
RFC 8956
Dissemination of Flow Specification Rules for IPv6

Abstract
"Dissemination of Flow Specification Rules" (RFC 8955) provides a Border Gateway Protocol
(BGP) extension for the propagation of traffic flow information for the purpose of rate limiting or
filtering IPv4 protocol data packets.

This document extends RFC 8955 with IPv6 functionality. It also updates RFC 8955 by changing
the IANA Flow Spec Component Types registry.

Stream: Internet Engineering Task Force (IETF)
RFC: 8956
Updates: 8955
Category: Standards Track
Published: December 2020
ISSN: 2070-1721
Authors: C. Loibl, Ed.

next layer Telekom GmbH
R. Raszuk, Ed.
NTT Network Innovations

S. Hares, Ed.
Huawei

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8956

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Loibl, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8956
https://www.rfc-editor.org/rfc/rfc8955
https://www.rfc-editor.org/info/rfc8956
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Definitions of Terms Used in This Memo

2. IPv6 Flow Specification Encoding in BGP

3. IPv6 Flow Specification Components

3.1. Type 1 - Destination IPv6 Prefix

3.2. Type 2 - Source IPv6 Prefix

3.3. Type 3 - Upper-Layer Protocol

3.4. Type 7 - ICMPv6 Type

3.5. Type 8 - ICMPv6 Code

3.6. Type 12 - Fragment

3.7. Type 13 - Flow Label (new)

3.8. Encoding Examples

4. Ordering of Flow Specifications

5. Validation Procedure

6. IPv6 Traffic Filtering Action Changes

6.1. Redirect IPv6 (rt-redirect-ipv6) Type 0x000d

7. Security Considerations

8. IANA Considerations

8.1. Flow Spec IPv6 Component Types

8.2. IPv6-Address-Specific Extended Community Flow Spec IPv6 Actions

9. Normative References

Appendix A. Example Python Code: flow_rule_cmp_v6

Acknowledgments

Contributors

Authors' Addresses

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 2

2. IPv6 Flow Specification Encoding in BGP
 defines SAFIs 133 (Dissemination of Flow Specification rules) and 134 (L3VPN

Dissemination of Flow Specification rules) in order to carry the corresponding Flow
Specification.

Implementations wishing to exchange IPv6 Flow Specifications use BGP's Capability
Advertisement facility to exchange the Multiprotocol Extension Capability Code (Code 1), as
defined in . The (AFI, SAFI) pair carried in the Multiprotocol Extension Capability
be (AFI=2, SAFI=133) for IPv6 Flow Specification rules and (AFI=2, SAFI=134) for L3VPN
Dissemination of Flow Specification rules.

AFI:

AS:

NLRI:

SAFI:

VRF:

1. Introduction
The growing amount of IPv6 traffic in private and public networks requires the extension of
tools used in IPv4-only networks to also support IPv6 data packets.

This document analyzes the differences between describing IPv6 flows and those of
IPv4 packets. It specifies new Border Gateway Protocol encoding formats to enable
"Dissemination of Flow Specification Rules" for IPv6.

This specification is an extension of the base established in . It only defines the delta
changes required to support IPv6, while all other definitions and operation mechanisms of
"Dissemination of Flow Specification Rules" will remain in the main specification and will not be
repeated here.

1.1. Definitions of Terms Used in This Memo

Address Family Identifier

Autonomous System

Network Layer Reachability Information

Subsequent Address Family Identifier

Virtual Routing and Forwarding

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[RFC8200]
[RFC4271]

[RFC8955]

[RFC8955]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8955]

MUST

[RFC4760] MUST

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 3

3. IPv6 Flow Specification Components
The encoding of each of the components begins with a Type field (1 octet) followed by a variable
length parameter. The following sections define component types and parameter encodings for
IPv6.

Types 4 (Port), 5 (Destination Port), 6 (Source Port), 9 (TCP Flags), 10 (Packet Length), and 11
(DSCP), as defined in , also apply to IPv6. Note that IANA has updated the "Flow Spec
Component Types" registry in order to contain both IPv4 and IPv6 Flow Specification component
type numbers in a single registry (Section 8).

[RFC8955]

Encoding:

length:

offset:

pattern:

padding:

3.1. Type 1 - Destination IPv6 Prefix

<type (1 octet), length (1 octet), offset (1 octet), pattern (variable), padding (variable)
>

This defines the destination prefix to match. The offset has been defined to allow for flexible
matching to portions of an IPv6 address where one is required to skip over the first N bits of the
address. (These bits skipped are often indicated as "don't care" bits.) This can be especially useful
where part of the IPv6 address consists of an embedded IPv4 address, and matching needs to
happen only on the embedded IPv4 address. The encoded pattern contains enough octets for the
bits used in matching (length minus offset bits).

This indicates the N-th most significant bit in the address where bitwise pattern
matching stops.

This indicates the number of most significant address bits to skip before bitwise
pattern matching starts.

This contains the matching pattern. The length of the pattern is defined by the
number of bits needed for pattern matching (length minus offset).

This contains the minimum number of bits required to pad the component to an octet
boundary. Padding bits be 0 on encoding and be ignored on decoding.

If length = 0 and offset = 0, this component matches every address; otherwise, length be in
the range offset < length < 129 or the component is malformed.

Note: This Flow Specification component can be represented by the notation ipv6address/length
if offset is 0 or ipv6address/offset-length. The ipv6address in this notation is the textual IPv6
representation of the pattern shifted to the right by the number of offset bits. See also Section 3.8.

MUST MUST

MUST

Encoding:

3.2. Type 2 - Source IPv6 Prefix

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 4

<type (1 octet), length (1 octet), offset (1 octet), pattern (variable), padding (variable) >

This defines the source prefix to match. The length, offset, pattern, and padding are the same as
in Section 3.1.

Encoding:

3.3. Type 3 - Upper-Layer Protocol

<type (1 octet), [numeric_op, value]+>

This contains a list of {numeric_op, value} pairs that are used to match the first Next Header
value octet in IPv6 packets that is not an extension header and thus indicates that the next item
in the packet is the corresponding upper-layer header (see).

This component uses the Numeric Operator (numeric_op) described in
. Type 3 component values be encoded as a single octet (numeric_op len=00).

Note: While IPv6 allows for more than one Next Header field in the packet, the main goal of the
Type 3 Flow Specification component is to match on the first upper-layer IP protocol value.
Therefore, the definition is limited to match only on this specific Next Header field in the packet.

Section 4 of [RFC8200]

Section 4.2.1.1 of
[RFC8955] SHOULD

Encoding:

3.4. Type 7 - ICMPv6 Type

<type (1 octet), [numeric_op, value]+>

This defines a list of {numeric_op, value} pairs used to match the Type field of an ICMPv6 packet
(see also).

This component uses the Numeric Operator (numeric_op) described in
. Type 7 component values be encoded as a single octet (numeric_op len=00).

In case of the presence of the ICMPv6 type component, only ICMPv6 packets can match the entire
Flow Specification. The ICMPv6 type component, if present, never matches when the packet's
upper-layer IP protocol value is not 58 (ICMPv6), if the packet is fragmented and this is not the
first fragment, or if the system is unable to locate the transport header. Different
implementations may or may not be able to decode the transport header.

Section 2.1 of [RFC4443]

Section 4.2.1.1 of
[RFC8955] SHOULD

Encoding:

3.5. Type 8 - ICMPv6 Code

<type (1 octet), [numeric_op, value]+>

This defines a list of {numeric_op, value} pairs used to match the code field of an ICMPv6 packet
(see also).

This component uses the Numeric Operator (numeric_op) described in
. Type 8 component values be encoded as a single octet (numeric_op len=00).

Section 2.1 of [RFC4443]

Section 4.2.1.1 of
[RFC8955] SHOULD

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8200#section-4
https://www.rfc-editor.org/rfc/rfc8955#section-4.2.1.1
https://www.rfc-editor.org/rfc/rfc4443#section-2.1
https://www.rfc-editor.org/rfc/rfc8955#section-4.2.1.1
https://www.rfc-editor.org/rfc/rfc4443#section-2.1
https://www.rfc-editor.org/rfc/rfc8955#section-4.2.1.1

In case of the presence of the ICMPv6 code component, only ICMPv6 packets can match the entire
Flow Specification. The ICMPv6 code component, if present, never matches when the packet's
upper-layer IP protocol value is not 58 (ICMPv6), if the packet is fragmented and this is not the
first fragment, or if the system is unable to locate the transport header. Different
implementations may or may not be able to decode the transport header.

Encoding:

IsF:

FF:

LF:

0:

3.6. Type 12 - Fragment

<type (1 octet), [bitmask_op, bitmask]+>

This defines a list of {bitmask_op, bitmask} pairs used to match specific IP fragments.

This component uses the Bitmask Operator (bitmask_op) described in
. The Type 12 component bitmask be encoded as a single octet bitmask

(bitmask_op len=00).

Bitmask values:

Is a fragment other than the first -- match if IPv6 Fragment Header (
) Fragment Offset is not 0

First fragment -- match if IPv6 Fragment Header () Fragment Offset
is 0 AND M flag is 1

Last fragment -- match if IPv6 Fragment Header () Fragment Offset
is not 0 AND M flag is 0

 be set to 0 on NLRI encoding and be ignored during decoding

Section 4.2.1.2 of
[RFC8955] MUST

Figure 1: Fragment Bitmask Operand

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 |LF |FF |IsF| 0 |
 +---+---+---+---+---+---+---+---+

Section 4.5 of
[RFC8200]

Section 4.5 of [RFC8200]

Section 4.5 of [RFC8200]

MUST MUST

Encoding:

3.7. Type 13 - Flow Label (new)

<type (1 octet), [numeric_op, value]+>

This contains a list of {numeric_op, value} pairs that are used to match the 20-bit Flow Label IPv6
header field ().

This component uses the Numeric Operator (numeric_op) described in
. Type 13 component values be encoded as 4-octet quantities (numeric_op

len=10).

Section 3 of [RFC8200]

Section 4.2.1.1 of
[RFC8955] SHOULD

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8955#section-4.2.1.2
https://www.rfc-editor.org/rfc/rfc8200#section-4.5
https://www.rfc-editor.org/rfc/rfc8200#section-4.5
https://www.rfc-editor.org/rfc/rfc8200#section-4.5
https://www.rfc-editor.org/rfc/rfc8200#section-3
https://www.rfc-editor.org/rfc/rfc8955#section-4.2.1.1

3.8. Encoding Examples
3.8.1. Example 1

The following example demonstrates the prefix encoding for packets from
::1234:5678:9a00:0/64-104 to 2001:db8::/32 and upper-layer protocol tcp.

Decoded:

len destination source ul-proto

0x12 01 20 00 20 01 0D B8 02 68 40 12 34 56 78 9A 03 81 06

Table 1

Value

0x12 length 18 octets (if len<240, 1 octet)

0x01 type Type 1 - Dest. IPv6 Prefix

0x20 length 32 bits

0x00 offset 0 bits

0x20 pattern

0x01 pattern

0x0D pattern

0xB8 pattern (no padding needed)

0x02 type Type 2 - Source IPv6 Prefix

0x68 length 104 bits

0x40 offset 64 bits

0x12 pattern

0x34 pattern

0x56 pattern

0x78 pattern

0x9A pattern (no padding needed)

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 7

This constitutes an NLRI with an NLRI length of 18 octets.

Padding is not needed either for the destination prefix pattern (length - offset = 32 bits) or for the
source prefix pattern (length - offset = 40 bits), as both patterns end on an octet boundary.

3.8.2. Example 2

The following example demonstrates the prefix encoding for all packets from
::1234:5678:9a00:0/65-104 to 2001:db8::/32.

Decoded:

Value

0x03 type Type 3 - Upper-Layer Protocol

0x81 numeric_op end-of-list, value size=1, ==

0x06 value 06

Table 2

length destination source

0x0f 01 20 00 20 01 0D B8 02 68 41 24 68 ac f1 34

Table 3

Value

0x0f length 15 octets (if len<240, 1 octet)

0x01 type Type 1 - Dest. IPv6 Prefix

0x20 length 32 bits

0x00 offset 0 bits

0x20 pattern

0x01 pattern

0x0D pattern

0xB8 pattern (no padding needed)

0x02 type Type 2 - Source IPv6 Prefix

0x68 length 104 bits

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 8

a)

4. Ordering of Flow Specifications
The definition for the order of traffic filtering rules from is reused with
new consideration for the IPv6 prefix offset. As long as the offsets are equal, the comparison is
the same, retaining longest-prefix-match semantics. If the offsets are not equal, the lowest offset
has precedence, as this Flow Specification matches the most significant bit.

The code in Appendix A shows a Python3 implementation of the resulting comparison algorithm.
The full code was tested with Python 3.7.2 and can be obtained at

.

5. Validation Procedure
The validation procedure is the same as specified in with the exception
that item a) of the validation procedure should now read as follows:

A destination prefix component with offset=0 is embedded in the Flow
Specification

This constitutes an NLRI with an NLRI length of 15 octets.

The source prefix pattern is 104 - 65 = 39 bits in length. After the pattern, one bit of padding
needs to be added so that the component ends on an octet boundary. However, only the first 39
bits are actually used for bitwise pattern matching, starting with a 65-bit offset from the topmost
bit of the address.

Value

0x41 offset 65 bits

0x24 pattern

0x68 pattern

0xac pattern

0xf1 pattern

0x34 pattern/pad (contains 1 bit of padding)

Table 4

Section 5.1 of [RFC8955]

<https://github.com/stoffi92/
draft-ietf-idr-flow-spec-v6/tree/master/flowspec-cmp>

Section 6 of [RFC8955]

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8955#section-5.1
https://github.com/stoffi92/draft-ietf-idr-flow-spec-v6/tree/master/flowspec-cmp
https://github.com/stoffi92/draft-ietf-idr-flow-spec-v6/tree/master/flowspec-cmp
https://www.rfc-editor.org/rfc/rfc8955#section-6

6. IPv6 Traffic Filtering Action Changes
Traffic Filtering Actions from can also be applied to IPv6 Flow
Specifications. To allow an IPv6-Address-Specific Route-Target, a new Traffic Filtering Action
IPv6-Address-Specific Extended Community is specified in Section 6.1 below.

7. Security Considerations
This document extends the functionality in to be applicable to IPv6 data packets. The
same security considerations from now also apply to IPv6 networks.

 describes the impact of oversized IPv6 header chains when trying to match on the
transport header; also requires that the first fragment must include the
upper-layer header, but there could be wrongly formatted packets not respecting . IPv6
Flow Specification component Type 3 (Section 3.3) will not be enforced for those illegal packets.
Moreover, there are hardware limitations in several routers () that may
make it impossible to enforce a policy signaled by a Type 3 Flow Specification component or
Flow Specification components that match on upper-layer properties of the packet.

Section 7 of [RFC8955]

6.1. Redirect IPv6 (rt-redirect-ipv6) Type 0x000d
The redirect IPv6-Address-Specific Extended Community allows the traffic to be redirected to a
VRF routing instance that lists the specified IPv6-Address-Specific Route-Target in its import
policy. If several local instances match this criteria, the choice between them is a local matter (for
example, the instance with the lowest Route Distinguisher value can be elected).

This IPv6-Address-Specific Extended Community uses the same encoding as the IPv6-Address-
Specific Route-Target Extended Community () with the Type value always
0x000d.

The Local Administrator subfield contains a number from a numbering space that is
administered by the organization to which the IP address carried in the Global Administrator
subfield has been assigned by an appropriate authority.

Interferes with: All BGP Flow Specification redirect Traffic Filtering Actions (with itself and those
specified in).

Section 2 of [RFC5701]

Section 7.4 of [RFC8955]

[RFC8955]
[RFC8955]

[RFC7112]
Section 4.5 of [RFC8200]

[RFC8200]

Section 1 of [RFC8883]

8. IANA Considerations
This section complies with .[RFC7153]

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc8955#section-7
https://www.rfc-editor.org/rfc/rfc5701#section-2
https://www.rfc-editor.org/rfc/rfc8955#section-7.4
https://www.rfc-editor.org/rfc/rfc8200#section-4.5
https://www.rfc-editor.org/rfc/rfc8883#section-1

Type Value:

IPv4 Name:

IPv6 Name:

Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:

8.1. Flow Spec IPv6 Component Types
IANA has created and maintains a registry entitled "Flow Spec Component Types". IANA has
added this document as a reference for that registry. Furthermore, the registry has been updated
to also contain the IPv6 Flow Specification Component Types as described below. The registration
procedure remains unchanged.

8.1.1. Registry Template

contains the assigned Flow Specification component type value

contains the associated IPv4 Flow Specification component name as specified in

contains the associated IPv6 Flow Specification component name as specified in
this document

contains references to the specifications

8.1.2. Registry Contents

0
Reserved
Reserved

, RFC 8956

1
Destination Prefix
Destination IPv6 Prefix

, RFC 8956

2
Source Prefix
Source IPv6 Prefix

, RFC 8956

3
IP Protocol
Upper-Layer Protocol

, RFC 8956

4
Port
Port

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 11

Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

, RFC 8956

5
Destination Port
Destination Port

, RFC 8956

6
Source Port
Source Port

, RFC 8956

7
ICMP Type
ICMPv6 Type

, RFC 8956

8
ICMP Code
ICMPv6 Code

, RFC 8956

9
TCP Flags
TCP Flags

, RFC 8956

10
Packet Length
Packet Length

, RFC 8956

11
DSCP
DSCP

, RFC 8956

12
Fragment
Fragment

, RFC 8956

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

[RFC8955]

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 12

[RFC2119]

[RFC4271]

[RFC4443]

[RFC4760]

9. Normative References
, , ,

, , March 1997,
.

,
, , , January 2006,

.

,
, ,

, , March 2006,
.

,
, , , January 2007,

.

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

Type Value:
IPv4 Name:
IPv6 Name:

Type Value:
IPv4 Name:
IPv6 Name:
Reference:

13
Unassigned
Flow Label
RFC 8956

14-254
Unassigned
Unassigned

255
Reserved
Reserved

, RFC 8956

8.2. IPv6-Address-Specific Extended Community Flow Spec IPv6 Actions
IANA maintains a registry entitled "Transitive IPv6-Address-Specific Extended Community
Types". For the purpose of this work, IANA has assigned a new value:

[RFC8955]

Type Value Name Reference

0x000d Flow spec rt-redirect-ipv6 format RFC 8956

Table 5: Transitive IPv6-Address-Specific Extended Community
Types Registry

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed. "A Border Gateway Protocol 4
(BGP-4)" RFC 4271 DOI 10.17487/RFC4271 <https://www.rfc-
editor.org/info/rfc4271>

Conta, A., Deering, S., and M. Gupta, Ed. "Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification" STD 89 RFC
4443 DOI 10.17487/RFC4443 <https://www.rfc-editor.org/info/
rfc4443>

Bates, T., Chandra, R., Katz, D., and Y. Rekhter "Multiprotocol Extensions for
BGP-4" RFC 4760 DOI 10.17487/RFC4760 <https://www.rfc-
editor.org/info/rfc4760>

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 13

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4760
https://www.rfc-editor.org/info/rfc4760

[RFC5701]

[RFC7112]

[RFC7153]

[RFC8174]

[RFC8200]

[RFC8883]

[RFC8955]

, ,
, , November 2009,

.

,
, , , January 2014,

.

, ,
, , March 2014,

.

, ,
, , , May 2017,

.

, ,
, , , July 2017,

.

, ,
, , September 2020,

.

,
, , , December 2020,

.

Rekhter, Y. "IPv6 Address Specific BGP Extended Community Attribute" RFC
5701 DOI 10.17487/RFC5701 <https://www.rfc-editor.org/info/
rfc5701>

Gont, F., Manral, V., and R. Bonica "Implications of Oversized IPv6 Header
Chains" RFC 7112 DOI 10.17487/RFC7112 <https://www.rfc-
editor.org/info/rfc7112>

Rosen, E. and Y. Rekhter "IANA Registries for BGP Extended Communities" RFC
7153 DOI 10.17487/RFC7153 <https://www.rfc-editor.org/info/
rfc7153>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Deering, S. and R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

Herbert, T. "ICMPv6 Errors for Discarding Packets Due to Processing Limits"
RFC 8883 DOI 10.17487/RFC8883 <https://www.rfc-editor.org/
info/rfc8883>

Loibl, C., Hares, S., Raszuk, R., McPherson, D., and M. Bacher "Dissemination of
Flow Specification Rules" RFC 8955 DOI 10.17487/RFC8955
<https://www.rfc-editor.org/info/rfc8955>

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 14

https://www.rfc-editor.org/info/rfc5701
https://www.rfc-editor.org/info/rfc5701
https://www.rfc-editor.org/info/rfc7112
https://www.rfc-editor.org/info/rfc7112
https://www.rfc-editor.org/info/rfc7153
https://www.rfc-editor.org/info/rfc7153
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8883
https://www.rfc-editor.org/info/rfc8883
https://www.rfc-editor.org/info/rfc8955

Appendix A. Example Python Code: flow_rule_cmp_v6

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 15

<CODE BEGINS>
"""
Copyright (c) 2020 IETF Trust and the persons identified as authors
of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, is permitted pursuant to, and subject to the license
terms contained in, the Simplified BSD License set forth in Section
4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).
"""

import itertools
import collections
import ipaddress

EQUAL = 0
A_HAS_PRECEDENCE = 1
B_HAS_PRECEDENCE = 2
IP_DESTINATION = 1
IP_SOURCE = 2

FS_component = collections.namedtuple('FS_component',
 'component_type value')

class FS_IPv6_prefix_component:
 def __init__(self, prefix, offset=0,
 component_type=IP_DESTINATION):
 self.offset = offset
 self.component_type = component_type
 # make sure if offset != 0 that none of the
 # first offset bits are set in the prefix
 self.value = prefix
 if offset != 0:
 i = ipaddress.IPv6Interface(
 (self.value.network_address, offset))
 if i.network.network_address != \
 ipaddress.ip_address('0::0'):
 raise ValueError('Bits set in the offset')

class FS_nlri(object):
 """
 FS_nlri class implementation that allows sorting.

 By calling .sort() on an array of FS_nlri objects these
 will be sorted according to the flow_rule_cmp algorithm.

 Example:
 nlri = [FS_nlri(components=[
 FS_component(component_type=4,
 value=bytearray([0,1,2,3,4,5,6])),
]),
 FS_nlri(components=[
 FS_component(component_type=5,

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 16

 value=bytearray([0,1,2,3,4,5,6])),
 FS_component(component_type=6,
 value=bytearray([0,1,2,3,4,5,6])),
]),
]
 nlri.sort() # sorts the array according to the algorithm
 """
 def __init__(self, components = None):
 """
 components: list of type FS_component
 """
 self.components = components

 def __lt__(self, other):
 # use the below algorithm for sorting
 result = flow_rule_cmp_v6(self, other)
 if result == B_HAS_PRECEDENCE:
 return True
 else:
 return False

def flow_rule_cmp_v6(a, b):
 """
 Implementation of the flowspec sorting algorithm in
 RFC 8956.
 """
 for comp_a, comp_b in itertools.zip_longest(a.components,
 b.components):
 # If a component type does not exist in one rule
 # this rule has lower precedence
 if not comp_a:
 return B_HAS_PRECEDENCE
 if not comp_b:
 return A_HAS_PRECEDENCE
 # Higher precedence for lower component type
 if comp_a.component_type < comp_b.component_type:
 return A_HAS_PRECEDENCE
 if comp_a.component_type > comp_b.component_type:
 return B_HAS_PRECEDENCE
 # component types are equal -> type-specific comparison
 if comp_a.component_type in (IP_DESTINATION, IP_SOURCE):
 if comp_a.offset < comp_b.offset:
 return A_HAS_PRECEDENCE
 if comp_a.offset > comp_b.offset:
 return B_HAS_PRECEDENCE
 # both components have the same offset
 # assuming comp_a.value, comp_b.value of type
 # ipaddress.IPv6Network
 # and the offset bits are reset to 0 (since they are
 # not represented in the NLRI)
 if comp_a.value.overlaps(comp_b.value):
 # longest prefixlen has precedence
 if comp_a.value.prefixlen > \
 comp_b.value.prefixlen:
 return A_HAS_PRECEDENCE
 if comp_a.value.prefixlen < \
 comp_b.value.prefixlen:

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 17

Acknowledgments
The authors would like to thank , , ,

, and for their valuable input.

Contributors

 return B_HAS_PRECEDENCE
 # components equal -> continue with next
 # component
 elif comp_a.value > comp_b.value:
 return B_HAS_PRECEDENCE
 elif comp_a.value < comp_b.value:
 return A_HAS_PRECEDENCE
 else:
 # assuming comp_a.value, comp_b.value of type
 # bytearray
 if len(comp_a.value) == len(comp_b.value):
 if comp_a.value > comp_b.value:
 return B_HAS_PRECEDENCE
 if comp_a.value < comp_b.value:
 return A_HAS_PRECEDENCE
 # components equal -> continue with next
 # component
 else:
 common = min(len(comp_a.value),
 len(comp_b.value))
 if comp_a.value[:common] > \
 comp_b.value[:common]:
 return B_HAS_PRECEDENCE
 elif comp_a.value[:common] < \
 comp_b.value[:common]:
 return A_HAS_PRECEDENCE
 # the first common bytes match
 elif len(comp_a.value) > len(comp_b.value):
 return A_HAS_PRECEDENCE
 else:
 return B_HAS_PRECEDENCE
 return EQUAL

<CODE ENDS>

Pedro Marques Hannes Gredler Bruno Rijsman Brian
Carpenter Thomas Mangin

Danny McPherson
Verisign, Inc.

 dmcpherson@verisign.com Email:

Burjiz Pithawala
Individual

 burjizp@gmail.com Email:

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 18

mailto:dmcpherson@verisign.com
mailto:burjizp@gmail.com

Andy Karch
Cisco Systems
170 West Tasman Drive

, San Jose CA 95134
United States of America

 akarch@cisco.com Email:

Authors' Addresses
Christoph Loibl ()������
next layer Telekom GmbH
Mariahilfer Guertel 37/7

 1150 Vienna
Austria

 +43 664 1176414 Phone:
 cl@tix.at Email:

Robert Raszuk ()������
NTT Network Innovations
940 Stewart Dr

, Sunnyvale CA 94085
United States of America

 robert@raszuk.net Email:

Susan Hares ()������
Huawei
7453 Hickory Hill

, Saline MI 48176
United States of America

 shares@ndzh.com Email:

RFC 8956 IPv6 Flow Specification December 2020

Loibl, et al. Standards Track Page 19

mailto:akarch@cisco.com
tel:+43%20664%201176414
mailto:cl@tix.at
mailto:robert@raszuk.net
mailto:shares@ndzh.com

	RFC 8956
	Dissemination of Flow Specification Rules for IPv6
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Definitions of Terms Used in This Memo

	2. IPv6 Flow Specification Encoding in BGP
	3. IPv6 Flow Specification Components
	3.1. Type 1 - Destination IPv6 Prefix
	3.2. Type 2 - Source IPv6 Prefix
	3.3. Type 3 - Upper-Layer Protocol
	3.4. Type 7 - ICMPv6 Type
	3.5. Type 8 - ICMPv6 Code
	3.6. Type 12 - Fragment
	3.7. Type 13 - Flow Label (new)
	3.8. Encoding Examples
	3.8.1. Example 1
	3.8.2. Example 2

	4. Ordering of Flow Specifications
	5. Validation Procedure
	6. IPv6 Traffic Filtering Action Changes
	6.1. Redirect IPv6 (rt-redirect-ipv6) Type 0x000d

	7. Security Considerations
	8. IANA Considerations
	8.1. Flow Spec IPv6 Component Types
	8.1.1. Registry Template
	8.1.2. Registry Contents

	8.2. IPv6-Address-Specific Extended Community Flow Spec IPv6 Actions

	9. Normative References
	Appendix A. Example Python Code: flow_rule_cmp_v6
	Acknowledgments
	Contributors
	Authors' Addresses

