
RFC 9054

CBOR Object Signing and Encryption (COSE): Hash

Algorithms

Abstract

The CBOR Object Signing and Encryption (COSE) syntax (see RFC 9052) does not define any direct

methods for using hash algorithms. There are, however, circumstances where hash algorithms

are used, such as indirect signatures, where the hash of one or more contents are signed, and

identification of an X.509 certificate or other object by the use of a fingerprint. This document

defines hash algorithms that are identified by COSE algorithm identifiers.

Stream:

RFC:

Category:

Published:

ISSN:

Author:

Internet Engineering Task Force (IETF)

9054

Informational

August 2022

2070-1721

 J. Schaad

August Cellars

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational

purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Not all documents approved by

the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9054

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Schaad Informational Page 1

https://www.rfc-editor.org/rfc/rfc9054
https://www.rfc-editor.org/info/rfc9054
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Terminology

2. Hash Algorithm Usage

2.1. Example CBOR Hash Structure

3. Hash Algorithm Identifiers

3.1. SHA-1 Hash Algorithm

3.2. SHA-2 Hash Algorithms

3.3. SHAKE Algorithms

4. IANA Considerations

4.1. COSE Algorithm Registry

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Author's Address

1. Introduction

The CBOR Object Signing and Encryption (COSE) syntax does not define any direct

methods for the use of hash algorithms. It also does not define a structure syntax that is used to

encode a digested object structure along the lines of the DigestedData ASN.1 structure in .

This omission was intentional, as a structure consisting of just a digest identifier, the content, and

a digest value does not, by itself, provide any strong security service. Additionally, an application

is going to be better off defining this type of structure so that it can include any additional data

that needs to be hashed, as well as methods of obtaining the data.

[RFC9052]

[CMS]

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 2

2. Hash Algorithm Usage

As noted in the previous section, hash functions can be used for a variety of purposes. Some of

these purposes require that a hash function be cryptographically strong. These include direct

and indirect signatures -- that is, using the hash as part of the signature or using the hash as part

of the body to be signed. Other uses of hash functions may not require the same level of strength.

This document contains some hash functions that are not designed to be used for cryptographic

operations. An application that is using a hash function needs to carefully evaluate exactly what

hash properties are needed and which hash functions are going to provide them. Applications

should also make sure that the ability to change hash functions is part of the base design, as

cryptographic advances are sure to reduce the strength of any given hash function .

A hash function is a map from one, normally large, bit string to a second, usually smaller, bit

string. As the number of possible input values is far greater than the number of possible output

values, it is inevitable that there are going to be collisions. The trick is to make sure that it is

difficult to find two values that are going to map to the same output value. A "Collision Attack" is

one where an attacker can find two different messages that have the same hash value. A hash

function that is susceptible to practical collision attacks be used for a cryptographic

While the above is true, there are some cases where having some standard hash algorithms

defined for COSE with a common identifier makes a great deal of sense. Two of the cases where

these are going to be used are:

Indirect signing of content, and

Object identification.

Indirect signing of content is a paradigm where the content is not directly signed, but instead a

hash of the content is computed, and that hash value -- along with an identifier for the hash

algorithm -- is included in the content that will be signed. Indirect signing allows for a signature

to be validated without first downloading all of the content associated with the signature. Rather,

the signature can be validated on all of the hash values and pointers to the associated contents;

those associated parts can then be downloaded, then the hash value of that part can be computed

and compared to the hash value in the signed content. This capability can be of even greater

importance in a constrained environment, as not all of the content signed may be needed by the

device. An example of how this is used can be found in .

The use of hashes to identify objects is something that has been very common. One of the

primary things that has been identified by a hash function in a secure message is a certificate.

Two examples of this can be found in and the COSE equivalents in .

•

•

Section 5.4 of [SUIT-MANIFEST]

[ESS] [COSE-x509]

1.1. Requirements Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[BCP201]

SHOULD NOT

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 3

https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-19#section-5.4

purpose. The discovery of theoretical collision attacks against a given hash function

trigger protocol maintainers and users to review the continued suitability of the algorithm if

alternatives are available and migration is viable. The only reason such a hash function is used is

when there is absolutely no other choice (e.g., a Hardware Security Module (HSM) that cannot be

replaced), and only after looking at the possible security issues. Cryptographic purposes would

include the creation of signatures or the use of hashes for indirect signatures. These functions

may still be usable for noncryptographic purposes.

An example of a noncryptographic use of a hash is filtering from a collection of values to find a

set of possible candidates; the candidates can then be checked to see if they can successfully be

used. A simple example of this is the classic fingerprint of a certificate. If the fingerprint is used

to verify that it is the correct certificate, then that usage is a cryptographic one and is subject to

the warning above about collision attack. If, however, the fingerprint is used to sort through a

collection of certificates to find those that might be used for the purpose of verifying a signature,

a simple filter capability is sufficient. In this case, one still needs to confirm that the public key

validates the signature (and that the certificate is trusted), and all certificates that don't contain a

key that validates the signature can be discarded as false positives.

To distinguish between these two cases, a new value in the Recommended column of the "COSE

Algorithms" registry has been added. "Filter Only" indicates that the only purpose of a hash

function should be to filter results; it is not intended for applications that require a

cryptographically strong algorithm.

2.1. Example CBOR Hash Structure

 did not provide a default structure for holding a hash value both because no separate

hash algorithms were defined and because the way the structure is set up is frequently

application specific. There are four fields that are often included as part of a hash structure:

The hash algorithm identifier.

The hash value.

A pointer to the value that was hashed. This could be a pointer to a file, an object that can be

obtained from the network, a pointer to someplace in the message, or something very

application specific.

Additional data. This can be something as simple as a random value (i.e., salt) to make

finding hash collisions slightly harder (because the payload handed to the application could

have been selected to have a collision), or as complicated as a set of processing instructions

that is used with the object that is pointed to. The additional data can be dealt with in a

number of ways, prepending or appending to the content, but it is strongly suggested that

either it be a fixed known size, or the lengths of the pieces being hashed be included so that

the resulting byte string has a unique interpretation as the additional data. (Encoding as a

CBOR array accomplishes this requirement.)

An example of a structure that permits all of the above fields to exist would look like the

following:

SHOULD

[COSE]

•

•

•

•

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 4

Below is an alternative structure that could be used in situations where one is searching a group

of objects for a matching hash value. In this case, the location would not be needed, and adding

extra data to the hash would be counterproductive. This results in a structure that looks like this:

3. Hash Algorithm Identifiers

3.1. SHA-1 Hash Algorithm

The SHA-1 hash algorithm was designed by the United States National Security Agency

and published in 1995. Since that time, a large amount of cryptographic analysis has been

applied to this algorithm, and a successful collision attack has been created . The

IETF formally started discouraging the use of SHA-1 in .

Despite these facts, there are still times where SHA-1 needs to be used; therefore, it makes sense

to assign a code point for the use of this hash algorithm. Some of these situations involve historic

HSMs where only SHA-1 is implemented; in other situations, the SHA-1 value is used for the

purpose of filtering; thus, the collision-resistance property is not needed.

Because of the known issues for SHA-1 and the fact that it should no longer be used, the

algorithm will be registered with the recommendation of "Filter Only". This provides guidance

about when the algorithm is safe for use, while discouraging usage where it is not safe.

The COSE capabilities for this algorithm is an empty array.

COSE_Hash_V = (
 1 : int / tstr, # Algorithm identifier
 2 : bstr, # Hash value
 ? 3 : tstr, # Location of object that was hashed
 ? 4 : any # object containing other details and things
)

COSE_Hash_Find = [
 hashAlg : int / tstr,
 hashValue : bstr
]

[RFC3174]

[SHA-1-collision]

[RFC6194]

Name Value Description Capabilities Reference Recommended

SHA-1 -14 SHA-1 Hash [] RFC 9054 Filter Only

Table 1: SHA-1 Hash Algorithm

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 5

3.2. SHA-2 Hash Algorithms

The family of SHA-2 hash algorithms was designed by the United States National

Security Agency and published in 2001. Since that time, some additional algorithms have been

added to the original set to deal with length-extension attacks and some performance issues.

While the SHA-3 hash algorithms have been published since that time, the SHA-2 algorithms are

still broadly used.

There are a number of different parameters for the SHA-2 hash functions. The set of hash

functions that has been chosen for inclusion in this document is based on those different

parameters and some of the trade-offs involved.

SHA-256/64 provides a truncated hash. The length of the truncation is designed to allow for

smaller transmission size. The trade-off is that the odds that a collision will occur increase

proportionally. Use of this hash function requires analysis of the potential problems that

could result from a collision, or it must be limited to where the purpose of the hash is

noncryptographic.

The latter is the case for some of the scenarios identified in , specifically, for the

cases when the hash value is used to select among possible certificates: if there are multiple

choices remaining, then each choice can be tested by using the public key.

SHA-256 is probably the most common hash function used currently. SHA-256 is an efficient

hash algorithm for 32-bit hardware.

SHA-384 and SHA-512 hash functions are efficient for 64-bit hardware.

SHA-512/256 provides a hash function that runs more efficiently on 64-bit hardware but

offers the same security level as SHA-256.

NOTE: SHA-256/64 is a simple truncation of SHA-256 to 64 bits defined in this

specification. SHA-512/256 is a modified variant of SHA-512 truncated to 256 bits, as

defined in .

The COSE capabilities array for these algorithms is empty.

[FIPS-180-4]

•

[COSE-x509]

•

•

•

[FIPS-180-4]

Name Value Description Capabilities Reference Recommended

SHA-256/64 -15 SHA-2 256-bit Hash

truncated to 64-bits

[] RFC 9054 Filter Only

SHA-256 -16 SHA-2 256-bit Hash [] RFC 9054 Yes

SHA-384 -43 SHA-2 384-bit Hash [] RFC 9054 Yes

SHA-512 -44 SHA-2 512-bit Hash [] RFC 9054 Yes

SHA-512/256 -17 [] RFC 9054 Yes

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 6

3.3. SHAKE Algorithms

The family of SHA-3 hash algorithms was the result of a competition run by NIST. The

pair of algorithms known as SHAKE-128 and SHAKE-256 are the instances of SHA-3 that are

currently being standardized in the IETF. This is the reason for including these algorithms in this

document.

The SHA-3 hash algorithms have a significantly different structure than the SHA-2 hash

algorithms.

Unlike the SHA-2 hash functions, no algorithm identifier is created for shorter lengths. The length

of the hash value stored is 256 bits for SHAKE-128 and 512 bits for SHAKE-256.

The COSE capabilities array for these algorithms is empty.

Name Value Description Capabilities Reference Recommended

SHA-2 512-bit Hash

truncated to 256-

bits

Table 2: SHA-2 Hash Algorithms

[FIPS-202]

Name Value Description Capabilities Reference Recommended

SHAKE128 -18 SHAKE-128 256-bit

Hash Value

[] RFC 9054 Yes

SHAKE256 -45 SHAKE-256 512-bit

Hash Value

[] RFC 9054 Yes

Table 3: SHAKE Hash Functions

4. IANA Considerations

4.1. COSE Algorithm Registry

IANA has registered the following algorithms in the "COSE Algorithms" registry.

The SHA-1 hash function found in Table 1.

The set of SHA-2 hash functions found in Table 2.

The set of SHAKE hash functions found in Table 3.

Many of the hash values produced are relatively long; as such, use of a two-byte algorithm

identifier seems reasonable. SHA-1 is tagged as "Filter Only", so a longer algorithm identifier is

appropriate even though it is a shorter hash value.

•

•

•

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 7

https://www.iana.org/assignments/cose/

[FIPS-180-4]

[FIPS-202]

[RFC2119]

[RFC3174]

[RFC8174]

6. References

6.1. Normative References

, , , ,

August 2015, .

,

, , , August 2015,

.

, , ,

, , March 1997,

.

 and , , ,

, September 2001,

.

, ,

, , , May 2017,

.

IANA has added the value of "Filter Only" to the set of legal values for the Recommended column.

This value is only to be used for hash functions and indicates that it is not to be used for purposes

that require collision resistance. As a result of this addition, IANA has added this document as a

reference for the "COSE Algorithms" registry.

5. Security Considerations

Protocols need to perform a careful analysis of the properties of a hash function that are needed

and how they map onto the possible attacks. In particular, one needs to distinguish between

those uses that need the cryptographic properties, such as collision resistance, and uses that only

need properties that correspond to possible object identification. The different attacks

correspond to who or what is being protected: is it the originator that is the attacker or a third

party? This is the difference between collision resistance and second pre-image resistance. As a

general rule, longer hash values are "better" than short ones, but trade-offs of transmission size,

timeliness, and security all need to be included as part of this analysis. In many cases, the value

being hashed is a public value and, as such, (first) pre-image resistance is not part of this

analysis.

Algorithm agility needs to be considered a requirement for any use of hash functions .

As with any cryptographic function, hash functions are under constant attack, and the

cryptographic strength of hash algorithms will be reduced over time.

[BCP201]

NIST "Secure Hash Standard" FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4

<https://doi.org/10.6028/NIST.FIPS.180-4>

Dworkin, M.J. "SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions" FIPS PUB 202 DOI 10.6028/NIST.FIPS.202

<https://doi.org/10.6028/NIST.FIPS.202>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Eastlake 3rd, D. P. Jones "US Secure Hash Algorithm 1 (SHA1)" RFC 3174

DOI 10.17487/RFC3174 <https://www.rfc-editor.org/info/

rfc3174>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 8

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC9052]

[BCP201]

[CMS]

[COSE]

[COSE-x509]

[ESS]

[RFC6194]

[SHA-1-collision]

[SUIT-MANIFEST]

,

, , , , August 2022,

.

6.2. Informative References

,

, , , November 2015,

.

, , , ,

, September 2009, .

, , ,

, July 2017, .

,

, ,

, 14 December 2020,

.

, , ,

, June 1999, .

, , , and ,

, , ,

March 2011, .

, , , , and ,

, February 2017,

.

, , , and ,

, ,

, 9 August 2022,

.

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and

Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://

www.rfc-editor.org/info/rfc9052>

Housley, R. "Guidelines for Cryptographic Algorithm Agility and Selecting

Mandatory-to-Implement Algorithms" BCP 201 RFC 7696

<https://www.rfc-editor.org/info/bcp201>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI

10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Schaad, J. "CBOR Object Signing and Encryption (COSE)" RFC 8152 DOI

10.17487/RFC8152 <https://www.rfc-editor.org/info/rfc8152>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Header parameters for

carrying and referencing X.509 certificates" Work in Progress Internet-Draft,

draft-ietf-cose-x509-08 <https://datatracker.ietf.org/doc/html/

draft-ietf-cose-x509-08>

Hoffman, P., Ed. "Enhanced Security Services for S/MIME" RFC 2634 DOI

10.17487/RFC2634 <https://www.rfc-editor.org/info/rfc2634>

Polk, T. Chen, L. Turner, S. P. Hoffman "Security Considerations for the

SHA-0 and SHA-1 Message-Digest Algorithms" RFC 6194 DOI 10.17487/RFC6194

<https://www.rfc-editor.org/info/rfc6194>

Stevens, M. Bursztein, E. Karpman, P. Albertini, A. Y. Markov "The first

collision for full SHA-1" <https://shattered.io/static/

shattered.pdf>

Moran, B. Tschofenig, H. Birkholz, H. K. Zandberg "A Concise Binary

Object Representation (CBOR)-based Serialization Format for the Software

Updates for Internet of Things (SUIT) Manifest" Work in Progress Internet-

Draft, draft-ietf-suit-manifest-19 <https://datatracker.ietf.org/doc/

html/draft-ietf-suit-manifest-19>

Author's Address

Jim Schaad

August Cellars

RFC 9054 COSE Hashes August 2022

Schaad Informational Page 9

https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/bcp201
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/draft-ietf-cose-x509-08
https://datatracker.ietf.org/doc/html/draft-ietf-cose-x509-08
https://www.rfc-editor.org/info/rfc2634
https://www.rfc-editor.org/info/rfc6194
https://shattered.io/static/shattered.pdf
https://shattered.io/static/shattered.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-19
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-19

	RFC 9054
	CBOR Object Signing and Encryption (COSE): Hash Algorithms
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology

	2. Hash Algorithm Usage
	2.1. Example CBOR Hash Structure

	3. Hash Algorithm Identifiers
	3.1. SHA-1 Hash Algorithm
	3.2. SHA-2 Hash Algorithms
	3.3. SHAKE Algorithms

	4. IANA Considerations
	4.1. COSE Algorithm Registry

	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Author's Address

 CBOR Object Signing and Encryption (COSE): Hash Algorithms

 August Cellars

 Security
 COSE Working Group
 SHA-1 Hash Algorithm
 SHA-2 HAsh Algorithm
 SHAKE Algorithm

 The CBOR Object Signing and
	Encryption (COSE) syntax (see RFC 9052) does not define any
	direct methods for using hash algorithms.
 There are, however, circumstances where hash algorithms are used, such
	as indirect signatures, where the hash of one or more contents are
	signed, and identification of an X.509 certificate or other object by the
	use of a fingerprint.
 This document defines hash algorithms that are identified by COSE algorithm identifiers.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Requirements Terminology

 . Hash Algorithm Usage

 .
 Example CBOR Hash Structure

 . Hash Algorithm Identifiers

 . SHA-1 Hash Algorithm

 . SHA-2 Hash Algorithms

 . SHAKE Algorithms

 . IANA Considerations

 . COSE Algorithm Registry

 . Security Considerations

 . References

 . Normative References

 . Informative References

 Author's Address

 Introduction

 The CBOR Object Signing and Encryption (COSE) syntax does not define any direct methods for the use of hash algorithms.
 It also does not define a structure syntax that is used to encode a digested object structure along the lines of the DigestedData ASN.1 structure in .
 This omission was intentional, as a structure consisting of just a digest identifier, the content, and a digest value does not, by itself, provide any strong security service.
 Additionally, an application is going to be better off defining this type of structure so that it can include any additional data that needs to be hashed, as well as methods of obtaining the data.

 While the above is true, there are some cases where having some standard hash algorithms defined for COSE with a common identifier makes a great deal of sense.
 Two of the cases where these are going to be used are:

 Indirect signing of content, and

 Object identification.

 Indirect signing of content is a paradigm where the content is not
	directly signed, but instead a hash of the content is computed, and
	that hash value -- along with an identifier for the hash algorithm -- is
	included in the content that will be signed.
 Indirect signing allows for a signature to be validated without first
	downloading all of the content associated with the signature.
 Rather, the signature can be validated on all of the hash values and
	pointers to the associated contents; those associated parts can then
	be downloaded, then the hash value of that part can be computed and
	compared to the hash value in the signed content.
 This capability can be of even greater importance in a constrained
	environment, as not all of the content signed may be needed by the
	device. An example of how this is used can be found in .

 The use of hashes to identify objects is something that has been very common.
 One of the primary things that has been identified by a hash function in a secure message is a certificate.
 Two examples of this can be found in and the COSE equivalents in .

 Requirements Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Hash Algorithm Usage

 As noted in the previous section, hash functions can be used for a
	variety of purposes.
 Some of these purposes require that a hash function be cryptographically strong.
 These include direct and indirect signatures -- that is, using the
	hash as part of the signature or using the hash as part of the body to
	be signed.
 Other uses of hash functions may not require the same level of strength.

 This document contains some hash functions that are not designed to be used for cryptographic operations.
 An application that is using a hash function needs to carefully evaluate exactly what hash properties are needed and which hash functions are going to provide them.
 Applications should also make sure that the ability to change hash
functions is part of the base design, as cryptographic advances are sure to
reduce the strength of any given hash function .

 A hash function is a map from one, normally large, bit string to a second, usually smaller, bit string.
 As the number of possible input values is far greater than the number of possible output values, it is inevitable that there are going to be collisions.
 The trick is to make sure that it is difficult to find two values that are going to map to the same output value.
 A "Collision Attack" is one where an attacker can find two different messages that have the same hash value.
 A hash function that is susceptible to practical collision attacks SHOULD NOT be used for a cryptographic purpose.
 The discovery of theoretical collision attacks against a given hash
	function SHOULD trigger protocol maintainers and users
	to review the continued suitability of the algorithm if
	alternatives are available and migration is viable.
 The only reason such a hash function is used is when there is
	absolutely no other choice (e.g., a Hardware Security Module (HSM)
	that cannot be replaced), and only after looking at the possible
	security issues.
 Cryptographic purposes would include the creation of signatures or the use of hashes for indirect signatures.
 These functions may still be usable for noncryptographic purposes.

 An example of a noncryptographic use of a hash is filtering from a
	collection of values to find a set of possible candidates; the
	candidates can then be checked to see if they can successfully be
	used.
 A simple example of this is the classic fingerprint of a certificate.
 If the fingerprint is used to verify that it is the correct certificate, then that usage is a cryptographic one and is subject to the warning above about collision attack.
 If, however, the fingerprint is used to sort through a collection of certificates to find those that might be used for the purpose of verifying a signature, a simple filter capability is sufficient.
 In this case, one still needs to confirm that the public key validates
the signature (and that the certificate is trusted), and all certificates that don't contain a key that validates the signature can be discarded as false positives.

 To distinguish between these two cases, a new value in the Recommended
	column of the "COSE Algorithms" registry has been added.
 "Filter Only" indicates that the only purpose of a hash function
	should be to filter results; it is not intended for applications that
	require a cryptographically strong algorithm.

 Example CBOR Hash Structure

 did not provide a default structure for
	 holding a hash value both because no separate hash algorithms
	 were defined and because the way the structure is set up is frequently
	 application specific.
 There are four fields that are often included as part of a hash structure:

 The hash algorithm identifier.

 The hash value.

 A pointer to the value that was hashed.
 This could be a pointer to a file, an object that can be obtained
	 from the network, a pointer to someplace in the message, or
	 something very application specific.

 Additional data. This can be something as simple as a random value
	 (i.e., salt) to make finding hash collisions slightly harder (because
	 the payload handed to the application could have been selected to
	 have a collision), or as complicated as a set of processing
	 instructions that is used with the object that is pointed to.
 The additional data can be dealt with in a number of ways,
	 prepending or appending to the content, but it is strongly
	 suggested that either it be a fixed known size, or the lengths of
	 the pieces being hashed be included so that the resulting byte
 string has a unique interpretation as the additional data.
 (Encoding as a CBOR array accomplishes this requirement.)

 An example of a structure that permits all of the above fields to exist would look like the following:

COSE_Hash_V = (
 1 : int / tstr, # Algorithm identifier
 2 : bstr, # Hash value
 ? 3 : tstr, # Location of object that was hashed
 ? 4 : any # object containing other details and things
)

 Below is an alternative structure that could be used in situations where one is searching a group of objects for a matching hash value.
 In this case, the location would not be needed, and adding extra data to the hash would be counterproductive.
 This results in a structure that looks like this:

COSE_Hash_Find = [
 hashAlg : int / tstr,
 hashValue : bstr
]

 Hash Algorithm Identifiers

 SHA-1 Hash Algorithm

 The SHA-1 hash algorithm was designed by
	 the United States National Security Agency and published in
	 1995. Since that time, a large amount of cryptographic analysis
	 has been applied to this algorithm, and a successful collision
	 attack has been created .
 The IETF formally started discouraging the use of SHA-1 in .

 Despite these facts, there are still times where SHA-1 needs to be
	 used; therefore, it makes sense to assign a code point for the
	 use of this hash algorithm.
 Some of these situations involve historic HSMs where only SHA-1 is
	 implemented; in other situations, the SHA-1 value is used
	 for the purpose of filtering; thus, the collision-resistance
	 property is not needed.

 Because of the known issues for SHA-1 and the fact that it should no longer be used, the algorithm will be registered with the recommendation of "Filter Only".
 This provides guidance about when the algorithm is safe for use, while discouraging usage where it is not safe.

 The COSE capabilities for this algorithm is an empty array.

 SHA-1 Hash Algorithm

 Name
 Value
 Description
 Capabilities
 Reference
 Recommended

 SHA-1
 -14
 SHA-1 Hash
 []
 RFC 9054
 Filter Only

 SHA-2 Hash Algorithms

 The family of SHA-2 hash algorithms was designed by the United States National Security Agency and published in 2001.
 Since that time, some additional algorithms have been added to the original set to deal with length-extension attacks and some performance issues.
 While the SHA-3 hash algorithms have been published since that time, the SHA-2 algorithms are still broadly used.

 There are a number of different parameters for the SHA-2 hash functions.
 The set of hash functions that has been chosen for inclusion in
	 this document is based on those different parameters and some of
	 the trade-offs involved.

 SHA-256/64 provides a truncated hash.
 The length of the truncation is designed to allow for smaller transmission size.
 The trade-off is that the odds that a collision will occur increase proportionally.
 Use of this hash function requires analysis of the potential
	 problems that could result from a collision, or it must be
	 limited to where the purpose of the hash is noncryptographic.

 The latter is the case for some of the scenarios identified in ,
 specifically, for the cases when the hash value is used to select among possible certificates: if
		there are multiple choices remaining, then each choice can be
		tested by using the public key.

 SHA-256 is probably the most common hash function used currently.
 SHA-256 is an efficient hash algorithm for 32-bit hardware.

 SHA-384 and SHA-512 hash functions are efficient for 64-bit hardware.

 SHA-512/256 provides a hash function that runs more efficiently on 64-bit hardware but offers the same security level as SHA-256.

 NOTE: SHA-256/64 is a simple truncation of SHA-256 to 64 bits defined in this specification. SHA-512/256 is a modified variant of SHA-512 truncated to 256 bits, as defined in .

 The COSE capabilities array for these algorithms is empty.

 SHA-2 Hash Algorithms

 Name
 Value
 Description
 Capabilities
 Reference
 Recommended

 SHA-256/64
 -15
 SHA-2 256-bit Hash truncated to 64-bits
 []
 RFC 9054
 Filter Only

 SHA-256
 -16
 SHA-2 256-bit Hash
 []
 RFC 9054
 Yes

 SHA-384
 -43
 SHA-2 384-bit Hash
 []
 RFC 9054
 Yes

 SHA-512
 -44
 SHA-2 512-bit Hash
 []
 RFC 9054
 Yes

 SHA-512/256
 -17
 SHA-2 512-bit Hash truncated to 256-bits
 []
 RFC 9054
 Yes

 SHAKE Algorithms

 The family of SHA-3 hash algorithms was the result of a competition run by NIST.
 The pair of algorithms known as SHAKE-128 and SHAKE-256 are the instances of SHA-3 that are currently being standardized in the IETF.

 This is the reason for including these algorithms in this document.

 The SHA-3 hash algorithms have a significantly different structure than the SHA-2 hash algorithms.

 Unlike the SHA-2 hash functions, no algorithm identifier is created for shorter lengths.
 The length of the hash value stored is 256 bits for SHAKE-128 and
	 512 bits for SHAKE-256.

 The COSE capabilities array for these algorithms is empty.

 SHAKE Hash Functions

 Name
 Value
 Description
 Capabilities
 Reference
 Recommended

 SHAKE128
 -18
 SHAKE-128 256-bit Hash Value
 []
 RFC 9054
 Yes

 SHAKE256
 -45
 SHAKE-256 512-bit Hash Value
 []
 RFC 9054
 Yes

 IANA Considerations

 COSE Algorithm Registry

 IANA has registered the following algorithms in the "COSE Algorithms" registry.

 The SHA-1 hash function found in .

 The set of SHA-2 hash functions found in .

 The set of SHAKE hash functions found in .

 Many of the hash values produced are relatively long; as such,
	 use of a two-byte algorithm identifier seems reasonable.
 SHA-1 is tagged as "Filter Only", so a longer algorithm identifier is appropriate even though it is a shorter hash value.

 IANA has added the value of "Filter Only" to the set of
	 legal values for the Recommended column.
 This value is only to be used for hash functions and indicates that
	 it is not to be used for purposes that require collision
	 resistance. As a result of this addition, IANA has added this document as a reference for the "COSE Algorithms" registry.

 Security Considerations

 Protocols need to perform a careful analysis of the properties of a hash function that are needed and how they map onto the possible attacks.
 In particular, one needs to distinguish between those uses that need the cryptographic properties, such as collision resistance, and uses that only need properties that correspond to possible object identification.
 The different attacks correspond to who or what is being protected: is it the originator that is the attacker or a third party?
 This is the difference between collision resistance and second pre-image resistance.
 As a general rule, longer hash values are "better" than short ones, but trade-offs of transmission size, timeliness, and security all need to be included as part of this analysis.
 In many cases, the value being hashed is a public value and, as
such, (first) pre-image resistance is not part of this analysis.

 Algorithm agility needs to be considered a requirement for any use of hash functions .
 As with any cryptographic function, hash functions are under
	 constant attack, and the cryptographic strength of hash algorithms
	 will be reduced over time.

 References

 Normative References

 Secure Hash Standard

 NIST

 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

 National Institute of Standards and Technology

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 US Secure Hash Algorithm 1 (SHA1)

 The purpose of this document is to make the SHA-1 (Secure Hash Algorithm 1) hash algorithm conveniently available to the Internet community. This memo provides information for the Internet community.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 CBOR Object Signing and Encryption (COSE): Structures and Process

 Informative References

 Guidelines for Cryptographic Algorithm Agility and Selecting Mandatory-to-Implement Algorithms

 Cryptographic Message Syntax (CMS)

 This document describes the Cryptographic Message Syntax (CMS). This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. [STANDARDS-TRACK]

 CBOR Object Signing and Encryption (COSE)

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need for the ability to have basic security services defined for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.

 CBOR Object Signing and Encryption (COSE): Header parameters for carrying and referencing X.509 certificates

 August Cellars

 The CBOR Signing And Encrypted Message (COSE) structure uses
 references to keys in general. For some algorithms, additional
 properties are defined which carry parameters relating to keys as
 needed. The COSE Key structure is used for transporting keys outside
 of COSE messages. This document extends the way that keys can be
 identified and transported by providing attributes that refer to or
 contain X.509 certificates.

 Work in Progress

 Enhanced Security Services for S/MIME

 This document describes four optional security service extensions for S/MIME. [STANDARDS-TRACK]

 Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms

 This document includes security considerations for the SHA-0 and SHA-1 message digest algorithm. This document is not an Internet Standards Track specification; it is published for informational purposes.

 The first collision for full SHA-1

 A Concise Binary Object Representation (CBOR)-based Serialization Format for the Software Updates for Internet of Things (SUIT) Manifest

 Arm Limited

 Arm Limited

 Fraunhofer SIT

 Inria

 This specification describes the format of a manifest. A manifest is
 a bundle of metadata about code/data obtained by a recipient (chiefly
 the firmware for an IoT device), where to find the that code/data,
 the devices to which it applies, and cryptographic information
 protecting the manifest. Software updates and Trusted Invocation
 both tend to use sequences of common operations, so the manifest
 encodes those sequences of operations, rather than declaring the
 metadata.

 Work in Progress

 Author's Address

 August Cellars

