the contents of a Request Object resource that can be referenced
by a request_uri (with line wraps within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6ICJzNkJoZF
 JrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLAog
 ICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAgICAiY2xpZW50X2
 lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6ICJodHRwczovL2Ns
 aWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAib3BlbmlkIiwKICAgIC
 JzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2UiOiAibi0wUzZfV3pBMk1q
 IiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VUElVaPjqW_ToI1yrEJ67BgK
 b5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC0iQJwXu5YVY-vnW0_PLJb1C2
 HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKzuKzqSb1wAZALo5f89B_p6QA6j6
 JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3EYLYaCb4ik4I1zGXE4fvim9FIMs8O
 CMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W9typPf846lGwA8h9G9oNTIuX8Ft2jf
 pnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3j1i7tLR_5Nz-g

5.2.1. URI Referencing the Request Object

The client stores the Request Object resource either locally or remotely at a URI the authorization
server can access. Such a facility may be provided by the authorization server or a trusted third
party. For example, the authorization server may provide a URL to which the client POSTs the
Request Object and obtains the Request URI. This URI is the Request Object URI, request_uri.

It is possible for the Request Object to include values that are to be revealed only to the
authorization server. As such, the request_uri have appropriate entropy for its lifetime so
that the URI is not guessable if publicly retrievable. For the guidance, refer to

 and "Good Practices for Capability URLs" . It is that the
request_uri be removed after a reasonable timeout unless access control measures are taken.

The following is an example of a Request Object URI value (with line wraps within values for
display purposes only). In this example, a trusted third-party service hosts the Request Object.

MUST
Section 5.1.4.2.2 of

[RFC6819] [CapURLs] RECOMMENDED

 https://tfp.example.org/request.jwt/
 GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

5.2.2. Request Using the "request_uri" Request Parameter

The client sends the authorization request to the authorization endpoint.

The following is an example of an authorization request using the request_uri parameter (with
line wraps within values for display purposes only):

 https://server.example.com/authorize?
 client_id=s6BhdRkqt3
 &request_uri=https%3A%2F%2Ftfp.example.org%2Frequest.jwt
 %2FGkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc6819#section-5.1.4.2.2

5.2.3. Authorization Server Fetches Request Object

Upon receipt of the Request, the authorization server send an HTTP GET request to the
request_uri to retrieve the referenced Request Object unless the Request Object is stored in a
way so that the server can retrieve it through other mechanisms securely and parse it to recreate
the authorization request parameters.

The following is an example of this fetch process. In this example, a trusted third-party service
hosts the Request Object.

The following is an example of the fetch response:

MUST

GET /request.jwt/GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM HTTP/1.1
Host: tfp.example.org

 HTTP/1.1 200 OK
 Date: Thu, 20 Aug 2020 23:52:39 GMT
 Server: Apache/2.4.43 (tfp.example.org)
 Content-type: application/oauth-authz-req+jwt
 Content-Length: 797
 Last-Modified: Wed, 19 Aug 2020 23:52:32 GMT

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ewogICAgImlzcyI6ICJzNkJoZF
 JrcXQzIiwKICAgICJhdWQiOiAiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLAog
 ICAgInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsCiAgICAiY2xpZW50X2
 lkIjogInM2QmhkUmtxdDMiLAogICAgInJlZGlyZWN0X3VyaSI6ICJodHRwczovL2Ns
 aWVudC5leGFtcGxlLm9yZy9jYiIsCiAgICAic2NvcGUiOiAib3BlbmlkIiwKICAgIC
 JzdGF0ZSI6ICJhZjBpZmpzbGRraiIsCiAgICAibm9uY2UiOiAibi0wUzZfV3pBMk1q
 IiwKICAgICJtYXhfYWdlIjogODY0MDAKfQ.Nsxa_18VUElVaPjqW_ToI1yrEJ67BgK
 b5xsuZRVqzGkfKrOIX7BCx0biSxYGmjK9KJPctH1OC0iQJwXu5YVY-vnW0_PLJb1C2
 HG-ztVzcnKZC2gE4i0vgQcpkUOCpW3SEYXnyWnKzuKzqSb1wAZALo5f89B_p6QA6j6
 JwBSRvdVsDPdulW8lKxGTbH82czCaQ50rLAg3EYLYaCb4ik4I1zGXE4fvim9FIMs8O
 CMmzwIB5S-ujFfzwFjoyuPEV4hJnoVUmXR_W9typPf846lGwA8h9G9oNTIuX8Ft2jf
 pnZdFmLg3_wr3Wa5q3a-lfbgF3S9H_8nN3j1i7tLR_5Nz-g

6. Validating JWT-Based Requests

6.1. JWE Encrypted Request Object
If the Request Object is encrypted, the authorization server decrypt the JWT in accordance
with the specification.

The result is a signed Request Object.

If decryption fails, the authorization server return an invalid_request_object error to
the client in response to the authorization request.

MUST
JSON Web Encryption [RFC7516]

MUST

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 12

7. Authorization Server Response
The authorization server response is created and sent to the client as in
(OAuth 2.0).

In addition, this document uses these additional error values:

invalid_request_uri
The request_uri in the authorization request returns an error or contains invalid data.

invalid_request_object
The request parameter contains an invalid Request Object.

request_not_supported
The authorization server does not support the use of the request parameter.

request_uri_not_supported
The authorization server does not support the use of the request_uri parameter.

6.2. JWS-Signed Request Object
The authorization server validate the signature of the JWS-signed Request
Object. If a kid Header Parameter is present, the key identified be the key used and
be a key associated with the client. The signature be validated using a key associated with
the client and the algorithm specified in the alg Header Parameter. Algorithm verification
be performed, as specified in Sections 3.1 and 3.2 of .

If the key is not associated with the client or if signature validation fails, the authorization server
 return an invalid_request_object error to the client in response to the authorization

request.

MUST [RFC7515]
MUST MUST

MUST
MUST

[RFC8725]

MUST

6.3. Request Parameter Assembly and Validation
The authorization server extract the set of authorization request parameters from the
Request Object value. The authorization server only use the parameters in the Request
Object, even if the same parameter is provided in the query parameter. The client ID values in
the client_id request parameter and in the Request Object client_id claim be identical.
The authorization server then validates the request, as specified in .

If the Client ID check or the request validation fails, then the authorization server return
an error to the client in response to the authorization request, as specified in

 (OAuth 2.0).

MUST
MUST

MUST
OAuth 2.0 [RFC6749]

MUST
Section 5.2 of

[RFC6749]

Section 4 of [RFC6749]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc8725#section-3.1
https://www.rfc-editor.org/rfc/rfc8725#section-3.2
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749#section-4

8. TLS Requirements
Client implementations supporting the Request Object URI method support TLS, following

.

To protect against information disclosure and tampering, confidentiality protection be
applied using TLS with a cipher suite that provides confidentiality and integrity protection.

HTTP clients also verify the TLS server certificate, using DNS-ID , to avoid man-
in-the-middle attacks. The rules and guidelines defined in apply here, with the
following considerations:

Support for DNS-ID identifier type (that is, the dNSName identity in the subjectAltName
extension) is . Certification authorities that issue server certificates support
the DNS-ID identifier type, and the DNS-ID identifier type be present in server
certificates.
DNS names in server certificates contain the wildcard character *.
Clients use CN-ID identifiers; a Common Name field (CN field) may be present in
the server certificate's subject name but be used for authentication within the
rules described in .
SRV-ID and URI-ID as described in be used for
comparison.

MUST
"Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)" [RFC7525]

MUST

MUST [RFC6125]
[RFC6125]

•
REQUIRED MUST

MUST

• MAY
• MUST NOT

MUST NOT
[RFC7525]

• Section 6.5 of [RFC6125] MUST NOT

9. IANA Considerations

Name:
Parameter Usage Location:
Change Controller:
Specification Document(s):

Name:
Parameter Usage Location:

9.1. OAuth Parameters Registration
Since the Request Object is a JWT, the core JWT claims cannot be used for any purpose in the
Request Object other than for what JWT dictates. Thus, they have been registered as OAuth
authorization request parameters to avoid future OAuth extensions using them with different
meanings.

This specification adds the following values to the "OAuth Parameters" registry
 established by .

iss
authorization request

IETF
This document and .

sub
authorization request

[IANA.OAuth.Parameters] [RFC6749]

Section 4.1.1 of [RFC7519]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc6125#section-6.5
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.1

Change Controller:
Specification Document(s):

Name:
Parameter Usage Location:
Change Controller:
Specification Document(s):

Name:
Parameter Usage Location:
Change Controller:
Specification Document(s):

Name:
Parameter Usage Location:
Change Controller:
Specification Document(s):

Name:
Parameter Usage Location:
Change Controller:
Specification Document(s):

Name:
Parameter Usage Location:
Change Controller:
Specification Document(s):

IETF
This document and .

aud
authorization request

IETF
This document and .

exp
authorization request

IETF
This document and .

nbf
authorization request

IETF
This document and .

iat
authorization request

IETF
This document and .

jti
authorization request

IETF
This document and .

Section 4.1.2 of [RFC7519]

Section 4.1.3 of [RFC7519]

Section 4.1.4 of [RFC7519]

Section 4.1.5 of [RFC7519]

Section 4.1.6 of [RFC7519]

Section 4.1.7 of [RFC7519]

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

9.2. OAuth Authorization Server Metadata Registry
This specification adds the following value to the "OAuth Authorization Server Metadata" registry

 established by .

require_signed_request_object
Indicates where authorization request needs to be protected as Request

Object and provided through either request or request_uri parameter.
IETF

Section 10.5 of this document.

[IANA.OAuth.Parameters] [RFC8414]

9.3. OAuth Dynamic Client Registration Metadata Registry
This specification adds the following value to the "OAuth Dynamic Client Registration Metadata"
registry established by .[IANA.OAuth.Parameters] [RFC7591]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc7519#section-4.1.2
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.3
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.4
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.5
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.6
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.7

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

require_signed_request_object
Indicates where authorization request needs to be protected as Request

Object and provided through either request or request_uri parameter.
IETF

Section 10.5 of this document.

9.4. Media Type Registration

Type name:
Subtype name:
Required parameters:
Optional parameters:
Encoding considerations:

Security considerations:
Interoperability considerations:
Published specification:
Applications that use this media type:

Fragment identifier considerations:
Additional information:

Deprecated alias names for this type:
Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:
Restrictions on usage:
Author:
Change controller:
Provisional registration?

9.4.1. Registry Contents

This section registers the application/oauth-authz-req+jwt media type in the
"Media Types" registry in the manner described in . It can be used
to indicate that the content is a JWT containing Request Object claims.

application
oauth-authz-req+jwt

N/A
N/A

binary; a Request Object is a JWT; JWT values are encoded as a series
of base64url-encoded values (some of which may be the empty string) separated by period (.)
characters.

See Section 10 of RFC 9101
N/A

Section 4 of RFC 9101
Applications that use Request Objects to make an OAuth

2.0 authorization request
N/A

N/A
N/A

N/A
N/A

Nat Sakimura <nat@nat.consulting>
COMMON

none
Nat Sakimura <nat@nat.consulting>

IETF
No

[RFC2046]
[IANA.MediaTypes] [RFC6838]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 16

10. Security Considerations
In addition to all the , the security
considerations in , , , and need to be considered. Also,
there are several academic papers such as that provide useful insight into the security
properties of protocols like OAuth.

In consideration of the above, this document advises taking the following security considerations
into account.

security considerations discussed in OAuth 2.0 [RFC6819]
[RFC7515] [RFC7516] [RFC7518] [RFC8725]

[BASIN]

10.1. Choice of Algorithms
When sending the Authorization Request Object through the request parameter, it be
either signed using or signed and then encrypted using and

, respectively, with algorithms considered appropriate at the time.

MUST
JWS [RFC7515] JWS [RFC7515] JWE

[RFC7516]

(a)
(b)

(c)

(d)

(e)

10.2. Request Source Authentication
The source of the authorization request always be verified. There are several ways to do it:

Verifying the JWS Signature of the Request Object.
Verifying that the symmetric key for the JWE encryption is the correct one if the JWE is
using symmetric encryption. Note, however, that if public key encryption is used, no
source authentication is enabled by the encryption, as any party can encrypt to the public
key.
Verifying the TLS Server Identity of the Request Object URI. In this case, the authorization
server know out-of-band that the client uses the Request Object URI and only the
client is covered by the TLS certificate. In general, this is not a reliable method.
When an authorization server implements a service that returns a Request Object URI in
exchange for a Request Object, the authorization server perform client
authentication to accept the Request Object and bind the client identifier to the Request
Object URI it is providing. It validate the signature, per (a). Since the Request Object
URI can be replayed, the lifetime of the Request Object URI be short and preferably
one-time use. The entropy of the Request Object URI be sufficiently large. The
adequate shortness of the validity and the entropy of the Request Object URI depends on
the risk calculation based on the value of the resource being protected. A general guidance
for the validity time would be less than a minute, and the Request Object URI is to include
a cryptographic random value of 128 bits or more at the time of the writing of this
specification.
When a trusted third-party service returns a Request Object URI in exchange for a Request
Object, it validate the signature, per (a). In addition, the authorization server
be trusted by the third-party service and know out-of-band that the client is also
trusted by it.

MUST

MUST

MUST

MUST
MUST

MUST

MUST MUST
MUST

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 17

(a)
(b)
(c)
(d)

10.3. Explicit Endpoints
Although this specification does not require them, research such as points out that it is a
good practice to explicitly state the intended interaction endpoints and the message position in
the sequence in a tamper-evident manner so that the intent of the initiator is unambiguous. It is

 by this specification to use this practice for the following endpoints defined in
, , and :

Protected resources (protected_resources)
Authorization endpoint (authorization_endpoint)
Redirection URI (redirect_uri)
Token endpoint (token_endpoint)

Further, if dynamic discovery is used, then this practice also applies to the discovery-related
endpoints.

In , while the redirection URI is included in the authorization request, others are not.
As a result, the same applies to the Authorization Request Object.

[BASIN]

RECOMMENDED
[RFC6749] [RFC6750] [RFC8414]

[RFC6749]

10.4. Risks Associated with request_uri
The introduction of request_uri introduces several attack possibilities. Consult the security
considerations in for more information regarding risks associated with
URIs.

Section 7 of [RFC3986]

10.4.1. DDoS Attack on the Authorization Server

A set of malicious clients can launch a DoS attack to the authorization server by pointing the
request_uri to a URI that returns extremely large content or is extremely slow to respond.
Under such an attack, the server may use up its resource and start failing.

Similarly, a malicious client can specify a request_uri value that itself points to an authorization
request URI that uses request_uri to cause the recursive lookup.

To prevent such an attack from succeeding, the server should a) check that the value of the
request_uri parameter does not point to an unexpected location, b) check that the media type of
the response is application/oauth-authz-req+jwt, c) implement a timeout for obtaining the
content of request_uri, and d) not perform recursive GET on the request_uri.

10.4.2. Request URI Rewrite

The value of request_uri is not signed; thus, it can be tampered with by a man-in-the-browser
attacker. Several attack possibilities arise because of this. For example, a) an attacker may create
another file that the rewritten URI points to, making it possible to request extra scope, or b) an
attacker may launch a DoS attack on a victim site by setting the value of request_uri to be that
of the victim.

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc3986#section-7

To prevent such an attack from succeeding, the server should a) check that the value of the
request_uri parameter does not point to an unexpected location, b) check that the media type of
the response is application/oauth-authz-req+jwt, and c) implement a timeout for obtaining
the content of request_uri.

10.5. Downgrade Attack
Unless the protocol used by the client and the server is locked down to use an OAuth JWT-
Secured Authorization Request (JAR), it is possible for an attacker to use RFC 6749 requests to
bypass all the protection provided by this specification.

To prevent this kind of attack, this specification defines new client metadata and server metadata
values, both named require_signed_request_object, whose values are both booleans.

When the value of it as client metadata is true, then the server reject the authorization
request from the client that does not conform to this specification. It also reject the request
if the Request Object uses an alg value of none when this server metadata value is true. If
omitted, the default value is false.

When the value of it as server metadata is true, then the server reject the authorization
request from any client that does not conform to this specification. It also reject the request
if the Request Object uses an alg value of none. If omitted, the default value is false.

Note that even if require_signed_request_object metadata values are not present, the client
 use signed Request Objects, provided that there are signing algorithms mutually supported

by the client and the server. Use of signing algorithm metadata is described in Section 4.

MUST
MUST

MUST
MUST

MAY

10.6. TLS Security Considerations
Current security considerations can be found in "Recommendations for Secure Use of Transport
Layer Security (TLS) and Datagram Transport Layer Security (DTLS)" . This supersedes
the TLS version recommendations in .

[RFC7525]
OAuth 2.0 [RFC6749]

10.7. Parameter Mismatches
Given that OAuth parameter values are being sent in two different places, as normal OAuth
parameters and as Request Object claims, implementations must guard against attacks that could
use mismatching parameter values to obtain unintended outcomes. That is the reason that the
two client ID values match, the reason that only the parameter values from the Request
Object are to be used, and the reason that neither request nor request_uri can appear in a
Request Object.

MUST

10.8. Cross-JWT Confusion
As described in , attackers may attempt to use a JWT issued for one
purpose in a context that it was not intended for. The mitigations described for these attacks can
be applied to Request Objects.

Section 2.8 of [RFC8725]

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc8725#section-2.8

One way that an attacker might attempt to repurpose a Request Object is to try to use it as a
client authentication JWT, as described in . A simple way to prevent this
is to never use the client ID as the sub value in a Request Object.

Another way to prevent cross-JWT confusion is to use explicit typing, as described in
. One would explicitly type a Request Object by including a typ Header Parameter

with the value oauth-authz-req+jwt (which is registered in Section 9.4.1). Note, however, that
requiring explicitly typed Request Objects at existing authorization servers will break most
existing deployments, as existing clients are already commonly using untyped Request Objects,
especially with OpenID Connect . However, requiring explicit typing would be a
good idea for new OAuth deployment profiles where compatibility with existing deployments is
not a consideration.

Finally, yet another way to prevent cross-JWT confusion is to use a key management regime in
which keys used to sign Request Objects are identifiably distinct from those used for other
purposes. Then, if an adversary attempts to repurpose the Request Object in another context, a
key mismatch will occur, thwarting the attack.

Section 2.2 of [RFC7523]

Section 3.11
of [RFC8725]

[OpenID.Core]

11. Privacy Considerations
When the client is being granted access to a protected resource containing personal data, both
the client and the authorization server need to adhere to Privacy Principles. "Privacy
Considerations for Internet Protocols" gives excellent guidance on the enhancement of
protocol design and implementation. The provisions listed in it should be followed.

Most of the provisions would apply to "The OAuth 2.0 Authorization Framework" and
"The OAuth 2.0 Authorization Framework: Bearer Token Usage" and are not specific to
this specification. In what follows, only the provisions specific to this specification are noted.

[RFC6973]

[RFC6749]
[RFC6750]

(1)

11.1. Collection Limitation
When the client is being granted access to a protected resource containing personal data, the
client limit the collection of personal data to that which is within the bounds of
applicable law and strictly necessary for the specified purpose(s).

It is often hard for the user to find out if the personal data asked for is strictly necessary. A
trusted third-party service can help the user by examining the client request, comparing it to the
proposed processing by the client, and certifying the request. After the certification, the client,
when making an authorization request, can submit an authorization request to the trusted third-
party service to obtain the Request Object URI. This process has two steps:

(Certification Process) The trusted third-party service examines the business process of the
client and determines what claims they need; this is the certification process. Once the
client is certified, they are issued a client credential to authenticate against to push
Request Objects to the trusted third-party service to get the request_uri.

SHOULD

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc7523#section-2.2
https://www.rfc-editor.org/rfc/rfc8725#section-3.11

(2) (Translation Process) The client uses the client credential that it got to push the Request
Object to the trusted third-party service to get the request_uri. The trusted third-party
service also verifies that the Request Object is consistent with the claims that the client is
eligible for, per the prior step.

Upon receiving such a Request Object URI in the authorization request, the authorization server
first verifies that the authority portion of the Request Object URI is a legitimate one for the
trusted third-party service. Then, the authorization server issues an HTTP GET request to the
Request Object URI. Upon connecting, the authorization server verify that the server
identity represented in the TLS certificate is legitimate for the Request Object URI. Then, the
authorization server can obtain the Request Object, which includes the client_id representing
the client.

The Consent screen indicate the client and indicate that the request has been
vetted by the trusted third-party service for the adherence to the collection limitation principle.

MUST

MUST SHOULD

11.2. Disclosure Limitation
11.2.1. Request Disclosure

This specification allows extension parameters. These may include potentially sensitive
information. Since URI query parameters may leak through various means but most notably
through referrer and browser history, if the authorization request contains a potentially
sensitive parameter, the client encrypt the Request Object using .

Where the Request Object URI method is being used, if the Request Object contains personally
identifiable or sensitive information, the request_uri be used only once and have a
short validity period, and it have sufficient entropy for the applicable security policies
unless the Request Object itself is encrypted using . The adequate shortness of the
validity and the entropy of the Request Object URI depends on the risk calculation based on the
value of the resource being protected. A general guidance for the validity time would be less than
a minute, and the Request Object URI is to include a cryptographic random value of 128 bits or
more at the time of the writing of this specification.

SHOULD JWE [RFC7516]

SHOULD
MUST

JWE [RFC7516]

11.2.2. Tracking Using Request Object URI

Even if the protected resource does not include personally identifiable information, it is
sometimes possible to identify the user through the Request Object URI if persistent static per-
user Request Object URIs are used. A third party may observe it through browser history, etc. and
start correlating the user's activity using it. In a way, it is a data disclosure as well and should be
avoided.

Therefore, per-user persistent Request Object URIs should be avoided. Single-use Request Object
URIs are one alternative.

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 21

[RFC2119]

[RFC3629]

[RFC3986]

[RFC6125]

[RFC6749]

[RFC6750]

[RFC7230]

[RFC7515]

[RFC7516]

[RFC7518]

[RFC7519]

12. References

12.1. Normative References

, , ,
, , March 1997,
.

, , , ,
, November 2003,

.

, , and ,
, , , , January 2005,

.

 and ,

,
, , March 2011,

.

, , ,
, October 2012, .

 and ,
, , , October 2012,

.

 and ,
, , , June 2014,

.

, , and , , ,
, May 2015, .

 and , , ,
, May 2015, .

, , , , May
2015, .

, , and , , ,
, May 2015, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Saint-Andre, P. J. Hodges "Representation and Verification of Domain-Based
Application Service Identity within Internet Public Key Infrastructure Using
X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)" RFC
6125 DOI 10.17487/RFC6125 <https://www.rfc-editor.org/info/
rfc6125>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI
10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token
Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-
editor.org/info/rfc6750>

Fielding, R., Ed. J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. J. Hildebrand "JSON Web Encryption (JWE)" RFC 7516 DOI
10.17487/RFC7516 <https://www.rfc-editor.org/info/rfc7516>

Jones, M. "JSON Web Algorithms (JWA)" RFC 7518 DOI 10.17487/RFC7518
<https://www.rfc-editor.org/info/rfc7518>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI
10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 22

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7519

[RFC7525]

[RFC8141]

[RFC8174]

[RFC8259]

[RFC8414]

[BASIN]

[CapURLs]

[IANA.JWT.Claims]

[IANA.MediaTypes]

[IANA.OAuth.Parameters]

[OpenID.Core]

[RFC2046]

[RFC6819]

, , and ,
,

, , , May 2015,
.

 and , , ,
, April 2017, .

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

, , and ,
, , , June 2018,

.

12.2. Informative References

, , and ,
,

, November 2013,
.

, ,
, 18 February 2014, .

, , .

, , .

, ,
.

, , , , and ,
,

, 8 November 2014,
.

 and ,
, , , November 1996,

.

, , and ,
, , , January 2013,

.

Sheffer, Y. Holz, R. P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-
editor.org/info/rfc7525>

Saint-Andre, P. J. Klensin "Uniform Resource Names (URNs)" RFC 8141 DOI
10.17487/RFC8141 <https://www.rfc-editor.org/info/rfc8141>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Jones, M. Sakimura, N. J. Bradley "OAuth 2.0 Authorization Server
Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-
editor.org/info/rfc8414>

Basin, D. Cremers, C. S. Meier "Provably Repairing the ISO/IEC 9798
Standard for Entity Authentication" Journal of Computer Security - Security and
Trust Principles, Volume 21, Issue 6, pp. 817-846 <https://
www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/BCM2012-iso9798.pdf>

Tennison, J., Ed. "Good Practices for Capability URLs" W3C First Public Working
Draft <https://www.w3.org/TR/capability-urls/>

IANA "JSON Web Token (JWT)" <https://www.iana.org/assignments/jwt>

IANA "Media Types" <https://www.iana.org/assignments/media-types>

IANA "OAuth Parameters" <https://www.iana.org/assignments/
oauth-parameters>

Sakimura, N. Bradley, J. Jones, M.B. de Medeiros, B. C. Mortimore
"OpenID Connect Core 1.0 incorporating errata set 1" OpenID Foundation
Standards <http://openid.net/specs/openid-connect-
core-1_0.html>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046
<https://www.rfc-editor.org/info/rfc2046>

Lodderstedt, T., Ed. McGloin, M. P. Hunt "OAuth 2.0 Threat Model and
Security Considerations" RFC 6819 DOI 10.17487/RFC6819
<https://www.rfc-editor.org/info/rfc6819>

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 23

https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc8141
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/BCM2012-iso9798.pdf
https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/BCM2012-iso9798.pdf
https://www.w3.org/TR/capability-urls/
https://www.iana.org/assignments/jwt
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc6819

[RFC6838]

[RFC6973]

[RFC7523]

[RFC7591]

[RFC8725]

, , and ,
, , , , January 2013,

.

, , , , , , and
, , ,

, July 2013, .

, , and ,
, ,

, May 2015, .

, , , , and ,
, , , July

2015, .

, , and , ,
, , , February 2020,

.

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Cooper, A. Tschofenig, H. Aboba, B. Peterson, J. Morris, J. Hansen, M. R.
Smith "Privacy Considerations for Internet Protocols" RFC 6973 DOI 10.17487/
RFC6973 <https://www.rfc-editor.org/info/rfc6973>

Jones, M. Campbell, B. C. Mortimore "JSON Web Token (JWT) Profile for
OAuth 2.0 Client Authentication and Authorization Grants" RFC 7523 DOI
10.17487/RFC7523 <https://www.rfc-editor.org/info/rfc7523>

Richer, J., Ed. Jones, M. Bradley, J. Machulak, M. P. Hunt "OAuth 2.0
Dynamic Client Registration Protocol" RFC 7591 DOI 10.17487/RFC7591

<https://www.rfc-editor.org/info/rfc7591>

Sheffer, Y. Hardt, D. M. Jones "JSON Web Token Best Current Practices"
BCP 225 RFC 8725 DOI 10.17487/RFC8725 <https://www.rfc-
editor.org/info/rfc8725>

Acknowledgements
The following people contributed to the creation of this document in the OAuth Working Group
and other IETF roles. (Affiliations at the time of the contribution are used.)

 (Amazon), (Google), , (as AD),
 (Ping Identity), (as AD), (as AD),

 (Connect2id), (as AD), (as GENART), (as AD),
 (as SECDIR), (as AD), (as OPSDIR),

(as SECDIR), (yes.com), , (Telstra),
 (as AD), (Deutsche Telecom), (Google),

(as AD), (Facebook), (Google), (Facebook),
 (Auth0), (ARM), (as AD), and (as AD).

The following people contributed to creating this document through the
.

 (Ping Identity), (AOL), (Mixi), (Illumila),
 (Google), (TACT), and (MITRE).

Annabelle Backman Dirk Balfanz Sergey Beryozkin Ben Campbell
Brian Campbell Roman Danyliw Martin Duke Vladimir
Dzhuvinov Lars Eggert Joel Halpern Benjamin Kaduk
Stephen Kent Murray Kucherawy Warren Kumari Watson Ladd

Torsten Lodderstedt Jim Manico James H. Manger Kathleen
Moriarty Axel Nennker John Panzer Francesca Palombini

David Recordon Marius Scurtescu Luke Shepard Filip
Skokan Hannes Tschofenig Éric Vyncke Robert Wilton

OpenID Connect Core 1.0
[OpenID.Core]

Brian Campbell George Fletcher Ryo Itou Edmund Jay
Breno de Medeiros Hideki Nara Justin Richer

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 24

https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725

Authors' Addresses
Nat Sakimura
NAT.Consulting
2-22-17 Naka

, Kunitachi Tokyo 186-0004
Japan

 +81-42-580-7401 Phone:
 nat@nat.consulting Email:

 https://nat.sakimura.org/ URI:

John Bradley
Yubico
Sucursal Talagante
Casilla 177
Talagante
RM
Chile

 +1.202.630.5272 Phone:
 rfc9101@ve7jtb.com Email:

 http://www.thread-safe.com/ URI:

Michael B. Jones
Microsoft
One Microsoft Way

, Redmond Washington 98052
United States of America

 mbj@microsoft.com Email:
 https://self-issued.info/ URI:

RFC 9101 OAuth JAR August 2021

Sakimura, et al. Standards Track Page 25

tel:+81-42-580-7401
mailto:nat@nat.consulting
https://nat.sakimura.org/
tel:+1.202.630.5272
mailto:rfc9101@ve7jtb.com
http://www.thread-safe.com/
mailto:mbj@microsoft.com
https://self-issued.info/

	RFC 9101
	The OAuth 2.0 Authorization Framework: JWT-Secured Authorization Request (JAR)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Terminology
	2.1. Request Object
	2.2. Request Object URI

	3. Symbols and Abbreviated Terms
	4. Request Object
	5. Authorization Request
	5.1. Passing a Request Object by Value
	5.2. Passing a Request Object by Reference
	5.2.1. URI Referencing the Request Object
	5.2.2. Request Using the "request_uri" Request Parameter
	5.2.3. Authorization Server Fetches Request Object

	6. Validating JWT-Based Requests
	6.1. JWE Encrypted Request Object
	6.2. JWS-Signed Request Object
	6.3. Request Parameter Assembly and Validation

	7. Authorization Server Response
	8. TLS Requirements
	9. IANA Considerations
	9.1. OAuth Parameters Registration
	9.2. OAuth Authorization Server Metadata Registry
	9.3. OAuth Dynamic Client Registration Metadata Registry
	9.4. Media Type Registration
	9.4.1. Registry Contents

	10. Security Considerations
	10.1. Choice of Algorithms
	10.2. Request Source Authentication
	10.3. Explicit Endpoints
	10.4. Risks Associated with request_uri
	10.4.1. DDoS Attack on the Authorization Server
	10.4.2. Request URI Rewrite

	10.5. Downgrade Attack
	10.6. TLS Security Considerations
	10.7. Parameter Mismatches
	10.8. Cross-JWT Confusion

	11. Privacy Considerations
	11.1. Collection Limitation
	11.2. Disclosure Limitation
	11.2.1. Request Disclosure
	11.2.2. Tracking Using Request Object URI

	12. References
	12.1. Normative References
	12.2. Informative References

	Acknowledgements
	Authors' Addresses

