
RFC 8746
Concise Binary Object Representation (CBOR) Tags
for Typed Arrays

Abstract
The Concise Binary Object Representation (CBOR), as defined in RFC 7049, is a data format whose
design goals include the possibility of extremely small code size, fairly small message size, and
extensibility without the need for version negotiation.

This document makes use of this extensibility to define a number of CBOR tags for typed arrays
of numeric data, as well as additional tags for multi-dimensional and homogeneous arrays. It is
intended as the reference document for the IANA registration of the CBOR tags defined.

Stream: Internet Engineering Task Force (IETF)
RFC: 8746
Category: Standards Track
Published: February 2020
ISSN: 2070-1721
Author: C. Bormann, Ed.

Universität Bremen TZI

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8746

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bormann Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8746
https://www.rfc-editor.org/info/rfc8746
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 2

Table of Contents
1. Introduction

1.1. Terminology

2. Typed Arrays

2.1. Types of Numbers

3. Additional Array Tags

3.1. Multi-dimensional Array

3.1.1. Row-Major Order

3.1.2. Column-Major Order

3.2. Homogeneous Array

4. Discussion

5. CDDL Typenames

6. IANA Considerations

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgements

Contributors

Author's Address

1. Introduction
The Concise Binary Object Representation (CBOR) provides for the interchange of
structured data without a requirement for a pre-agreed schema. defines a basic set of
data types as well as a tagging mechanism that enables extending the set of data types supported
via an IANA registry.

[RFC7049]
[RFC7049]

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 3

Recently, a simple form of typed arrays of numeric data has received interest both in the Web
graphics community and in the JavaScript specification (see Section 22.2 of

) as well as in corresponding implementations .

Since these typed arrays may carry significant amounts of data, there is interest in interchanging
them in CBOR without the need of lengthy conversion of each number in the array. This can also
save space overhead with encoding a type for each element of an array.

This document defines a number of interrelated CBOR tags that cover these typed arrays, as well
as additional tags for multi-dimensional and homogeneous arrays. It is intended as the reference
document for the IANA registration of the tags defined.

Note that an application that generates CBOR with these tags has considerable freedom in
choosing variants (e.g., with respect to endianness, embedded type (signed vs. unsigned), and
number of bits per element) or whether a tag defined in this specification is used at all instead of
more basic CBOR. In contrast to representation variants of single CBOR numbers, there is no
representation that could be identified as "preferred". If deterministic encoding is desired in a
CBOR-based protocol making use of these tags, the protocol has to define which of the encoding
variants are used for each individual case.

[TypedArray] [ECMA-
ES10] [ArrayBuffer]

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The term "byte" is used in its now-customary sense as a synonym for "octet". Where bit
arithmetic is explained, this document uses familiar notation from the programming language C

 (including C++14's 0bnnn binary literals) with the exception of the operator "**",
which stands for exponentiation.

The term "array" is used in a general sense in this document unless further specified. The term
"classical CBOR array" describes an array represented with CBOR major type 4. A "homogeneous
array" is an array of elements that are all the same type (the term is neutral as to whether that is
a representation type or an application data model type).

The terms "big endian" and "little endian" are used to indicate a most significant byte first (MSB
first) representation of integers and a least significant byte first (LSB first) representation,
respectively.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[C] [CPlusPlus]

2. Typed Arrays
Typed arrays are homogeneous arrays of numbers, all of which are encoded in a single form of
binary representation. The concatenation of these representations is encoded as a single CBOR
byte string (major type 2), enclosed by a single tag indicating the type and encoding of all the
numbers represented in the byte string.

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 4

https://www.ecma-international.org/ecma-262/10.0/index.html#sec-typedarray-objects

2.1. Types of Numbers
Three classes of numbers are of interest: unsigned integers (uint), signed integers (two's
complement, sint), and IEEE 754 binary floating point numbers (which are always signed). For
each of these classes, there are multiple representation lengths in active use:

Here, sintN stands for a signed integer of exactly N bits (for instance, sint16), and uintN stands
for an unsigned integer of exactly N bits (for instance, uint32). The name binaryN stands for the
number form of the same name defined in IEEE 754 .

Since one objective of these tags is to be able to directly ship the ArrayBuffers underlying the
Typed Arrays without re-encoding them, and these may be either in big-endian (network byte
order) or in little-endian form, we need to define tags for both variants.

In total, this leads to 24 variants. In the tag, we need to express the choice between integer and
floating point, the signedness (for integers), the endianness, and one of the four length values.

In order to simplify implementation, a range of tags is being allocated that allows retrieving all
this information from the bits of the tag: tag values from 64 to 87.

The value is split up into 5 bit fields: 0b010, f, s, e, and ll as detailed in Table 2.

Length ll uint sint float

0 uint8 sint8 binary16

1 uint16 sint16 binary32

2 uint32 sint32 binary64

3 uint64 sint64 binary128

Table 1: Length Values

[IEEE754]

Field Use

0b010 the constant bits 0, 1, 0

f 0 for integer, 1 for float

s 0 for float or unsigned integer, 1 for signed integer

e 0 for big endian, 1 for little endian

ll A number for the length (Table 1).

Table 2: Bit Fields in the Low 8 Bits of the Tag

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 5

The number of bytes in each array element can then be calculated by 2**(f + ll) (or 1 << (f
+ ll) in a typical programming language). (Notice that 0f and ll are the two least significant bits,
respectively, of each 4-bit nibble in the byte.)

In the CBOR representation, the total number of elements in the array is not expressed explicitly
but is implied from the length of the byte string and the length of each representation. It can be
computed from the length, in bytes, of the byte string comprising the representation of the array
by inverting the previous formula: bytelength >> (f + ll).

For the uint8/sint8 values, the endianness is redundant. Only the tag for the big-endian variant is
used and assigned as such. The tag that would signify the little-endian variant of sint8
be used; its tag number is marked as reserved. As a special case, the tag that would signify the
little-endian variant of uint8 is instead assigned to signify that the numbers in the array are
using clamped conversion from integers, as described in more detail in Section 7.1.11 of the ES10
JavaScript specification (ToUint8Clamp) ; the assumption here is that a program-
internal representation of this array after decoding would be marked this way for further
processing providing "roundtripping" of JavaScript-typed arrays through CBOR.

IEEE 754 binary floating numbers are always signed. Therefore, for the float variants (f == 1),
there is no need to distinguish between signed and unsigned variants; the s bit is always zero.
The tag numbers where s would be one (which would have tag values 88 to 95) remain free to
use by other specifications.

MUST NOT

[ECMA-ES10]

3. Additional Array Tags
This specification defines three additional array tags. The Multi-dimensional Array tags can be
combined with classical CBOR arrays as well as with Typed Arrays in order to build multi-
dimensional arrays with constant numbers of elements in the sub-arrays. The Homogeneous
Array tag can be used as a signal by an application to identify a classical CBOR array as a
homogeneous array, even when a Typed Array does not apply.

3.1. Multi-dimensional Array
A multi-dimensional array is represented as a tagged array that contains two (one-dimensional)
arrays. The first array defines the dimensions of the multi-dimensional array (in the sequence of
outer dimensions towards inner dimensions) while the second array represents the contents of
the multi-dimensional array. If the second array is itself tagged as a Typed Array, then the
element type of the multi-dimensional array is known to be the same type as that of the Typed
Array.

Two tags are defined by this document: one for elements arranged in row-major order and
another for column-major order .[RowColMajor]

Tag:

Data Item:

3.1.1. Row-Major Order

40

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 6

http://www.ecma-international.org/ecma-262/6.0/#sec-touint8clamp

Array (major type 4) of two arrays: one array (major type 4) of dimensions, which are
unsigned integers distinct from zero; and one array (any one of a CBOR array of major type
4, a Typed Array, or a Homogeneous Array) of elements.

Data in the second array consists of consecutive values where the last dimension is considered
contiguous (row-major order).

Figure 1 shows a declaration of a two-dimensional array in the C language, a representation of
that in CBOR using both a multi-dimensional array tag and a typed array tag.

Figure 2 shows the same two-dimensional array using the multi-dimensional array tag in
conjunction with a basic CBOR array (which, with the small numbers chosen for the example,
happens to be shorter).

Figure 1: Multi-dimensional Array in C and CBOR

uint16_t a[2][3] = {
 {2, 4, 8}, /* row 0 */
 {4, 16, 256},
};

<Tag 40> # multi-dimensional array tag
 82 # array(2)
 82 # array(2)
 02 # unsigned(2) 1st Dimension
 03 # unsigned(3) 2nd Dimension
 <Tag 65> # uint16 array
 4c # byte string(12)
 0002 # unsigned(2)
 0004 # unsigned(4)
 0008 # unsigned(8)
 0004 # unsigned(4)
 0010 # unsigned(16)
 0100 # unsigned(256)

Figure 2: Multi-dimensional Array Using Basic CBOR Array

<Tag 40> # multi-dimensional array tag
 82 # array(2)
 82 # array(2)
 02 # unsigned(2) 1st Dimension
 03 # unsigned(3) 2nd Dimension
 86 # array(6)
 02 # unsigned(2)
 04 # unsigned(4)
 08 # unsigned(8)
 04 # unsigned(4)
 10 # unsigned(16)
 19 0100 # unsigned(256)

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 7

Tag:

Data Item:

3.1.2. Column-Major Order

The multi-dimensional arrays specified in the previous sub-subsection are in "row major" order,
which is the preferred order for the purposes of this specification. An analogous representation
that uses "column major" order arrays is provided in this subsection under the tag 1040, as
illustrated in Figure 3.

1040

The same as tag 40, except the data in the second array consists of consecutive
values where the first dimension is considered contiguous (column-major order).

Figure 3: Multi-dimensional Array Using Basic CBOR Array, Column-Major Order

<Tag 1040> # multi-dimensional array tag, column-major order
 82 # array(2)
 82 # array(2)
 02 # unsigned(2) 1st Dimension
 03 # unsigned(3) 2nd Dimension
 86 # array(6)
 02 # unsigned(2)
 04 # unsigned(4)
 04 # unsigned(4)
 10 # unsigned(16)
 08 # unsigned(8)
 19 0100 # unsigned(256)

Tag:

Data Item:

3.2. Homogeneous Array

41

Array (major type 4)

This tag identifies the classical CBOR array (a one-dimensional array) tagged by it as a
homogeneous array, that is, it has elements that are all of the same application model data type.
The element type of the array is therefore determined by the application model data type of the
first array element.

This can be used in application data models that apply specific semantics to homogeneous
arrays. Also, in certain cases, implementations in strongly typed languages may be able to create
native homogeneous arrays of specific types instead of ordered lists while decoding. Which CBOR
data items constitute elements of the same application type is specific to the application.

Figure 4 shows an example for a homogeneous array of booleans in C++ and CBOR.[CPlusPlus]

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 8

Figure 5 extends the example with a more complex structure.

Figure 4: Homogeneous Array in C++ and CBOR

bool boolArray[2] = { true, false };

<Tag 41> # Homogeneous Array Tag
 82 #array(2)
 F5 # true
 F4 # false

Figure 5: Homogeneous Array in C++ and CBOR

typedef struct {
 bool active;
 int value;
} foo;
foo myArray[2] = { {true, 3}, {true, -4} };

<Tag 41>
 82 # array(2)
 82 # array(2)
 F5 # true
 03 # 3
 82 # array(2)
 F5 # true
 23 # -4

4. Discussion
Support for both little- and big-endian representation may seem out of character with CBOR,
which is otherwise fully big endian. This support is in line with the intended use of the typed
arrays and the objective not to require conversion of each array element.

This specification allocates a sizable chunk out of the single-byte tag space. This use of code point
space is justified by the wide use of typed arrays in data interchange.

Providing a column-major order variant of the multi-dimensional array may seem superfluous to
some and useful to others. It is cheap to define the additional tag so that it is available when
actually needed. Allocating it out of a different number space makes the preference for row-
major evident.

Applying a Homogeneous Array tag to a Typed Array would usually be redundant and is
therefore not provided by the present specification.

5. CDDL Typenames
For use with CDDL , the typenames defined in Figure 6 are recommended:[RFC8610]

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 9

Figure 6: Recommended Typenames for CDDL

ta-uint8 = #6.64(bstr)
ta-uint16be = #6.65(bstr)
ta-uint32be = #6.66(bstr)
ta-uint64be = #6.67(bstr)
ta-uint8-clamped = #6.68(bstr)
ta-uint16le = #6.69(bstr)
ta-uint32le = #6.70(bstr)
ta-uint64le = #6.71(bstr)
ta-sint8 = #6.72(bstr)
ta-sint16be = #6.73(bstr)
ta-sint32be = #6.74(bstr)
ta-sint64be = #6.75(bstr)
; reserved: #6.76(bstr)
ta-sint16le = #6.77(bstr)
ta-sint32le = #6.78(bstr)
ta-sint64le = #6.79(bstr)
ta-float16be = #6.80(bstr)
ta-float32be = #6.81(bstr)
ta-float64be = #6.82(bstr)
ta-float128be = #6.83(bstr)
ta-float16le = #6.84(bstr)
ta-float32le = #6.85(bstr)
ta-float64le = #6.86(bstr)
ta-float128le = #6.87(bstr)
homogeneous<array> = #6.41(array)
multi-dim<dim, array> = #6.40([dim, array])
multi-dim-column-major<dim, array> = #6.1040([dim, array])

6. IANA Considerations
IANA has allocated the tags in Table 3 using this document as the specification reference. (The
reserved value is for a future revision of typed array tags.)

The allocations were assigned from the "specification required" space (24..255) with the
exception of 1040, which was assigned from the "first come first served" space (256..).

Tag Data Item Semantics

40 array of two arrays* Multi-dimensional Array, row-major order

41 array Homogeneous Array

64 byte string uint8 Typed Array

65 byte string uint16, big endian, Typed Array

66 byte string uint32, big endian, Typed Array

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 10

*40 or 1040 data item: The second element of the outer array in the data item is a native CBOR
array (major type 4) or Typed Array (one of tag 64..87)

Tag Data Item Semantics

67 byte string uint64, big endian, Typed Array

68 byte string uint8 Typed Array, clamped arithmetic

69 byte string uint16, little endian, Typed Array

70 byte string uint32, little endian, Typed Array

71 byte string uint64, little endian, Typed Array

72 byte string sint8 Typed Array

73 byte string sint16, big endian, Typed Array

74 byte string sint32, big endian, Typed Array

75 byte string sint64, big endian, Typed Array

76 byte string (reserved)

77 byte string sint16, little endian, Typed Array

78 byte string sint32, little endian, Typed Array

79 byte string sint64, little endian, Typed Array

80 byte string IEEE 754 binary16, big endian, Typed Array

81 byte string IEEE 754 binary32, big endian, Typed Array

82 byte string IEEE 754 binary64, big endian, Typed Array

83 byte string IEEE 754 binary128, big endian, Typed Array

84 byte string IEEE 754 binary16, little endian, Typed Array

85 byte string IEEE 754 binary32, little endian, Typed Array

86 byte string IEEE 754 binary64, little endian, Typed Array

87 byte string IEEE 754 binary128, little endian, Typed Array

1040 array of two arrays* Multi-dimensional Array, column-major order

Table 3: Values for Tags

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 11

[C]

[CPlusPlus]

[ECMA-ES10]

[IEEE754]

[RFC2119]

[RFC7049]

[RFC8174]

8. References

8.1. Normative References

,
, , June 2018.

, ,
, December 2017.

, ,
, June 2019,

.

, , ,
, , .

, , ,
, , March 1997,
.

, ,
, , October 2013,
.

, ,
, , , May 2017,

.

7. Security Considerations
The security considerations of apply; special attention is drawn to the second
paragraph of .

The tag for homogeneous arrays makes a promise about its tagged data item, which a maliciously
constructed CBOR input can then choose to ignore. As always, the decoder therefore has to
ensure that it is not driven into an undefined state by array elements that do not fulfill the
promise, and that it does continue to fulfill its API contract in this case as well.

As with all formats that are used for data interchange, an attacker may have control over the
shape of the data delivered as input to the application, which therefore needs to validate that
shape before it makes it the basis of its further processing. One unique aspect that typed arrays
add to this is that an attacker might substitute a Uint8ClampedArray for where the application
expects a Uint8Array, or vice versa, potentially leading to very different (and unexpected)
processing semantics of the in-memory data structures constructed. Applications that could be
affected by this will therefore need to be careful about making this distinction in their input
validation.

[RFC7049]
Section 8 of [RFC7049]

International Organization for Standardization "Information technology -
Programming languages - C" ISO/IEC 9899:2018, Fourth Edition

International Organization for Standardization "Programming languages - C++"
ISO/IEC 14882:2017, Fifth Edition

ECMA International "ECMAScript 2019 Language Specification" Standard
ECMA-262 10th Edition <https://www.ecma-international.org/
ecma-262/10.0/index.html>

IEEE "IEEE Standard for Floating-Point Arithmetic" IEEE 754-2019 DOI 10.1109/
IEEESTD.2019.8766229 <https://ieeexplore.ieee.org/document/8766229>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Bormann, C. and P. Hoffman "Concise Binary Object Representation (CBOR)"
RFC 7049 DOI 10.17487/RFC7049 <https://www.rfc-editor.org/info/
rfc7049>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc7049#section-8
https://www.ecma-international.org/ecma-262/10.0/index.html
https://www.ecma-international.org/ecma-262/10.0/index.html
https://ieeexplore.ieee.org/document/8766229
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8610]

[ArrayBuffer]

[RowColMajor]

[TypedArray]

,

, ,
, June 2019, .

8.2. Informative References

, , June 2010,
.

, , September 2019,

.

, , February 2011,

.

Birkholz, H., Vigano, C., and C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Mozilla Developer Network "JavaScript typed arrays" <https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays>

Wikipedia "Row- and column-major order" <https://
en.wikipedia.org/w/index.php?title=Row-_and_column-
major_order&oldid=917905325>

Vukicevic, V. and K. Russell "Typed Array Specification" <https://
web.archive.org/web/20110207024413/http://www.khronos.org/registry/
typedarray/specs/latest/>

Acknowledgements
Jim Schaad provided helpful comments and reminded us that column-major order still is in use.
Jeffrey Yaskin helped improve the definition of homogeneous arrays. IANA helped correct an
error in a previous draft version. Francesca Palombini acted as Shepherd, and Alexey Melnikov
as responsible Area Director. Elwyn Davies as Gen-ART reviewer and IESG members Martin
Vigoureux, Adam Roach, Roman Danyliw, and Benjamin Kaduk helped in finding further
improvements to the text; thanks also to the other reviewers.

Contributors
The initial draft version of this specification was written by Johnathan Roatch
<roatch@gmail.com>. Many thanks for getting this ball rolling.

Glenn Engel suggested the tags for multi-dimensional arrays and homogeneous arrays.

Author's Address
Carsten Bormann ()������
Universität Bremen TZI
Postfach 330440

 D-28359 Bremen
Germany

 +49-421-218-63921 Phone:
 cabo@tzi.org Email:

RFC 8746 CBOR tags for typed arrays February 2020

Bormann Standards Track Page 13

https://www.rfc-editor.org/info/rfc8610
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://en.wikipedia.org/w/index.php?title=Row-_and_column-major_order&oldid=917905325
https://en.wikipedia.org/w/index.php?title=Row-_and_column-major_order&oldid=917905325
https://en.wikipedia.org/w/index.php?title=Row-_and_column-major_order&oldid=917905325
https://web.archive.org/web/20110207024413/http://www.khronos.org/registry/typedarray/specs/latest/
https://web.archive.org/web/20110207024413/http://www.khronos.org/registry/typedarray/specs/latest/
https://web.archive.org/web/20110207024413/http://www.khronos.org/registry/typedarray/specs/latest/
tel:+49-421-218-63921
mailto:cabo@tzi.org

	RFC 8746
	Concise Binary Object Representation (CBOR) Tags for Typed Arrays
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Typed Arrays
	2.1. Types of Numbers

	3. Additional Array Tags
	3.1. Multi-dimensional Array
	3.1.1. Row-Major Order
	3.1.2. Column-Major Order

	3.2. Homogeneous Array

	4. Discussion
	5. CDDL Typenames
	6. IANA Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgements
	Contributors
	Author's Address

