
RFC 8923
A Minimal Set of Transport Services for End Systems

Abstract
This document recommends a minimal set of Transport Services offered by end systems and
gives guidance on choosing among the available mechanisms and protocols. It is based on the set
of transport features in RFC 8303.

Stream: Internet Engineering Task Force (IETF)
RFC: 8923
Category: Informational
Published: October 2020
ISSN: 2070-1721
Authors: M. Welzl

University of Oslo
S. Gjessing
University of Oslo

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8923

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Welzl & Gjessing Informational Page 1

https://www.rfc-editor.org/rfc/rfc8923
https://www.rfc-editor.org/info/rfc8923
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Deriving the Minimal Set

4. The Reduced Set of Transport Features

4.1. CONNECTION-Related Transport Features

4.2. DATA-Transfer-Related Transport Features

4.2.1. Sending Data

4.2.2. Receiving Data

4.2.3. Errors

5. Discussion

5.1. Sending Messages, Receiving Bytes

5.2. Stream Schedulers without Streams

5.3. Early Data Transmission

5.4. Sender Running Dry

5.5. Capacity Profile

5.6. Security

5.7. Packet Size

6. The Minimal Set of Transport Features

6.1. ESTABLISHMENT, AVAILABILITY, and TERMINATION

6.2. MAINTENANCE

6.2.1. Connection Groups

6.2.2. Individual Connections

6.3. DATA Transfer

6.3.1. Sending Data

6.3.2. Receiving Data

7. IANA Considerations

8. Security Considerations

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 2

9. References

9.1. Normative References

9.2. Informative References

Appendix A. The Superset of Transport Features

A.1. CONNECTION-Related Transport Features

A.2. DATA-Transfer-Related Transport Features

A.2.1. Sending Data

A.2.2. Receiving Data

A.2.3. Errors

Acknowledgements

Authors' Addresses

1. Introduction
Currently, the set of Transport Services that most applications use is based on TCP and UDP (and
protocols that are layered on top of them); this limits the ability for the network stack to make
use of features of other transport protocols. For example, if a protocol supports out-of-order
message delivery but applications always assume that the network provides an ordered byte
stream, then the network stack can not immediately deliver a message that arrives out of order;
doing so would break a fundamental assumption of the application. The net result is unnecessary
head-of-line blocking delay.

By exposing the Transport Services of multiple transport protocols, a transport system can make
it possible for applications to use these services without being statically bound to a specific
transport protocol. The first step towards the design of such a system was taken by ,
which surveys a large number of transports, and as well as , which identify
the specific transport features that are exposed to applications by the protocols TCP, Multipath
TCP (MPTCP), UDP(-Lite), and Stream Control Transmission Protocol (SCTP), as well as the Low
Extra Delay Background Transport (LEDBAT) congestion control mechanism. LEDBAT was
included as the only congestion control mechanism in this list because the "low extra delay
background transport" service that it offers is significantly different from the typical service
provided by other congestion control mechanisms. This memo is based on these documents and
follows the same terminology (also listed below). Because the considered transport protocols
conjointly cover a wide range of transport features, there is reason to hope that the resulting set
(and the reasoning that led to it) will also apply to many aspects of other transport protocols that
may be in use today or may be designed in the future.

[RFC8095]
[RFC8303] [RFC8304]

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 3

Transport Feature:

2. Terminology

By decoupling applications from transport protocols, a transport system provides a different
abstraction level than the Berkeley sockets interface . As with high- vs. low-level
programming languages, a higher abstraction level allows more freedom for automation below
the interface, yet it takes some control away from the application programmer. This is the design
trade-off that a transport system developer is facing, and this document provides guidance on the
design of this abstraction level. Some transport features are currently rarely offered by APIs, yet
they must be offered or they can never be used. Other transport features are offered by the APIs
of the protocols covered here, but not exposing them in an API would allow for more freedom to
automate protocol usage in a transport system. The minimal set presented here is an effort to
find a middle ground that can be recommended for transport systems to implement, on the basis
of the transport features discussed in .

Applications use a wide variety of APIs today. While this document was created to ensure the API
developed in the Transport Services (TAPS) Working Group includes the most
important transport features, the minimal set presented here must be reflected in *all* network
APIs in order for the underlying functionality to become usable everywhere. For example, it does
not help an application that talks to a library that offers its own communication interface if the
underlying Berkeley Sockets API is extended to offer "unordered message delivery", but the
library only exposes an ordered byte stream. Both the Berkeley Sockets API and the library
would have to expose the "unordered message delivery" transport feature (alternatively, there
may be ways for certain types of libraries to use this transport feature without exposing it, based
on knowledge about the applications, but this is not the general case). Similarly, transport
protocols such as the Stream Control Transmission Protocol (SCTP) offer multi-streaming, which
cannot be utilized, e.g., to prioritize messages between streams, unless applications communicate
the priorities and the group of connections upon which these priorities should be applied. In
most situations, in the interest of being as flexible and efficient as possible, the best choice will be
for a library to expose at least all of the transport features that are recommended as a "minimal
set" here.

This "minimal set" can be implemented "one-sided" over TCP. This means that a sender-side
transport system can talk to a standard TCP receiver, and a receiver-side transport system can
talk to a standard TCP sender. If certain limitations are put in place, the "minimal set" can also be
implemented "one-sided" over UDP. While the possibility of such "one-sided" implementation
may help deployment, it comes at the cost of limiting the set to services that can also be provided
by TCP (or, with further limitations, UDP). Thus, the minimal set of transport features here is
applicable for many, but not all, applications; some application protocols have requirements that
are not met by this "minimal set".

Note that, throughout this document, protocols are meant to be used natively. For example, when
transport features of TCP, or "implementation over" TCP is discussed, this refers to native usage
of TCP rather than TCP being encapsulated in some other transport protocol such as UDP.

[POSIX]

[RFC8303]

[TAPS-INTERFACE]

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 4

Transport Service:

Transport Protocol:

Application:

Application-specific knowledge:

End system:

Connection:

Connection Group:

Socket:

A specific end-to-end feature that the transport layer provides to an application. Examples
include confidentiality, reliable delivery, ordered delivery, message-versus-stream orientation,
etc.

A set of Transport Features, without an association to any given framing
protocol, that provides a complete service to an application.

An implementation that provides one or more different Transport Services
using a specific framing and header format on the wire.

An entity that uses a transport-layer interface for end-to-end delivery of data
across the network (this may also be an upper-layer protocol or tunnel encapsulation).

Knowledge that only applications have.

An entity that communicates with one or more other end systems using a transport
protocol. An end system provides a transport-layer interface to applications.

Shared state of two or more end systems that persists across messages that are
transmitted between these end systems.

A set of connections that share the same configuration (configuring one of
them causes all other connections in the same group to be configured in the same way). We
call connections that belong to a connection group "grouped", while "ungrouped" connections
are not a part of a connection group.

The combination of a destination IP address and a destination port number.

Moreover, throughout the document, the protocol name "UDP(-Lite)" is used when discussing
transport features that are equivalent for UDP and UDP-Lite; similarly, the protocol name "TCP"
refers to both TCP and MPTCP.

3. Deriving the Minimal Set
We assume that applications have no specific requirements that need knowledge about the
network, e.g., regarding the choice of network interface or the end-to-end path. Even with these
assumptions, there are certain requirements that are strictly kept by transport protocols today,
and these must also be kept by a transport system. Some of these requirements relate to
transport features that we call "Functional".

Functional transport features provide functionality that cannot be used without the application
knowing about them, or else they violate assumptions that might cause the application to fail. For
example, ordered message delivery is a functional transport feature: it cannot be configured
without the application knowing about it because the application's assumption could be that
messages always arrive in order. Failure includes any change of the application behavior that is
not performance oriented, e.g., security.

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 5

"Change DSCP" and "Disable Nagle algorithm" are examples of transport features that we call
"Optimizing"; if a transport system autonomously decides to enable or disable them, an
application will not fail, but a transport system may be able to communicate more efficiently if
the application is in control of this optimizing transport feature. These transport features require
application-specific knowledge (e.g., about delay/bandwidth requirements or the length of future
data blocks that are to be transmitted).

The transport features of IETF transport protocols that do not require application-specific
knowledge and could therefore be utilized by a transport system on its own without involving
the application are called "Automatable".

We approach the construction of a minimal set of transport features in the following way:

Categorization (Appendix A): The superset of transport features from is presented,
and transport features are categorized as Functional, Optimizing, or Automatable for later
reduction.
Reduction (Section 4): A shorter list of transport features is derived from the categorization
in the first step. This removes all transport features that do not require application-specific
knowledge or would result in semantically incorrect behavior if they were implemented
over TCP or UDP.
Discussion (Section 5): The resulting list shows a number of peculiarities that are discussed,
to provide a basis for constructing the minimal set.
Construction (Section 6): Based on the reduced set and the discussion of the transport
features therein, a minimal set is constructed.

Following and retaining its terminology, we divide the transport features into two
main groups as follows:

CONNECTION-related transport features

ESTABLISHMENT
AVAILABILITY
MAINTENANCE
TERMINATION

DATA-Transfer-related transport features

Sending Data
Receiving Data
Errors

1. [RFC8303]

2.

3.

4.

[RFC8303]

1.

◦

◦

◦

◦

2.

◦

◦

◦

4. The Reduced Set of Transport Features
By hiding automatable transport features from the application, a transport system can gain
opportunities to automate the usage of network-related functionality. This can facilitate using the
transport system for the application programmer and it allows for optimizations that may not be

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 6

possible for an application. For instance, system-wide configurations regarding the usage of
multiple interfaces can better be exploited if the choice of the interface is not entirely up to the
application. Therefore, since they are not strictly necessary to expose in a transport system, we
do not include automatable transport features in the reduced set of transport features. This
leaves us with only the transport features that are either optimizing or functional.

A transport system should be able to communicate via TCP or UDP if alternative transport
protocols are found not to work. For many transport features, this is possible, often by simply not
doing anything when a specific request is made. For some transport features, however, it was
identified that direct usage of neither TCP nor UDP is possible; in these cases, even not doing
anything would incur semantically incorrect behavior. Whenever an application would make
use of one of these transport features, this would eliminate the possibility to use TCP or UDP.
Thus, we only keep the functional and optimizing transport features for which an
implementation over either TCP or UDP is possible in our reduced set.

The following list contains the transport features from Appendix A, reduced using these rules.
The "minimal set" derived in this document is meant to be implementable "one-sided" over TCP
and, with limitations, UDP. In the list, we therefore precede a transport feature with "T:" if an
implementation over TCP is possible, "U:" if an implementation over UDP is possible, and "T,U:" if
an implementation over either TCP or UDP is possible.

4.1. CONNECTION-Related Transport Features
ESTABLISHMENT:

T,U: Connect
T,U: Specify number of attempts and/or timeout for the first establishment message
T,U: Disable MPTCP
T: Configure authentication
T: Hand over a message to reliably transfer (possibly multiple times) before connection
establishment
T: Hand over a message to reliably transfer during connection establishment

AVAILABILITY:

T,U: Listen
T,U: Disable MPTCP
T: Configure authentication

MAINTENANCE:

T: Change timeout for aborting connection (using retransmit limit or time value)
T: Suggest timeout to the peer
T,U: Disable Nagle algorithm
T,U: Notification of Excessive Retransmissions (early warning below abortion threshold)
T,U: Specify DSCP field

•
•
•
•
•

•

•
•
•

•
•
•
•
•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 7

T,U: Notification of ICMP error message arrival
T: Change authentication parameters
T: Obtain authentication information
T,U: Set Cookie life value
T,U: Choose a scheduler to operate between streams of an association
T,U: Configure priority or weight for a scheduler
T,U: Disable checksum when sending
T,U: Disable checksum requirement when receiving
T,U: Specify checksum coverage used by the sender
T,U: Specify minimum checksum coverage required by receiver
T,U: Specify DF field
T,U: Get max. transport-message size that may be sent using a non-fragmented IP packet
from the configured interface
T,U: Get max. transport-message size that may be received from the configured interface
T,U: Obtain ECN field
T,U: Enable and configure a "Low Extra Delay Background Transfer"

TERMINATION:

T: Close after reliably delivering all remaining data, causing an event informing the
application on the other side
T: Abort without delivering remaining data, causing an event informing the application on
the other side
T,U: Abort without delivering remaining data, not causing an event informing the application
on the other side
T,U: Timeout event when data could not be delivered for too long

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

•

•

•

•

4.2. DATA-Transfer-Related Transport Features
4.2.1. Sending Data

T: Reliably transfer data, with congestion control
T: Reliably transfer a message, with congestion control
T,U: Unreliably transfer a message
T: Configurable Message Reliability
T: Ordered message delivery (potentially slower than unordered)
T,U: Unordered message delivery (potentially faster than ordered)
T,U: Request not to bundle messages
T: Specifying a key id to be used to authenticate a message
T,U: Request not to delay the acknowledgement (SACK) of a message

•
•
•
•
•
•
•
•
•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 8

4.2.2. Receiving Data

T,U: Receive data (with no message delimiting)
U: Receive a message
T,U: Information about partial message arrival

•
•
•

4.2.3. Errors

This section describes sending failures that are associated with a specific call to in the "Sending
Data" category (Appendix A.2.1).

T,U: Notification of send failures
T,U: Notification that the stack has no more user data to send
T,U: Notification to a receiver that a partial message delivery has been aborted

•
•
•

5. Discussion
The reduced set in the previous section exhibits a number of peculiarities, which we will discuss
in the following. This section focuses on TCP because, with the exception of one particular
transport feature ("Receive a message"; we will discuss this in Section 5.1), the list shows that
UDP is strictly a subset of TCP. We can first try to understand how to build a transport system that
can run over TCP, and then narrow down the result further to allow that the system can always
run over either TCP or UDP (which effectively means removing everything related to reliability,
ordering, authentication, and closing/aborting with a notification to the peer).

Note that, because the functional transport features of UDP are, with the exception of "Receive a
message", a subset of TCP, TCP can be used as a replacement for UDP whenever an application
does not need message delimiting (e.g., because the application-layer protocol already does it).
This has been recognized by many applications that already do this in practice, by trying to
communicate with UDP at first and falling back to TCP in case of a connection failure.

5.1. Sending Messages, Receiving Bytes
For implementing a transport system over TCP, there are several transport features related to
sending, but only a single transport feature related to receiving: "Receive data (with no message
delimiting)" (and, strangely, "information about partial message arrival"). Notably, the transport
feature "Receive a message" is also the only non-automatable transport feature of UDP(-Lite) for
which no implementation over TCP is possible.

To support these TCP receiver semantics, we define an "Application-Framed Byte Stream" (AFra
Byte Stream). AFra Byte Streams allow senders to operate on messages while minimizing changes
to the TCP socket API. In particular, nothing changes on the receiver side; data can be accepted
via a normal TCP socket.

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 9

In an AFra Byte Stream, the sending application can optionally inform the transport about
message boundaries and required properties per message (configurable order and reliability, or
embedding a request not to delay the acknowledgement of a message). Whenever the sending
application specifies per-message properties that relax the notion of reliable in-order delivery of
bytes, it must assume that the receiving application is 1) able to determine message boundaries,
provided that messages are always kept intact, and 2) able to accept these relaxed per-message
properties. Any signaling of such information to the peer is up to an application-layer protocol
and considered out of scope of this document.

For example, if an application requests to transfer fixed-size messages of 100 bytes with partial
reliability, this needs the receiving application to be prepared to accept data in chunks of 100
bytes. Then, if some of these 100-byte messages are missing (e.g., if SCTP with Configurable
Reliability is used), this is the expected application behavior. With TCP, no messages would be
missing, but this is also correct for the application, and the possible retransmission delay is
acceptable within the best-effort service model (see). Still, the receiving
application would separate the byte stream into 100-byte chunks.

Note that this usage of messages does not require all messages to be equal in size. Many
application protocols use some form of Type-Length-Value (TLV) encoding, e.g., by defining a
header including length fields; another alternative is the use of byte stuffing methods such as
Consistent Overhead Byte Stuffing (COBS) . If an application needs message numbers, e.g.,
to restore the correct sequence of messages, these must also be encoded by the application itself,
as SCTP's transport features that are related to the sequence number are not provided by the
"minimum set" (in the interest of enabling usage of TCP).

Section 3.5 of [RFC7305]

[COBS]

5.2. Stream Schedulers without Streams
We have already stated that multi-streaming does not require application-specific knowledge.
Potential benefits or disadvantages of, e.g., using two streams of an SCTP association versus using
two separate SCTP associations or TCP connections are related to knowledge about the network
and the particular transport protocol in use, not the application. However, the transport features
"Choose a scheduler to operate between streams of an association" and "Configure priority or
weight for a scheduler" operate on streams. Here, streams identify communication channels
between which a scheduler operates, and they can be assigned a priority. Moreover, the
transport features in the MAINTENANCE category all operate on associations in case of SCTP, i.e.,
they apply to all streams in that association.

With only these semantics necessary to represent, the interface to a transport system becomes
easier if we assume that connections may be not only a transport protocol's connection or
association, but could also be a stream of an existing SCTP association, for example. We only
need to allow for a way to define a possible grouping of connections. Then, all MAINTENANCE
transport features can be said to operate on connection groups, not connections, and a scheduler
operates on the connections within a group.

To be compatible with multiple transport protocols and uniformly allow access to both transport
connections and streams of a multi-streaming protocol, the semantics of opening and closing
need to be the most restrictive subset of all of the underlying options. For example, TCP's support

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 10

https://www.rfc-editor.org/rfc/rfc7305#section-3.5

of half-closed connections can be seen as a feature on top of the more restrictive "ABORT"; this
feature cannot be supported because not all protocols used by a transport system (including
streams of an association) support half-closed connections.

5.3. Early Data Transmission
There are two transport features related to transferring a message early: "Hand over a message
to reliably transfer (possibly multiple times) before connection establishment", which relates to
TCP Fast Open , and "Hand over a message to reliably transfer during connection
establishment", which relates to SCTP's ability to transfer data together with the COOKIE-Echo
chunk. Also without TCP Fast Open, TCP can transfer data during the handshake, together with
the SYN packet; however, the receiver of this data may not hand it over to the application until
the handshake has completed. Also, different from TCP Fast Open, this data is not delimited as a
message by TCP (thus, not visible as a "message"). This functionality is commonly available in
TCP and supported in several implementations, even though the TCP specification does not
explain how to provide it to applications.

A transport system could differentiate between the cases of transmitting data "before" (possibly
multiple times) or "during" the handshake. Alternatively, it could also assume that data that are
handed over early will be transmitted as early as possible, and "before" the handshake would
only be used for messages that are explicitly marked as "idempotent" (i.e., it would be acceptable
to transfer them multiple times).

The amount of data that can successfully be transmitted before or during the handshake depends
on various factors: the transport protocol, the use of header options, the choice of IPv4 and IPv6,
and the Path MTU. A transport system should therefore allow a sending application to query the
maximum amount of data it can possibly transmit before (or, if exposed, during) connection
establishment.

[RFC7413]

5.4. Sender Running Dry
The transport feature "Notification that the stack has no more user data to send" relates to SCTP's
"SENDER DRY" notification. Such notifications can, in principle, be used to avoid having an
unnecessarily large send buffer, yet ensure that the transport sender always has data available
when it has an opportunity to transmit it. This has been found to be very beneficial for some
applications . However, "SENDER DRY" truly means that the entire send buffer
(including both unsent and unacknowledged data) has emptied, i.e., when it notifies the sender,
it is already too late; the transport protocol already missed an opportunity to send data. Some
modern TCP implementations now include the unspecified "TCP_NOTSENT_LOWAT" socket
option that was proposed in , which limits the amount of unsent data that TCP can
keep in the socket buffer; this allows specifying at which buffer filling level the socket becomes
writable, rather than waiting for the buffer to run empty.

[WWDC2015]

[WWDC2015]

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 11

SCTP allows configuring the sender-side buffer too; the automatable Transport Feature
"Configure send buffer size" provides this functionality, but only for the complete buffer, which
includes both unsent and unacknowledged data. SCTP does not allow to control these two sizes
separately. It therefore makes sense for a transport system to allow for uniform access to
"TCP_NOTSENT_LOWAT" as well as the "SENDER DRY" notification.

5.5. Capacity Profile
The transport features:

Disable Nagle algorithm
Enable and configure a "Low Extra Delay Background Transfer"
Specify DSCP field

All relate to a QoS-like application need such as "low latency" or "scavenger". In the interest of
flexibility of a transport system, they could therefore be offered in a uniform, more abstract way,
where a transport system could, e.g., decide by itself how to use combinations of LEDBAT-like
congestion control and certain DSCP values, and an application would only specify a general
"capacity profile" (a description of how it wants to use the available capacity). A need for "lowest
possible latency at the expense of overhead" could then translate into automatically disabling the
Nagle algorithm.

In some cases, the Nagle algorithm is best controlled directly by the application because it is not
only related to a general profile but also to knowledge about the size of future messages. For fine-
grain control over Nagle-like functionality, the "Request not to bundle messages" is available.

•
•
•

5.6. Security
Both TCP and SCTP offer authentication. TCP authenticates complete segments. SCTP allows
configuring which of SCTP's chunk types must always be authenticated; if this is exposed as such,
it creates an undesirable dependency on the transport protocol. For compatibility with TCP, a
transport system should only allow to configure complete transport layer packets, including
headers, IP pseudo-header (if any) and payload.

Security is discussed in a separate document . The minimal set presented in the
present document excludes all security-related transport features from Appendix A: "Configure
authentication", "Change authentication parameters", "Obtain authentication information", and
"Set Cookie life value", as well as "Specifying a key id to be used to authenticate a message". It
also excludes security transport features not listed in Appendix A, including content privacy to
in-path devices.

[RFC8922]

5.7. Packet Size
UDP(-Lite) has a transport feature called "Specify DF field". This yields an error message in the
case of sending a message that exceeds the Path MTU, which is necessary for a UDP-based
application to be able to implement Path MTU Discovery (a function that UDP-based applications
must do by themselves). The "Get max. transport-message size that may be sent using a non-

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 12

fragmented IP packet from the configured interface" transport feature yields an upper limit for
the Path MTU (minus headers) and can therefore help to implement Path MTU Discovery more
efficiently.

6. The Minimal Set of Transport Features
Based on the categorization, reduction, and discussion in Section 3, this section describes a
minimal set of transport features that end systems should offer. Any configuration based on the
described minimum set of transport feature can always be realized over TCP but also gives the
transport system flexibility to choose another transport if implemented. In the text of this
section, "not UDP" is used to indicate elements of the system that cannot be implemented over
UDP. Conversely, all elements of the system that are not marked with "not UDP" can also be
implemented over UDP.

The arguments laid out in Section 5 ("discussion") were used to make the final representation of
the minimal set as short, simple, and general as possible. There may be situations where these
arguments do not apply, e.g., implementers may have specific reasons to expose multi-streaming
as a visible functionality to applications, or the restrictive open/close semantics may be
problematic under some circumstances. In such cases, the representation in Section 4
("reduction") should be considered.

As in Section 3, Section 4, and , we categorize the minimal set of transport features as
1) CONNECTION related (ESTABLISHMENT, AVAILABILITY, MAINTENANCE, TERMINATION) and
2) DATA Transfer related (Sending Data, Receiving Data, Errors). Here, the focus is on
connections that the transport system offers as an abstraction to the application, as opposed to
connections of transport protocols that the transport system uses.

[RFC8303]

6.1. ESTABLISHMENT, AVAILABILITY, and TERMINATION
A connection must first be "created" to allow for some initial configuration to be carried out
before the transport system can actively or passively establish communication with a remote end
system. As a configuration of the newly created connection, an application can choose to disallow
usage of MPTCP. Furthermore, all configuration parameters in Section 6.2 can be used initially,
although some of them may only take effect when a connection has been established with a
chosen transport protocol. Configuring a connection early helps a transport system make the
right decisions. For example, grouping information can influence whether or not the transport
system implements a connection as a stream of a multi-streaming protocol's existing association.

For ungrouped connections, early configuration is necessary because it allows the transport
system to know which protocols it should try to use. In particular, a transport system that only
makes a one-time choice for a particular protocol must know early about strict requirements
that must be kept, or it can end up in a deadlock situation (e.g., having chosen UDP and later be

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 13

asked to support reliable transfer). As an example description of how to correctly handle these
cases, we provide the following decision tree (this is derived from Section 4.1 excluding
authentication, as explained in Section 8):

Note that this decision tree is not optimal for all cases. For example, if an application wants to
use "Specify checksum coverage used by the sender", which is only offered by UDP-Lite, and
"Configure priority or weight for a scheduler", which is only offered by SCTP, the above decision
tree will always choose UDP-Lite, making it impossible to use SCTP's schedulers with priorities
between grouped connections. Also, several other factors may influence the decisions for or

 +--+
 | Will it ever be necessary to offer any of the following? |
 | * Reliably transfer data |
 | * Notify the peer of closing/aborting |
 | * Preserve data ordering |
 +--+
 | |
 |Yes |No
 | (SCTP or TCP) | (All protocols
 | can be used.) | can be used.)
 V V
+--------------------------------------+ +-----------------------------+
Is any of the following useful to		Is any of the following
the application?		useful to the application?
* Choosing a scheduler to operate		* Specify checksum coverage
between connections in a group,		used by the sender
with the possibility to configure		* Specify minimum checksum
a priority or weight per connection		coverage required by the
* Configurable message reliability		receiver
* Unordered message delivery	+-----------------------------+	
* Request not to delay the		
acknowledgement (SACK) of a message		Yes
+--------------------------------------+ | |
 | | | |
 |Yes |No | |
 V | V V
 SCTP is | UDP-Lite is UDP is
 preferred. | preferred. preferred.
 V
+--+
| Is any of the following useful to the application? |
| * Hand over a message to reliably transfer (possibly |
| multiple times) before connection establishment |
| * Suggest timeout to the peer |
| * Notification of Excessive Retransmissions (early |
| warning below abortion threshold) |
| * Notification of ICMP error message arrival |
+--+
 | |
 |Yes |No
 V V
 TCP is preferred. SCTP and TCP
 are equally preferable.

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 14

Reliability:

Checksum coverage:

Configure message priority:

Early message timeout notifications:

against a protocol, e.g., penetration rates, the ability to work through NATs, etc. We caution
implementers to be aware of the full set of trade-offs, for which we recommend consulting the
list in Section 4.1 when deciding how to initialize a connection.

To summarize, the following parameters serve as input for the transport system to help it choose
and configure a suitable protocol:

a boolean that should be set to true when any of the following will be useful to the
application: reliably transfer data; notify the peer of closing/aborting; or preserve data
ordering.

a boolean to specify whether it will be useful to the application to specify
checksum coverage when sending or receiving.

a boolean that should be set to true when any of the following per-
message configuration or prioritization mechanisms will be useful to the application:
choosing a scheduler to operate between grouped connections, with the possibility to
configure a priority or weight per connection; configurable message reliability; unordered
message delivery; or requesting not to delay the acknowledgement (SACK) of a message.

a boolean that should be set to true when any of the
following will be useful to the application: hand over a message to reliably transfer (possibly
multiple times) before connection establishment; suggest timeout to the peer; notification of
excessive retransmissions (early warning below abortion threshold); or notification of ICMP
error message arrival.

Once a connection is created, it can be queried for the maximum amount of data that an
application can possibly expect to have reliably transmitted before or during transport
connection establishment (with zero being a possible answer) (see Section 6.2.1). An application
can also give the connection a message for reliable transmission before or during connection
establishment (not UDP); the transport system will then try to transmit it as early as possible. An
application can facilitate sending a message particularly early by marking it as "idempotent"
(see Section 6.3.1); in this case, the receiving application must be prepared to potentially receive
multiple copies of the message (because idempotent messages are reliably transferred, asking for
idempotence is not necessary for systems that support UDP).

After creation, a transport system can actively establish communication with a peer, or it can
passively listen for incoming connection requests. Note that active establishment may or may not
trigger a notification on the listening side. It is possible that the first notification on the listening
side is the arrival of the first data that the active side sends (a receiver-side transport system
could handle this by continuing to block a "Listen" call, immediately followed, for example, by
issuing "Receive"; callback-based implementations could simply skip the equivalent of "Listen").
This also means that the active opening side is assumed to be the first side sending data.

A transport system can actively close a connection, i.e., terminate it after reliably delivering all
remaining data to the peer (if reliable data delivery was requested earlier (not UDP)), in which
case the peer is notified that the connection is closed. Alternatively, a connection can be aborted

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 15

without delivering outstanding data to the peer. In case reliable or partially reliable data
delivery was requested earlier (not UDP), the peer is notified that the connection is aborted. A
timeout can be configured to abort a connection when data could not be delivered for too long
(not UDP); however, timeout-based abortion does not notify the peer application that the
connection has been aborted. Because half-closed connections are not supported, when a host
implementing a transport system receives a notification that the peer is closing or aborting the
connection (not UDP), its peer may not be able to read outstanding data. This means that
unacknowledged data residing in a transport system's send buffer may have to be dropped from
that buffer upon arrival of a "close" or "abort" notification from the peer.

6.2. MAINTENANCE
A transport system must offer means to group connections, but it cannot guarantee truly
grouping them using the transport protocols that it uses (e.g., it cannot be guaranteed that
connections become multiplexed as streams on a single SCTP association when SCTP may not be
available). The transport system must therefore ensure that group- versus non-group-
configurations are handled correctly in some way (e.g., by applying the configuration to all
grouped connections even when they are not multiplexed, or informing the application about
grouping success or failure).

As a general rule, any configuration described below should be carried out as early as possible to
aid the transport system's decision making.

6.2.1. Connection Groups

The following transport features and notifications (some directly from Section 4; some new or
changed, based on the discussion in Section 5) automatically apply to all grouped connections:

Configure a timeout (not UDP)
This can be done with the following parameters:

A timeout value for aborting connections, in seconds.
A timeout value to be suggested to the peer (if possible), in seconds.
The number of retransmissions after which the application should be notified of "Excessive
Retransmissions".

Configure urgency
This can be done with the following parameters:

A number to identify the type of scheduler that should be used to operate between
connections in the group (no guarantees given). Schedulers are defined in .
A "capacity profile" number to identify how an application wants to use its available
capacity. Choices can be "lowest possible latency at the expense of overhead" (which would
disable any Nagle-like algorithm), "scavenger", or values that help determine the DSCP value
for a connection.
A buffer limit (in bytes); when the sender has less than the provided limit of bytes in the
buffer, the application may be notified. Notifications are not guaranteed, and it is optional

•
•
•

•
[RFC8260]

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 16

Excessive Retransmissions:

ICMP Arrival (parameter: ICMP message):

ECN Arrival (parameter: ECN value):

Timeout (parameter: s seconds):

Drain:

for a transport system to support buffer limit values greater than 0. Note that this limit and
its notification should operate across the buffers of the whole transport system, i.e., also any
potential buffers that the transport system itself may use on top of the transport's send
buffer.

Following Section 5.7, these properties can be queried:

The maximum message size that may be sent without fragmentation via the configured
interface. This is optional for a transport system to offer and may return an error ("not
available"). It can aid applications implementing Path MTU Discovery.
The maximum transport message size that can be sent, in bytes. Irrespective of
fragmentation, there is a size limit for the messages that can be handed over to SCTP or UDP
(-Lite); because the service provided by a transport system is independent of the transport
protocol, it must allow an application to query this value: the maximum size of a message in
an Application-Framed Byte Stream (see Section 5.1). This may also return an error when
data is not delimited ("not available").
The maximum transport message size that can be received from the configured interface, in
bytes (or "not available").
The maximum amount of data that can possibly be sent before or during connection
establishment, in bytes.

In addition to the already mentioned closing/aborting notifications and possible send errors, the
following notifications can occur:

The configured (or a default) number of retransmissions has been
reached, yielding this early warning below an abortion threshold.

An ICMP packet carrying the conveyed ICMP message
has arrived.

A packet carrying the conveyed Explicit Congestion
Notification (ECN) value has arrived. This can be useful for applications implementing
congestion control.

Data could not be delivered for s seconds.

The send buffer has either drained below the configured buffer limit or it has become
completely empty. This is a generic notification that tries to enable uniform access to
"TCP_NOTSENT_LOWAT" as well as the "SENDER DRY" notification (as discussed in Section 5.4;
SCTP's "SENDER DRY" is a special case where the threshold (for unsent data) is 0 and there is
also no more unacknowledged data in the send buffer).

•

•

•

•

6.2.2. Individual Connections

Configure priority or weight for a scheduler, as described in .[RFC8260]

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 17

Configure checksum usage: This can be done with the following parameters, but there is no
guarantee that any checksum limitations will indeed be enforced (the default behavior is "full
coverage, checksum enabled"):

a boolean to enable/disable usage of a checksum when sending
the desired coverage (in bytes) of the checksum used when sending
a boolean to enable/disable requiring a checksum when receiving
the required minimum coverage (in bytes) of the checksum when receiving

•
•
•
•

6.3. DATA Transfer

Reliability:

Ordered (not UDP):

Bundle:

DelAck:

Fragment:

Idempotent (not UDP):

6.3.1. Sending Data

When sending a message, no guarantees are given about the preservation of message boundaries
to the peer; if message boundaries are needed, the receiving application at the peer must know
about them beforehand (or the transport system cannot use TCP). Note that an application should
already be able to hand over data before the transport system establishes a connection with a
chosen transport protocol. Regarding the message that is being handed over, the following
parameters can be used:

This parameter is used to convey a choice of: fully reliable with congestion control
(not UDP), unreliable without congestion control, unreliable with congestion control (not
UDP), and partially reliable with congestion control (see and for details
on how to specify partial reliability) (not UDP). The latter two choices are optional for a
transport system to offer and may result in full reliability. Note that applications sending
unreliable data without congestion control should themselves perform congestion control in
accordance with .

This boolean lets an application choose between ordered message delivery
(true) and possibly unordered, potentially faster message delivery (false).

This boolean expresses a preference for allowing to bundle messages (true) or not
(false). No guarantees are given.

This boolean, if false, lets an application request that the peer not delay the
acknowledgement for this message.

This boolean expresses a preference for allowing to fragment messages (true) or not
(false), at the IP level. No guarantees are given.

This boolean expresses whether a message is idempotent (true) or not
(false). Idempotent messages may arrive multiple times at the receiver (but they will arrive at
least once). When data is idempotent, it can be used by the receiver immediately on a
connection establishment attempt. Thus, if data is handed over before the transport system
establishes a connection with a chosen transport protocol, stating that a message is
idempotent facilitates transmitting it to the peer application particularly early.

[RFC3758] [RFC7496]

[RFC8085]

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 18

[RFC8095]

[RFC8303]

9. References

9.1. Normative References

,
, ,

, March 2017, .

,
, , ,

February 2018, .

An application can be notified of a failure to send a specific message. There is no guarantee of
such notifications, i.e., send failures can also silently occur.

6.3.2. Receiving Data

A receiving application obtains an "Application-Framed Byte Stream" (AFra Byte Stream); this
concept is further described in Section 5.1. In line with TCP's receiver semantics, an AFra Byte
Stream is just a stream of bytes to the receiver. If message boundaries were specified by the
sender, a receiver-side transport system implementing only the minimum set of Transport
Services defined here will still not inform the receiving application about them (this limitation is
only needed for transport systems that are implemented to directly use TCP).

Different from TCP's semantics, if the sending application has allowed that messages are not fully
reliably transferred, or delivered out of order, then such reordering or unreliability may be
reflected per message in the arriving data. Messages will always stay intact, i.e., if an incomplete
message is contained at the end of the arriving data block, this message is guaranteed to continue
in the next arriving data block.

7. IANA Considerations
This document has no IANA actions.

8. Security Considerations
Authentication, confidentiality protection, and integrity protection are identified as transport
features by . Often, these features are provided by a protocol or layer on top of the
transport protocol; none of the full-featured standards-track transport protocols in ,
which this document is based upon, provide all of these transport features on its own. Therefore,
they are not considered in this document, with the exception of native authentication
capabilities of TCP and SCTP for which the security considerations in and
apply. The minimum requirements for a secure transport system are discussed in a separate
document .

[RFC8095]
[RFC8303]

[RFC5925] [RFC4895]

[RFC8922]

Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind, Ed. "Services Provided
by IETF Transport Protocols and Congestion Control Mechanisms" RFC 8095
DOI 10.17487/RFC8095 <https://www.rfc-editor.org/info/rfc8095>

Welzl, M., Tuexen, M., and N. Khademi "On the Usage of Transport Features
Provided by IETF Transport Protocols" RFC 8303 DOI 10.17487/RFC8303

<https://www.rfc-editor.org/info/rfc8303>

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 19

https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8303

[RFC8922]

[COBS]

[POSIX]

[RFC3758]

[RFC4895]

[RFC4987]

[RFC5925]

[RFC6897]

[RFC7305]

[RFC7413]

[RFC7496]

[RFC8085]

,
, ,

, October 2020, .

9.2. Informative References

, ,
, , April

1999, .

,
,

, , January 2018,
.

,
, ,

, May 2004, .

,
, , ,

August 2007, .

, , ,
, August 2007, .

, , ,
, June 2010, .

,
, , , March 2013,

.

,
, , , July 2014,

.

, , ,
, December 2014, .

,
,

, , April 2015,
.

, , ,
, , March 2017,

.

Enghardt, T., Pauly, T., Perkins, C., Rose, K., and C. Wood "A Survey of the
Interaction between Security Protocols and Transport Services" RFC 8922 DOI
10.17487/RFC8922 <https://www.rfc-editor.org/info/rfc8922>

Cheshire, S. and M. Baker "Consistent overhead byte stuffing" IEEE/ACM
Transactions on Networking, Volume 7, Issue 2 DOI 10.1109/90.769765

<https://doi.org/10.1109/90.769765>

The Open Group "IEEE Standard for Information Technology--Portable
Operating System Interface (POSIX(R)) Base Specifications, Issue 7" (Revision of
IEEE Std 1003.1-2008) IEEE Std 1003.1-2017 <https://
www.opengroup.org/onlinepubs/9699919799/functions/contents.html>

Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P. Conrad "Stream Control
Transmission Protocol (SCTP) Partial Reliability Extension" RFC 3758 DOI
10.17487/RFC3758 <https://www.rfc-editor.org/info/rfc3758>

Tuexen, M., Stewart, R., Lei, P., and E. Rescorla "Authenticated Chunks for the
Stream Control Transmission Protocol (SCTP)" RFC 4895 DOI 10.17487/RFC4895

<https://www.rfc-editor.org/info/rfc4895>

Eddy, W. "TCP SYN Flooding Attacks and Common Mitigations" RFC 4987 DOI
10.17487/RFC4987 <https://www.rfc-editor.org/info/rfc4987>

Touch, J., Mankin, A., and R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Scharf, M. and A. Ford "Multipath TCP (MPTCP) Application Interface
Considerations" RFC 6897 DOI 10.17487/RFC6897 <https://
www.rfc-editor.org/info/rfc6897>

Lear, E., Ed. "Report from the IAB Workshop on Internet Technology Adoption
and Transition (ITAT)" RFC 7305 DOI 10.17487/RFC7305 <https://
www.rfc-editor.org/info/rfc7305>

Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain "TCP Fast Open" RFC 7413 DOI
10.17487/RFC7413 <https://www.rfc-editor.org/info/rfc7413>

Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto "Additional Policies for
the Partially Reliable Stream Control Transmission Protocol Extension" RFC
7496 DOI 10.17487/RFC7496 <https://www.rfc-editor.org/info/
rfc7496>

Eggert, L., Fairhurst, G., and G. Shepherd "UDP Usage Guidelines" BCP 145 RFC
8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/
rfc8085>

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 20

https://www.rfc-editor.org/info/rfc8922
https://doi.org/10.1109/90.769765
https://www.opengroup.org/onlinepubs/9699919799/functions/contents.html
https://www.opengroup.org/onlinepubs/9699919799/functions/contents.html
https://www.rfc-editor.org/info/rfc3758
https://www.rfc-editor.org/info/rfc4895
https://www.rfc-editor.org/info/rfc4987
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6897
https://www.rfc-editor.org/info/rfc6897
https://www.rfc-editor.org/info/rfc7305
https://www.rfc-editor.org/info/rfc7305
https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7496
https://www.rfc-editor.org/info/rfc7496
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085

[RFC8260]

[RFC8304]

[RFC8622]

[SCTP-STREAM-1]

[SCTP-STREAM-2]

[TAPS-INTERFACE]

[WWDC2015]

,
,

, , November 2017,
.

,
, , ,

February 2018, .

,
, , , June 2019,

.

, ,
, , June

2017.

,
, ,

, December 2011,
.

,
, ,

, 27 July 2020,
.

, ,
, , June 2015,

.

Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann "Stream Schedulers and
User Message Interleaving for the Stream Control Transmission Protocol" RFC
8260 DOI 10.17487/RFC8260 <https://www.rfc-editor.org/info/
rfc8260>

Fairhurst, G. and T. Jones "Transport Features of the User Datagram Protocol
(UDP) and Lightweight UDP (UDP-Lite)" RFC 8304 DOI 10.17487/RFC8304

<https://www.rfc-editor.org/info/rfc8304>

Bless, R. "A Lower-Effort Per-Hop Behavior (LE PHB) for Differentiated
Services" RFC 8622 DOI 10.17487/RFC8622 <https://www.rfc-
editor.org/info/rfc8622>

Weinrank, F. and M. Tuexen "Transparent Flow Mapping for NEAT" IFIP
Networking 2017 Workshop on Future of Internet Transport (FIT 2017)

Welzl, M., Niederbacher, F., and S. Gjessing "Beneficial Transparent
Deployment of SCTP: The Missing Pieces" IEEE GlobeCom 2011 DOI 10.1109/
GLOCOM.2011.6133554 <https://doi.org/10.1109/
GLOCOM.2011.6133554>

Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G., Kuehlewind, M.,
Perkins, C., Tiesel, P. S., Wood, C. A., and T. Pauly "An Abstract Application Layer
Interface to Transport Services" Work in Progress Internet-Draft, draft-ietf-
taps-interface-09 <https://tools.ietf.org/html/draft-ietf-taps-
interface-09>

Lakhera, P. and S. Cheshire "Your App and Next Generation Networks" Apple
Worldwide Developers Conference 2015 San Francisco, USA <https://
developer.apple.com/videos/wwdc/2015/?id=719>

Appendix A. The Superset of Transport Features
In this description, transport features are presented following the nomenclature "CATEGORY.
[SUBCATEGORY].FEATURENAME.PROTOCOL", equivalent to "pass 2" in . We also sketch
how functional or optimizing transport features can be implemented by a transport system. The
"minimal set" derived in this document is meant to be implementable "one-sided" over TCP and,
with limitations, UDP. Hence, for all transport features that are categorized as "functional" or
"optimizing", and for which no matching TCP and/or UDP primitive exists in "pass 2" of

, a brief discussion on how to implement them over TCP and/or UDP is included.

We designate some transport features as "automatable" on the basis of a broader decision that
affects multiple transport features:

Most transport features that are related to multi-streaming were designated as
"automatable". This was done because the decision on whether or not to use multi-streaming
does not depend on application-specific knowledge. This means that a connection that is

[RFC8303]

[RFC8303]

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 21

https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8304
https://www.rfc-editor.org/info/rfc8622
https://www.rfc-editor.org/info/rfc8622
https://doi.org/10.1109/GLOCOM.2011.6133554
https://doi.org/10.1109/GLOCOM.2011.6133554
https://tools.ietf.org/html/draft-ietf-taps-interface-09
https://tools.ietf.org/html/draft-ietf-taps-interface-09
https://developer.apple.com/videos/wwdc/2015/?id=719
https://developer.apple.com/videos/wwdc/2015/?id=719

exhibited to an application could be implemented by using a single stream of an SCTP
association instead of mapping it to a complete SCTP association or TCP connection. This
could be achieved by using more than one stream when an SCTP association is first
established (CONNECT.SCTP parameter "outbound stream count"), maintaining an internal
stream number, and using this stream number when sending data (SEND.SCTP parameter
"stream number"). Closing or aborting a connection could then simply free the stream
number for future use. This is discussed further in Section 5.2.
With the exception of "Disable MPTCP", all transport features that are related to using
multiple paths or the choice of the network interface were designated as "automatable". For
example, "Listen" could always listen on all available interfaces and "Connect" could use the
default interface for the destination IP address.

Finally, in three cases, transport features are aggregated and/or slightly changed from
in the description below. These transport features are marked as "CHANGED FROM RFC 8303".
These do not add any new functionality but just represent a simple refactoring step that helps to
streamline the derivation process (e.g., by removing a choice of a parameter for the sake of
applications that may not care about this choice). The corresponding transport features are
automatable, and they are listed immediately below the "CHANGED FROM RFC 8303" transport
feature.

•

[RFC8303]

A.1. CONNECTION-Related Transport Features
ESTABLISHMENT:

Connect

Protocols: TCP, SCTP, UDP(-Lite)

Functional because the notion of a connection is often reflected in applications as an
expectation to be able to communicate after a "Connect" succeeded, with a communication
sequence relating to this transport feature that is defined by the application protocol.

Implementation: via CONNECT.TCP, CONNECT.SCTP or CONNECT.UDP(-Lite).

Specify which IP Options must always be used

Protocols: TCP, UDP(-Lite)

Automatable because IP Options relate to knowledge about the network, not the application.

Request multiple streams

Protocols: SCTP

Automatable because using multi-streaming does not require application-specific knowledge
(example implementations of using multi-streaming without involving the application are
described in and).

•

•

•

[SCTP-STREAM-1] [SCTP-STREAM-2]

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 22

Implementation: see Section 5.2.

Limit the number of inbound streams

Protocols: SCTP

Automatable because using multi-streaming does not require application-specific knowledge.

Implementation: see Section 5.2.

Specify number of attempts and/or timeout for the first establishment message

Protocols: TCP, SCTP

Functional because this is closely related to potentially assumed reliable data delivery for
data that is sent before or during connection establishment.

Implementation: using a parameter of CONNECT.TCP and CONNECT.SCTP.

Implementation over UDP: do nothing (this is irrelevant in the case of UDP because there,
reliable data delivery is not assumed).

Obtain multiple sockets

Protocols: SCTP

Automatable because the non-parallel usage of multiple paths to communicate between the
same end hosts relates to knowledge about the network, not the application.

Disable MPTCP

Protocols: MPTCP

Optimizing because the parallel usage of multiple paths to communicate between the same
end hosts can improve performance. Whether or not to use this feature depends on
knowledge about the network as well as application-specific knowledge (see

).

Implementation: via a boolean parameter in CONNECT.MPTCP.

Implementation over TCP: do nothing.

Implementation over UDP: do nothing.

Configure authentication

Protocols: TCP, SCTP

Functional because this has a direct influence on security.

•

•

•

•

Section 3.1 of
[RFC6897]

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 23

https://www.rfc-editor.org/rfc/rfc6897#section-3.1

Implementation: via parameters in CONNECT.TCP and CONNECT.SCTP. With TCP, this allows
configuring Master Key Tuples (MKTs) to authenticate complete segments (including the TCP
IPv4 pseudoheader, TCP header, and TCP data). With SCTP, this allows specifying which
chunk types must always be authenticated. Authenticating only certain chunk types creates a
reduced level of security that is not supported by TCP; to be compatible, this should therefore
only allow to authenticate all chunk types. Key material must be provided in a way that is
compatible with both and .

Implementation over UDP: not possible (UDP does not offer this functionality).

Indicate (and/or obtain upon completion) an Adaptation Layer via an adaptation code point

Protocols: SCTP

Functional because it allows sending extra data for the sake of identifying an adaptation
layer, which by itself is application specific.

Implementation: via a parameter in CONNECT.SCTP.

Implementation over TCP: not possible. (TCP does not offer this functionality.)

Implementation over UDP: not possible. (UDP does not offer this functionality.)

Request to negotiate interleaving of user messages

Protocols: SCTP

Automatable because it requires using multiple streams, but requesting multiple streams in
the CONNECTION.ESTABLISHMENT category is automatable.

Implementation: controlled via a parameter in CONNECT.SCTP. One possible implementation
is to always try to enable interleaving.

Hand over a message to reliably transfer (possibly multiple times) before connection
establishment

Protocols: TCP

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation: via a parameter in CONNECT.TCP.

Implementation over UDP: not possible. (UDP does not provide reliability.)

Hand over a message to reliably transfer during connection establishment

Protocols: SCTP

[RFC4895] [RFC5925]

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 24

Functional because this can only work if the message is limited in size, making it closely tied
to properties of the data that an application sends or expects to receive.

Implementation: via a parameter in CONNECT.SCTP.

Implementation over TCP: transmit the message with the SYN packet, sacrificing the ability
to identify message boundaries.

Implementation over UDP: not possible. (UDP is unreliable.)

Enable UDP encapsulation with a specified remote UDP port number

Protocols: SCTP

Automatable because UDP encapsulation relates to knowledge about the network, not the
application.

AVAILABILITY:

Listen

Protocols: TCP, SCTP, UDP(-Lite)

Functional because the notion of accepting connection requests is often reflected in
applications as an expectation to be able to communicate after a "Listen" succeeded, with a
communication sequence relating to this transport feature that is defined by the application
protocol.

CHANGED FROM RFC 8303. This differs from the 3 automatable transport features below in
that it leaves the choice of interfaces for listening open.

Implementation: by listening on all interfaces via LISTEN.TCP (not providing a local IP
address) or LISTEN.SCTP (providing SCTP port number / address pairs for all local IP
addresses). LISTEN.UDP(-Lite) supports both methods.

Listen, 1 specified local interface

Protocols: TCP, SCTP, UDP(-Lite)

Automatable because decisions about local interfaces relate to knowledge about the network
and the Operating System, not the application.

Listen, N specified local interfaces

Protocols: SCTP

Automatable because decisions about local interfaces relate to knowledge about the network
and the Operating System, not the application.

Listen, all local interfaces

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 25

Protocols: TCP, SCTP, UDP(-Lite)

Automatable because decisions about local interfaces relate to knowledge about the network
and the Operating System, not the application.

Specify which IP Options must always be used

Protocols: TCP, UDP(-Lite)

Automatable because IP Options relate to knowledge about the network, not the application.

Disable MPTCP

Protocols: MPTCP

Optimizing because the parallel usage of multiple paths to communicate between the same
end hosts can improve performance. Whether or not to use this feature depends on
knowledge about the network as well as application-specific knowledge (see

).

Implementation: via a boolean parameter in LISTEN.MPTCP.

Implementation over TCP: do nothing.

Implementation over UDP: do nothing.

Configure authentication

Protocols: TCP, SCTP

Functional because this has a direct influence on security.

Implementation: via parameters in LISTEN.TCP and LISTEN.SCTP.

Implementation over TCP: with TCP, this allows configuring Master Key Tuples (MKTs) to
authenticate complete segments (including the TCP IPv4 pseudoheader, TCP header, and TCP
data). With SCTP, this allows specifying which chunk types must always be authenticated.
Authenticating only certain chunk types creates a reduced level of security that is not
supported by TCP; to be compatible, this should therefore only allow to authenticate all
chunk types. Key material must be provided in a way that is compatible with both
and .

Implementation over UDP: not possible. (UDP does not offer authentication.)

Obtain requested number of streams

Protocols: SCTP

Automatable because using multi-streaming does not require application-specific knowledge.

Implementation: see Section 5.2.

•

•

Section 3.1 of
[RFC6897]

•

[RFC4895]
[RFC5925]

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 26

https://www.rfc-editor.org/rfc/rfc6897#section-3.1

Limit the number of inbound streams

Protocols: SCTP

Automatable because using multi-streaming does not require application-specific knowledge.

Implementation: see Section 5.2.

Indicate (and/or obtain upon completion) an Adaptation Layer via an adaptation code point

Protocols: SCTP

Functional because it allows sending extra data for the sake of identifying an adaptation
layer, which by itself is application specific.

Implementation: via a parameter in LISTEN.SCTP.

Implementation over TCP: not possible. (TCP does not offer this functionality.)

Implementation over UDP: not possible. (UDP does not offer this functionality.)

Request to negotiate interleaving of user messages

Protocols: SCTP

Automatable because it requires using multiple streams, but requesting multiple streams in
the CONNECTION.ESTABLISHMENT category is automatable.

Implementation: via a parameter in LISTEN.SCTP.

MAINTENANCE:

Change timeout for aborting connection (using retransmit limit or time value)

Protocols: TCP, SCTP

Functional because this is closely related to potentially assumed reliable data delivery.

Implementation: via CHANGE_TIMEOUT.TCP or CHANGE_TIMEOUT.SCTP.

Implementation over UDP: not possible. (UDP is unreliable and there is no connection
timeout.)

Suggest timeout to the peer

Protocols: TCP

Functional because this is closely related to potentially assumed reliable data delivery.

Implementation: via CHANGE_TIMEOUT.TCP.

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 27

Implementation over UDP: not possible. (UDP is unreliable and there is no connection
timeout.)

Disable Nagle algorithm

Protocols: TCP, SCTP

Optimizing because this decision depends on knowledge about the size of future data blocks
and the delay between them.

Implementation: via DISABLE_NAGLE.TCP and DISABLE_NAGLE.SCTP.

Implementation over UDP: do nothing (UDP does not implement the Nagle algorithm).

Request an immediate heartbeat, returning success/failure

Protocols: SCTP

Automatable because this informs about network-specific knowledge.

Notification of Excessive Retransmissions (early warning below abortion threshold)

Protocols: TCP

Optimizing because it is an early warning to the application, informing it of an impending
functional event.

Implementation: via ERROR.TCP.

Implementation over UDP: do nothing (there is no abortion threshold).

Add path

Protocols: MPTCP, SCTP

MPTCP Parameters: source-IP; source-Port; destination-IP; destination-Port

SCTP Parameters: local IP address

Automatable because the choice of paths to communicate between the same end hosts
relates to knowledge about the network, not the application.

Remove path

Protocols: MPTCP, SCTP

MPTCP Parameters: source-IP; source-Port; destination-IP; destination-Port

SCTP Parameters: local IP address

Automatable because the choice of paths to communicate between the same end host relates
to knowledge about the network, not the application.

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 28

Set primary path

Protocols: SCTP

Automatable because the choice of paths to communicate between the same end hosts
relates to knowledge about the network, not the application.

Suggest primary path to the peer

Protocols: SCTP

Automatable because the choice of paths to communicate between the same end hosts
relates to knowledge about the network, not the application.

Configure Path Switchover

Protocols: SCTP

Automatable because the choice of paths to communicate between the same end hosts
relates to knowledge about the network, not the application.

Obtain status (query or notification)

Protocols: SCTP, MPTCP

SCTP parameters: association connection state; destination transport address list; destination
transport address reachability states; current local and peer receiver window size; current
local congestion window sizes; number of unacknowledged DATA chunks; number of DATA
chunks pending receipt; primary path; most recent SRTT on primary path; RTO on primary
path; SRTT and RTO on other destination addresses; MTU per path; interleaving supported
yes/no

MPTCP parameters: subflow-list (identified by source-IP; source-Port; destination-IP;
destination-Port)

Automatable because these parameters relate to knowledge about the network, not the
application.

Specify DSCP field

Protocols: TCP, SCTP, UDP(-Lite)

Optimizing because choosing a suitable DSCP value requires application-specific knowledge.

Implementation: via SET_DSCP.TCP / SET_DSCP.SCTP / SET_DSCP.UDP(-Lite).

Notification of ICMP error message arrival

Protocols: TCP, UDP(-Lite)

•

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 29

Optimizing because these messages can inform about success or failure of functional
transport features (e.g., host unreachable relates to "Connect").

Implementation: via ERROR.TCP or ERROR.UDP(-Lite.)

Obtain information about interleaving support

Protocols: SCTP

Automatable because it requires using multiple streams, but requesting multiple streams in
the CONNECTION.ESTABLISHMENT category is automatable.

Implementation: via STATUS.SCTP.

Change authentication parameters

Protocols: TCP, SCTP

Functional because this has a direct influence on security.

Implementation: via SET_AUTH.TCP and SET_AUTH.SCTP.

Implementation over TCP: with SCTP, this allows adjusting key_id, key, and hmac_id. With
TCP, this allows changing the preferred outgoing MKT (current_key) and the preferred
incoming MKT (rnext_key), respectively, for a segment that is sent on the connection. Key
material must be provided in a way that is compatible with both and .

Implementation over UDP: not possible. (UDP does not offer authentication.)

Obtain authentication information

Protocols: SCTP

Functional because authentication decisions may have been made by the peer, and this has
an influence on the necessary application-level measures to provide a certain level of
security.

Implementation: via GET_AUTH.SCTP.

Implementation over TCP: with SCTP, this allows obtaining key_id and a chunk list. With TCP,
this allows obtaining current_key and rnext_key from a previously received segment. Key
material must be provided in a way that is compatible with both and .

Implementation over UDP: not possible. (UDP does not offer authentication.)

Reset Stream

Protocols: SCTP

Automatable because using multi-streaming does not require application-specific knowledge.

•

•

[RFC4895] [RFC5925]

•

[RFC4895] [RFC5925]

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 30

Implementation: see Section 5.2.

Notification of Stream Reset

Protocols: STCP

Automatable because using multi-streaming does not require application-specific knowledge.

Implementation: see Section 5.2.

Reset Association

Protocols: SCTP

Automatable because deciding to reset an association does not require application-specific
knowledge.

Implementation: via RESET_ASSOC.SCTP.

Notification of Association Reset

Protocols: STCP

Automatable because this notification does not relate to application-specific knowledge.

Add Streams

Protocols: SCTP

Automatable because using multi-streaming does not require application-specific knowledge.

Implementation: see Section 5.2.

Notification of Added Stream

Protocols: STCP

Automatable because using multi-streaming does not require application-specific knowledge.

Implementation: see Section 5.2.

Choose a scheduler to operate between streams of an association

Protocols: SCTP

Optimizing because the scheduling decision requires application-specific knowledge.
However, if a transport system would not use this, or wrongly configure it on its own, this
would only affect the performance of data transfers; the outcome would still be correct
within the "best effort" service model.

Implementation: using SET_STREAM_SCHEDULER.SCTP.

•

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 31

Implementation over TCP: do nothing (streams are not available in TCP, but no guarantee is
given that this transport feature has any effect).

Implementation over UDP: do nothing (streams are not available in UDP, but no guarantee is
given that this transport feature has any effect).

Configure priority or weight for a scheduler

Protocols: SCTP

Optimizing because the priority or weight requires application-specific knowledge. However,
if a transport system would not use this, or wrongly configure it on its own, this would only
affect the performance of data transfers; the outcome would still be correct within the "best
effort" service model.

Implementation: using CONFIGURE_STREAM_SCHEDULER.SCTP.

Implementation over TCP: do nothing (streams are not available in TCP, but no guarantee is
given that this transport feature has any effect).

Implementation over UDP: do nothing (streams are not available in UDP, but no guarantee is
given that this transport feature has any effect).

Configure send buffer size

Protocols: SCTP

Automatable because this decision relates to knowledge about the network and the
Operating System, not the application (see also the discussion in Section 5.4).

Configure receive buffer (and rwnd) size

Protocols: SCTP

Automatable because this decision relates to knowledge about the network and the
Operating System, not the application.

Configure message fragmentation

Protocols: SCTP

Automatable because this relates to knowledge about the network and the Operating System,
not the application. Note that this SCTP feature does not control IP-level fragmentation, but
decides on fragmentation of messages by SCTP, in the end system.

Implementation: done by always enabling it with CONFIG_FRAGMENTATION.SCTP and auto-
setting the fragmentation size based on network or Operating System conditions.

Configure PMTUD

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 32

Protocols: SCTP

Automatable because Path MTU Discovery relates to knowledge about the network, not the
application.

Configure delayed SACK timer

Protocols: SCTP

Automatable because the receiver-side decision to delay sending SACKs relates to knowledge
about the network, not the application (it can be relevant for a sending application to
request not to delay the SACK of a message, but this is a different transport feature).

Set Cookie life value

Protocols: SCTP

Functional because it relates to security (possibly weakened by keeping a cookie very long)
versus the time between connection establishment attempts. Knowledge about both issues
can be application specific.

Implementation over TCP: the closest specified TCP functionality is the cookie in TCP Fast
Open; for this, states that the server "can expire the cookie at any time to enhance
security", and describes an example implementation where
updating the key on the server side causes the cookie to expire. Alternatively, for
implementations that do not support TCP Fast Open, this transport feature could also affect
the validity of SYN cookies (see).

Implementation over UDP: not possible. (UDP does not offer this functionality.)

Set maximum burst

Protocols: SCTP

Automatable because it relates to knowledge about the network, not the application.

Configure size where messages are broken up for partial delivery

Protocols: SCTP

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation over TCP: not possible. (TCP does not offer identification of message
boundaries.)

Implementation over UDP: not possible. (UDP does not fragment messages.)

Disable checksum when sending

•

•

[RFC7413]
Section 4.1.2 of [RFC7413]

Section 3.6 of [RFC4987]

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 33

https://www.rfc-editor.org/rfc/rfc7413#section-4.1.2
https://www.rfc-editor.org/rfc/rfc4987#section-3.6

Protocols: UDP

Functional because application-specific knowledge is necessary to decide whether it can be
acceptable to lose data integrity with respect to random corruption.

Implementation: via SET_CHECKSUM_ENABLED.UDP.

Implementation over TCP: do nothing (TCP does not offer to disable the checksum, but
transmitting data with an intact checksum will not yield a semantically wrong result).

Disable checksum requirement when receiving

Protocols: UDP

Functional because application-specific knowledge is necessary to decide whether it can be
acceptable to lose data integrity with respect to random corruption.

Implementation: via SET_CHECKSUM_REQUIRED.UDP.

Implementation over TCP: do nothing (TCP does not offer to disable the checksum, but
transmitting data with an intact checksum will not yield a semantically wrong result).

Specify checksum coverage used by the sender

Protocols: UDP-Lite

Functional because application-specific knowledge is necessary to decide for which parts of
the data it can be acceptable to lose data integrity with respect to random corruption.

Implementation: via SET_CHECKSUM_COVERAGE.UDP-Lite.

Implementation over TCP: do nothing (TCP does not offer to limit the checksum length, but
transmitting data with an intact checksum will not yield a semantically wrong result).

Implementation over UDP: if checksum coverage is set to cover payload data, do nothing.
Else, either do nothing (transmitting data with an intact checksum will not yield a
semantically wrong result), or use the transport feature "Disable checksum when sending".

Specify minimum checksum coverage required by receiver

Protocols: UDP-Lite

Functional because application-specific knowledge is necessary to decide for which parts of
the data it can be acceptable to lose data integrity with respect to random corruption.

Implementation: via SET_MIN_CHECKSUM_COVERAGE.UDP-Lite.

Implementation over TCP: do nothing (TCP does not offer to limit the checksum length, but
transmitting data with an intact checksum will not yield a semantically wrong result).

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 34

Implementation over UDP: if checksum coverage is set to cover payload data, do nothing.
Else, either do nothing (transmitting data with an intact checksum will not yield a
semantically wrong result), or use the transport feature "Disable checksum requirement
when receiving".

Specify DF field

Protocols: UDP(-Lite)

Optimizing because the DF field can be used to carry out Path MTU Discovery, which can
lead an application to choose message sizes that can be transmitted more efficiently.

Implementation: via MAINTENANCE.SET_DF.UDP(-Lite) and SEND_FAILURE.UDP(-Lite).

Implementation over TCP: do nothing (with TCP, the sending application is not in control of
transport message sizes, making this functionality irrelevant).

Get max. transport-message size that may be sent using a non-fragmented IP packet from the
configured interface

Protocols: UDP(-Lite)

Optimizing because this can lead an application to choose message sizes that can be
transmitted more efficiently.

Implementation over TCP: do nothing (this information is not available with TCP).

Get max. transport-message size that may be received from the configured interface

Protocols: UDP(-Lite)

Optimizing because this can, for example, influence an application's memory management.

Implementation over TCP: do nothing (this information is not available with TCP).

Specify TTL/Hop count field

Protocols: UDP(-Lite)

Automatable because a transport system can use a large enough system default to avoid
communication failures. Allowing an application to configure it differently can produce
notifications of ICMP error message arrivals that yield information that only relates to
knowledge about the network, not the application.

Obtain TTL/Hop count field

Protocols: UDP(-Lite)

Automatable because the TTL/Hop count field relates to knowledge about the network, not
the application.

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 35

Specify ECN field

Protocols: UDP(-Lite)

Automatable because the ECN field relates to knowledge about the network, not the
application.

Obtain ECN field

Protocols: UDP(-Lite)

Optimizing because this information can be used by an application to better carry out
congestion control (this is relevant when choosing a data transmission Transport Service
that does not already do congestion control).

Implementation over TCP: do nothing (this information is not available with TCP).

Specify IP Options

Protocols: UDP(-Lite)

Automatable because IP Options relate to knowledge about the network, not the application.

Obtain IP Options

Protocols: UDP(-Lite)

Automatable because IP Options relate to knowledge about the network, not the application.

Enable and configure a "Low Extra Delay Background Transfer"

Protocols: a protocol implementing the LEDBAT congestion control mechanism

Optimizing because whether this feature is appropriate or not depends on application-
specific knowledge. However, wrongly using this will only affect the speed of data transfers
(albeit including other transfers that may compete with the transport system's transfer in the
network), so it is still correct within the "best effort" service model.

Implementation: via CONFIGURE.LEDBAT and/or SET_DSCP.TCP / SET_DSCP.SCTP /
SET_DSCP.UDP(-Lite) .

Implementation over TCP: do nothing (TCP does not support LEDBAT congestion control, but
not implementing this functionality will not yield a semantically wrong behavior).

Implementation over UDP: do nothing (UDP does not offer congestion control).

TERMINATION:

Close after reliably delivering all remaining data, causing an event informing the application
on the other side

•

•

•

•

•

[RFC8622]

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 36

Protocols: TCP, SCTP

Functional because the notion of a connection is often reflected in applications as an
expectation to have all outstanding data delivered and no longer be able to communicate
after a "Close" succeeded, with a communication sequence relating to this transport feature
that is defined by the application protocol.

Implementation: via CLOSE.TCP and CLOSE.SCTP.

Implementation over UDP: not possible. (UDP is unreliable and hence does not know when
all remaining data is delivered; it does also not offer to cause an event related to closing at
the peer.)

Abort without delivering remaining data, causing an event informing the application on the
other side

Protocols: TCP, SCTP

Functional because the notion of a connection is often reflected in applications as an
expectation to potentially not have all outstanding data delivered and no longer be able to
communicate after an "Abort" succeeded. On both sides of a connection, an application
protocol may define a communication sequence relating to this transport feature.

Implementation: via ABORT.TCP and ABORT.SCTP.

Implementation over UDP: not possible. (UDP does not offer to cause an event related to
aborting at the peer.)

Abort without delivering remaining data, not causing an event informing the application on
the other side

Protocols: UDP(-Lite)

Functional because the notion of a connection is often reflected in applications as an
expectation to potentially not have all outstanding data delivered and no longer be able to
communicate after an "Abort" succeeded. On both sides of a connection, an application
protocol may define a communication sequence relating to this transport feature.

Implementation: via ABORT.UDP(-Lite).

Implementation over TCP: stop using the connection, wait for a timeout.

Timeout event when data could not be delivered for too long

Protocols: TCP, SCTP

Functional because this notifies that potentially assumed reliable data delivery is no longer
provided.

Implementation: via TIMEOUT.TCP and TIMEOUT.SCTP.

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 37

Implementation over UDP: do nothing (this event will not occur with UDP).

A.2. DATA-Transfer-Related Transport Features

A.2.1. Sending Data
Reliably transfer data, with congestion control

Protocols: TCP, SCTP

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation: via SEND.TCP and SEND.SCTP.

Implementation over UDP: not possible. (UDP is unreliable.)

Reliably transfer a message, with congestion control

Protocols: SCTP

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation: via SEND.SCTP.

Implementation over TCP: via SEND.TCP. With SEND.TCP, message boundaries will not be
identifiable by the receiver, because TCP provides a byte-stream service.

Implementation over UDP: not possible. (UDP is unreliable.)

Unreliably transfer a message

Protocols: SCTP, UDP(-Lite)

Optimizing because only applications know about the time criticality of their
communication, and reliably transferring a message is never incorrect for the receiver of a
potentially unreliable data transfer, it is just slower.

CHANGED FROM RFC 8303. This differs from the 2 automatable transport features below in
that it leaves the choice of congestion control open.

Implementation: via SEND.SCTP or SEND.UDP(-Lite).

Implementation over TCP: use SEND.TCP. With SEND.TCP, messages will be sent reliably, and
message boundaries will not be identifiable by the receiver.

Unreliably transfer a message, with congestion control

Protocols: SCTP

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 38

Automatable because congestion control relates to knowledge about the network, not the
application.

Unreliably transfer a message, without congestion control

Protocols: UDP(-Lite)

Automatable because congestion control relates to knowledge about the network, not the
application.

Configurable Message Reliability

Protocols: SCTP

Optimizing because only applications know about the time criticality of their
communication, and reliably transferring a message is never incorrect for the receiver of a
potentially unreliable data transfer, it is just slower.

Implementation: via SEND.SCTP.

Implementation over TCP: done by using SEND.TCP and ignoring this configuration. Based on
the assumption of the best-effort service model, unnecessarily delivering data does not
violate application expectations. Moreover, it is not possible to associate the requested
reliability to a "message" in TCP anyway.

Implementation over UDP: not possible. (UDP is unreliable.)

Choice of stream

Protocols: SCTP

Automatable because it requires using multiple streams, but requesting multiple streams in
the CONNECTION.ESTABLISHMENT category is automatable.

Implementation: see Section 5.2.

Choice of path (destination address)

Protocols: SCTP

Automatable because it requires using multiple sockets, but obtaining multiple sockets in the
CONNECTION.ESTABLISHMENT category is automatable.

Ordered message delivery (potentially slower than unordered)

Protocols: SCTP

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation: via SEND.SCTP.

•

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 39

Implementation over TCP: done by using SEND.TCP. With SEND.TCP, messages will not be
identifiable by the receiver.

Implementation over UDP: not possible. (UDP does not offer any guarantees regarding
ordering.)

Unordered message delivery (potentially faster than ordered)

Protocols: SCTP, UDP(-Lite)

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation: via SEND.SCTP.

Implementation over TCP: done by using SEND.TCP and always sending data ordered. Based
on the assumption of the best-effort service model, ordered delivery may just be slower and
does not violate application expectations. Moreover, it is not possible to associate the
requested delivery order to a "message" in TCP anyway.

Request not to bundle messages

Protocols: SCTP

Optimizing because this decision depends on knowledge about the size of future data blocks
and the delay between them.

Implementation: via SEND.SCTP.

Implementation over TCP: done by using SEND.TCP and DISABLE_NAGLE.TCP to disable the
Nagle algorithm when the request is made and enable it again when the request is no longer
made. Note that this is not fully equivalent because it relates to the time of issuing the
request rather than a specific message.

Implementation over UDP: do nothing (UDP never bundles messages).

Specifying a "payload protocol-id" (handed over as such by the receiver)

Protocols: SCTP

Functional because it allows sending extra application data with every message, for the sake
of identification of data, which by itself is application specific.

Implementation: SEND.SCTP.

Implementation over TCP: not possible. (This functionality is not available in TCP.)

Implementation over UDP: not possible. (This functionality is not available in UDP.)

Specifying a key id to be used to authenticate a message

•

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 40

Protocols: SCTP

Functional because this has a direct influence on security.

Implementation: via a parameter in SEND.SCTP.

Implementation over TCP: this could be emulated by using SET_AUTH.TCP before and after
the message is sent. Note that this is not fully equivalent because it relates to the time of
issuing the request rather than a specific message.

Implementation over UDP: not possible. (UDP does not offer authentication.)

Request not to delay the acknowledgement (SACK) of a message

Protocols: SCTP

Optimizing because only an application knows for which message it wants to quickly be
informed about success/failure of its delivery.

Implementation over TCP: do nothing (TCP does not offer this functionality, but ignoring this
request from the application will not yield a semantically wrong behavior).

Implementation over UDP: do nothing (UDP does not offer this functionality, but ignoring
this request from the application will not yield a semantically wrong behavior).

•

A.2.2. Receiving Data
Receive data (with no message delimiting)

Protocols: TCP

Functional because a transport system must be able to send and receive data.

Implementation: via RECEIVE.TCP.

Implementation over UDP: do nothing (UDP only works on messages; these can be handed
over, the application can still ignore the message boundaries).

Receive a message

Protocols: SCTP, UDP(-Lite)

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation: via RECEIVE.SCTP and RECEIVE.UDP(-Lite).

Implementation over TCP: not possible. (TCP does not support identification of message
boundaries.)

Choice of stream to receive from

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 41

Protocols: SCTP

Automatable because it requires using multiple streams, but requesting multiple streams in
the CONNECTION.ESTABLISHMENT category is automatable.

Implementation: see Section 5.2.

Information about partial message arrival

Protocols: SCTP

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation: via RECEIVE.SCTP.

Implementation over TCP: do nothing (this information is not available with TCP).

Implementation over UDP: do nothing (this information is not available with UDP).

•

A.2.3. Errors
This section describes sending failures that are associated with a specific call to in the "Sending
Data" category (Appendix A.2.1).

Notification of send failures

Protocols: SCTP, UDP(-Lite)

Functional because this notifies that potentially assumed reliable data delivery is no longer
provided.

CHANGED FROM RFC 8303. This differs from the 2 automatable transport features below in
that it does not distinguish between unsent and unacknowledged messages.

Implementation: via SENDFAILURE-EVENT.SCTP and SEND_FAILURE.UDP(-Lite).

Implementation over TCP: do nothing (this notification is not available and will therefore not
occur with TCP).

Notification of an unsent (part of a) message

Protocols: SCTP, UDP(-Lite)

Automatable because the distinction between unsent and unacknowledged does not relate to
application-specific knowledge.

Notification of an unacknowledged (part of a) message

Protocols: SCTP

•

•

•

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 42

Automatable because the distinction between unsent and unacknowledged does not relate to
application-specific knowledge.

Notification that the stack has no more user data to send

Protocols: SCTP

Optimizing because reacting to this notification requires the application to be involved, and
ensuring that the stack does not run dry of data (for too long) can improve performance.

Implementation over TCP: do nothing (see the discussion in Section 5.4).

Implementation over UDP: do nothing (this notification is not available and will therefore
not occur with UDP).

Notification to a receiver that a partial message delivery has been aborted

Protocols: SCTP

Functional because this is closely tied to properties of the data that an application sends or
expects to receive.

Implementation over TCP: do nothing (this notification is not available and will therefore not
occur with TCP).

Implementation over UDP: do nothing (this notification is not available and will therefore
not occur with UDP).

•

•

Acknowledgements
The authors would like to thank all the participants of the TAPS Working Group and the NEAT
and MAMI research projects for valuable input to this document. We especially thank

 for help with connection establishment/teardown, for his suggestions
regarding fragmentation and packet sizes, and for his extremely detailed and
constructive review. This work has received funding from the European Union's Horizon 2020
research and innovation program under grant agreement No. 644334 (NEAT).

Michael
Tüxen Gorry Fairhurst

Spencer Dawkins

Authors' Addresses
Michael Welzl
University of Oslo
PO Box 1080 Blindern

 N-0316 Oslo
Norway

 +47 22 85 24 20 Phone:
 michawe@ifi.uio.no Email:

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 43

tel:+47%2022%2085%2024%2020
mailto:michawe@ifi.uio.no

Stein Gjessing
University of Oslo
PO Box 1080 Blindern

 N-0316 Oslo
Norway

 +47 22 85 24 44 Phone:
 steing@ifi.uio.no Email:

RFC 8923 Minimal Transport Services October 2020

Welzl & Gjessing Informational Page 44

tel:+47%2022%2085%2024%2044
mailto:steing@ifi.uio.no

	RFC 8923
	A Minimal Set of Transport Services for End Systems
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Deriving the Minimal Set
	4. The Reduced Set of Transport Features
	4.1. CONNECTION-Related Transport Features
	4.2. DATA-Transfer-Related Transport Features
	4.2.1. Sending Data
	4.2.2. Receiving Data
	4.2.3. Errors

	5. Discussion
	5.1. Sending Messages, Receiving Bytes
	5.2. Stream Schedulers without Streams
	5.3. Early Data Transmission
	5.4. Sender Running Dry
	5.5. Capacity Profile
	5.6. Security
	5.7. Packet Size

	6. The Minimal Set of Transport Features
	6.1. ESTABLISHMENT, AVAILABILITY, and TERMINATION
	6.2. MAINTENANCE
	6.2.1. Connection Groups
	6.2.2. Individual Connections

	6.3. DATA Transfer
	6.3.1. Sending Data
	6.3.2. Receiving Data

	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. The Superset of Transport Features
	A.1. CONNECTION-Related Transport Features
	A.2. DATA-Transfer-Related Transport Features
	A.2.1. Sending Data
	A.2.2. Receiving Data
	A.2.3. Errors

	Acknowledgements
	Authors' Addresses

