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Abstract
Misissued public-key certificates can prevent TLS clients from appropriately authenticating the
TLS server. Several alternatives have been proposed to detect this situation and prevent a client
from establishing a TLS session with a TLS end point authenticated with an illegitimate public-
key certificate. These mechanisms are either not widely deployed or limited to public web
browsing.

This document proposes experimental extensions to TLS with opaque pinning tickets as a way to
pin the server's identity. During an initial TLS session, the server provides an original encrypted
pinning ticket. In subsequent TLS session establishment, upon receipt of the pinning ticket, the
server proves its ability to decrypt the pinning ticket and thus the ownership of the pinning
protection key. The client can now safely conclude that the TLS session is established with the
same TLS server as the original TLS session. One of the important properties of this proposal is
that no manual management actions are required.
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1. Introduction 
Misissued public-key certificates can prevent TLS  clients from appropriately
authenticating the TLS server. This is a significant risk in the context of the global public key
infrastructure (PKI), and similarly for large-scale deployments of certificates within enterprises.

This document proposes experimental extensions to TLS with opaque pinning tickets as a way to
pin the server's identity. The approach is intended to be easy to implement and deploy, and
reuses some of the ideas behind TLS session resumption .

Ticket pinning is a second-factor server authentication method and is not proposed as a
substitute for the authentication method provided in the TLS key exchange. More specifically, the
client only uses the pinning identity method after the TLS key exchange is successfully
completed. In other words, the pinning identity method is only performed over an authenticated
TLS session. Note that ticket pinning does not pin certificate information and therefore is truly an
independent second-factor authentication.

Ticket pinning is a trust-on-first-use (TOFU) mechanism, in that the first server authentication is
only based on PKI certificate validation, but for any follow-on sessions, the client is further
ensuring the server's identity based on the server's ability to decrypt the ticket, in addition to
normal PKI certificate authentication.

[RFC8446]

[RFC5077]
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During initial TLS session establishment, the client requests a pinning ticket from the server.
Upon receiving the request the server generates a pinning secret that is expected to be
unpredictable for peers other than the client or the server. In our case, the pinning secret is
generated from parameters exchanged during the TLS key exchange, so client and server can
generate it locally and independently. The server constructs the pinning ticket with the necessary
information to retrieve the pinning secret. The server then encrypts the ticket and returns the
pinning ticket to the client with an associated pinning lifetime.

The pinning lifetime value indicates for how long the server promises to retain the server-side
ticket-encryption key, which allows it to complete the protocol exchange correctly and prove its
identity. The server commitment (and ticket lifetime) is typically on the order of weeks.

Once the key exchange is completed, and the server is deemed authenticated, the client generates
locally the pinning secret and caches the server's identifiers to index the pinning secret as well as
the pinning ticket and its associated lifetime.

When the client reestablishes a new TLS session with the server, it sends the pinning ticket to the
server. Upon receiving it, the server returns a proof of knowledge of the pinning secret. Once the
key exchange is completed, and the server has been authenticated, the client checks the pinning
proof returned by the server using the client's stored pinning secret. If the proof matches, the
client can conclude that the server to which it is currently connecting is, in fact, the correct
server.

This document only applies to TLS 1.3. We believe that the idea can also be retrofitted into earlier
versions of the protocol, but this would require significant changes. One example is that TLS 1.2 

 and earlier versions do not provide a generic facility of encrypted handshake
extensions, such as is used here to transport the ticket.

The main advantages of this protocol over earlier pinning solutions are the following:

• The protocol is at the TLS level, and as a result is not restricted to HTTP at the application
level. 

• The protocol is robust to changes in server IP address, certification authority (CA), and public
key. The server is characterized by the ownership of the pinning protection key, which is
never provided to the client. Server configuration parameters such as the CA and the public
key may change without affecting the pinning ticket protocol. 

• Once a single parameter is configured (the ticket's lifetime), operation is fully automated. The
server administrator need not bother with the management of backup certificates or explicit
pins. 

• For server clusters, we reuse the existing infrastructure  where it exists. 
• Pinning errors, presumably resulting from man-in-the-middle (MITM) attacks, can be

detected both by the client and the server. This allows for server-side detection of MITM
attacks using large-scale analytics, and with no need to rely on clients to explicitly report the
error. 

[RFC5246]

[RFC5077]
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A note on terminology: unlike other solutions in this space, we do not do "certificate pinning" (or
"public key pinning"), since the protocol is oblivious to the server's certificate. We prefer the term
"server identity pinning" for this new solution. In our solution, the server proves its identity by
generating a proof that it can read and decrypt an encrypted ticket. As a result, the identity proof
relies on proof of ownership of the pinning protection key. However, this key is never exchanged
with the client or known by it, and so cannot itself be pinned.

1.1. Conventions Used in This Document 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.2. Scope of Experimentation 
This document describes an experimental extension to the TLS protocol. This section defines
constraints on this experiment and how it can yield useful information, potentially resulting in a
standard.

The protocol is designed so that if the server does not support it, the client and server fall back to
a normal TLS exchange, with the exception of a single PinningTicket extension being initially
sent by the client. In addition, the protocol is designed only to strengthen the validation of the
server's identity ("second factor"). As a result, implementation or even protocol errors should not
result in weakened security compared to the normal TLS exchange. Given these two points,
experimentation can be run on the open Internet between consenting client and server
implementations.

The goal of the experiment is to prove that:

• Non-supporting clients and servers are unaffected. 
• Connectivity between supporting clients and servers is retained under normal

circumstances, whether the client connects to the server frequently (relative to the ticket's
lifetime) or very rarely. 

• Enterprise middleboxes do not interrupt such connectivity. 
• Misissued certificates and rogue TLS-aware middleboxes do result in broken connectivity,

and these cases are detected on the client and/or server side. Clients and servers can be
recovered even after such events and the normal connectivity restored. 

Following two years of successful deployment, the authors will publish a document that
summarizes the experiment's findings and will resubmit the protocol for consideration as a
Proposed Standard.
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2. Protocol Overview 
The protocol consists of two phases: the first time a particular client connects to a server, and
subsequent connections.

This protocol supports full TLS handshakes, as well as 0-RTT handshakes. Below we present it in
the context of a full handshake, but behavior in 0-RTT handshakes should be identical.

The document presents some similarities with the ticket resumption mechanism described in 
. However the scope of this document differs from session resumption mechanisms

implemented with  or with other mechanisms. Specifically, the pinning ticket does not
carry any state associated with a TLS session and thus cannot be used for session resumption or
client authentication. Instead, the pinning ticket only contains the encrypted pinning secret. The
pinning ticket is used by the server to prove its ability to decrypt it, which implies ownership of
the pinning protection key.

 has been obsoleted by , and ticket resumption is now defined by 
. This document references  as an informational document since it

contains a more thorough discussion of stateless ticket resumption, and because ticket
resumption benefits from significant operational experience with TLS 1.2 that is still widely
deployed at the time of writing. This experience, as well as deployment experience, can easily be
re-used for identity pinning.

With TLS 1.3, session resumption is based on a Pre-Shared Key (PSK). This is orthogonal to this
protocol. With TLS 1.3, a TLS session can be established using PKI and a pinning ticket, and later
resumed with PSK.

However, the protocol described in this document addresses the problem of misissued
certificates. Thus, it is not expected to be used outside a certificate-based TLS key exchange, such
as in PSK. As a result, PSK handshakes  include the extension defined here.

[RFC5077]
[RFC5077]

[RFC5077] [RFC8446] Section 2.2
of [RFC8446] [RFC5077]

MUST NOT

2.1. Initial Connection 
When a client first connects to a server, it requests a pinning ticket by sending an empty
PinningTicket extension, and receives it as part of the server's first response, in the returned
PinningTicket extension.
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If a client supports the PinningTicket extension and does not have any pinning ticket associated
with the server, the exchange is considered as an initial connection. Other reasons the client may
not have a pinning ticket include the client having flushed its pinning ticket store, or the
committed lifetime of the pinning ticket having expired.

Upon receipt of the PinningTicket extension, the server computes a pinning secret (Section 4.1)
and sends the pinning ticket (Section 4.2) encrypted with the pinning protection key (Section 4.3).
The pinning ticket is associated with a lifetime value by which the server assumes the
responsibility of retaining the pinning protection key and being able to decrypt incoming
pinning tickets during the period indicated by the committed lifetime.

Once the pinning ticket has been generated, the server returns the pinning ticket and the
committed lifetime in a PinningTicket extension embedded in the EncryptedExtensions message.
We note that a PinningTicket extension  be sent as part of a HelloRetryRequest.

Upon receiving the pinning ticket, the client  accept it until the key exchange is
completed and the server authenticated. If the key exchange is not completed successfully, the
client  ignore the received pinning ticket. Otherwise, the client computes the pinning secret
and  cache the pinning secret and the pinning ticket for the duration indicated by the
pinning ticket lifetime. The client  clean up the cached values at the end of the indicated
lifetime.

 Client                                               Server

 ClientHello
   + key_share
   + signature_algorithms
   + PinningTicket         -------->
                                                 ServerHello
                                                 + key_share
                                       {EncryptedExtensions
                                            + PinningTicket}
                                       {CertificateRequest*}
                                              {Certificate*}
                                        {CertificateVerify*}
                           <--------              {Finished}
 {Certificate*}
 {CertificateVerify*}
 {Finished}                -------->
 [Application Data]        <------->      [Application Data]

        *  Indicates optional or situation-dependent
           messages that are not always sent.

        {} Indicates messages protected using keys
           derived from the ephemeral secret.

        [] Indicates messages protected using keys
           derived from the master secret.

MUST NOT

MUST NOT

MUST
SHOULD

SHOULD
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2.2. Subsequent Connections 
When the client initiates a connection to a server it has previously seen (see Section 2.3 on
identifying servers), it  send the pinning ticket for that server. The pinning ticket,
pinning secret, and pinning ticket lifetime computed during the establishment of the previous
TLS session are designated in this document as the "original" ones, to distinguish them from a
new ticket that may be generated during the current session.

The server  extract the original pinning_secret value from the ticket and  respond with
a PinningTicket extension, which includes:

• A proof that the server can understand the ticket that was sent by the client; this proof also
binds the pinning ticket to the server's (current) public key, as well as the ongoing TLS
session. The proof is mandatory and  be included if a pinning ticket was sent by the
client. 

• A fresh pinning ticket. The main reason for refreshing the ticket on each connection is
privacy: to avoid the ticket serving as a fixed client identifier. While a fresh pinning ticket
might be of zero length, it is  to include a fresh ticket with a nonzero length
with each response. 

If the server cannot validate the received ticket, that might indicate an earlier MITM attack on
this client. The server  then abort the connection with a handshake_failure alert and 

 log this failure.

The client  verify the proof, and if it fails to do so, the client  issue a handshake_failure
alert and abort the connection (see also Section 6.5). It is important that the client does not
attempt to "fall back" by omitting the PinningTicket extension.

When the connection is successfully set up, i.e., after the Finished message is verified, the client 
 store the new ticket along with the corresponding pinning_secret, replacing the original

ticket.

Although this is an extension, if the client already has a ticket for a server, the client 
interpret a missing PinningTicket extension in the server's response as an attack, because of the
server's prior commitment to respect the ticket. The client  abort the connection in this
case. See also Section 5.5 on ramping down support for this extension.

SHOULD

MUST MUST

MUST

RECOMMENDED

MUST
SHOULD

MUST MUST

SHOULD

MUST

MUST

2.3. Indexing the Pins 
Each pin is associated with a set of identifiers that include, among others, hostname, protocol
(TLS or DTLS), and port number. In other words, the pin for port TCP/443 may be different from
that for DTLS, or from the pin for port TCP/8443. These identifiers are expected to be relevant to
characterize the identity of the server as well as the establishing TLS session. When a hostname
is used, it  be the value sent inside the Server Name Indication (SNI) extension. This
definition is similar to the concept of a Web Origin , but does not assume the existence
of a URL.

MUST
[RFC6454]

RFC 8672 Pinning with Tickets October 2019

Sheffer & Migault Experimental Page 9



The purpose of ticket pinning is to pin the server identity. As a result, any information orthogonal
to the server's identity  be considered in indexing. More particularly, IP addresses are
ephemeral and forbidden in SNI, and therefore pins  be associated with IP addresses.
Similarly, CA names or public keys associated with server  be used for indexing as they
may change over time.

MUST NOT
MUST NOT

MUST NOT

ticket

proof

lifetime

3. Message Definitions 
This section defines the format of the PinningTicket extension. We follow the message notation of

.

a pinning ticket sent by the client or returned by the server. The ticket is opaque to the
client. The extension  contain exactly 0 or 1 tickets. 

a demonstration by the server that it understands the received ticket and therefore
that it is in possession of the secret that was used to generate it originally. The
extension  contain exactly 0 or 1 proofs. 

the duration (in seconds) that the server commits to accept offered tickets in the
future. 

[RFC8446]

 opaque pinning_ticket<0..2^16-1>;

 opaque pinning_proof<0..2^8-1>;

 struct {
   select (Role) {
     case client:
       pinning_ticket ticket<0..2^16-1>; //omitted on 1st connection

     case server:
       pinning_proof proof<0..2^8-1>; //no proof on 1st connection
       pinning_ticket ticket<0..2^16-1>; //omitted on ramp down
       uint32 lifetime;
   }
} PinningTicketExtension;

MUST

MUST

4. Cryptographic Operations 
This section provides details on the cryptographic operations performed by the protocol peers.

4.1. Pinning Secret 
The pinning secret is generated locally by the client and the server, which means they must use
the same inputs to generate it. This value must be generated before the ServerHello message is
sent, as the server includes the corresponding pinning ticket in the same flight as the ServerHello
message. In addition, the pinning secret must be unpredictable to any party other than the client
and the server.
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The pinning secret is derived using the Derive-Secret function provided by TLS 1.3, described in 
.Section 7.1 of [RFC8446]

pinning secret = Derive-Secret(Handshake Secret, "pinning secret",
         ClientHello...ServerHello)

4.2. Pinning Ticket 
The pinning ticket contains the pinning secret. The pinning ticket is provided by the client to the
server, which decrypts it in order to extract the pinning secret and responds with a pinning
proof. As a result, the characteristics of the pinning ticket are:

• Pinning tickets  be encrypted and integrity-protected using strong cryptographic
algorithms. 

• Pinning tickets  be protected with a long-term pinning protection key. 
• Pinning tickets  include a pinning protection key ID or serial number as to enable the

pinning protection key to be refreshed. 
• The pinning ticket  include other information, in addition to the pinning secret. When

additional information is included, a careful review needs to be performed to evaluate its
impact on privacy. 

The pinning ticket's format is not specified by this document, but a format similar to the one
proposed by  is .

MUST

MUST
MUST

MAY

[RFC5077] RECOMMENDED

4.3. Pinning Protection Key 
The pinning protection key is used only by the server and so remains server implementation
specific.  recommends the use of two keys, but when using Authenticated Encryption
with Associated Data (AEAD) algorithms, only a single key is required.

When a single server terminates TLS for multiple virtual servers using the SNI mechanism, it is
strongly  that the server use a separate protection key for each one of them, in
order to allow migrating virtual servers between different servers while keeping pinning active.

As noted in Section 5.1, if the server is actually a cluster of machines, the protection key  be
synchronized between all the nodes that accept TLS connections to the same server name. When 

 is deployed, an easy way to do it is to derive the protection key from the session-ticket
protection key, which is already synchronized. For example:

Where resumption_protection_key is the ticket protection key defined in . Both
resumption_protection_key and pinning_protection_key are only used by the server.

[RFC5077]

RECOMMENDED

MUST

[RFC5077]

pinning_protection_key = HKDF-Expand(resumption_protection_key,
                              "pinning protection", L)

[RFC5077]
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The above solution attempts to minimize code changes related to management of the
resumption_protection_key. The drawback is that this key would be used both to directly encrypt
session tickets and to derive the pinning_protection_key, and such mixed usage of a single key is
not in line with cryptographic best practices. Where possible, it is  that the
resumption_protection_key be unrelated to the pinning_protection_key and that they are
separately shared among the relevant servers.

RECOMMENDED

4.4. Pinning Proof 
The pinning proof is sent by the server to demonstrate that it has been able to decrypt the
pinning ticket and to retrieve the pinning secret. The proof must be unpredictable and must not
be replayed. Similarly to the pinning ticket, the pinning proof is sent by the server in the
ServerHello message. In addition, it must not be possible for a MITM server with a fake
certificate to obtain a pinning proof from the original server.

In order to address these requirements, the pinning proof is bound to the TLS session as well as
the public key of the server:

where HMAC  uses the Hash algorithm that was negotiated in the handshake, and the
same hash is also used over the server's public key. The original_pinning_secret value refers to
the secret value extracted from the ticket sent by the client, to distinguish it from a new pinning
secret value that is possibly computed in the current exchange. The server_public_key value is
the DER representation of the public key, specifically the SubjectPublicKeyInfo structure as-is.

pinning_proof_secret=Derive-Secret(Handshake Secret, 
             "pinning proof 1", ClientHello...ServerHello)

proof = HMAC(original_pinning_secret, "pinning proof 2" +
             pinning_proof_secret + Hash(server_public_key))

[RFC2104]

5. Operational Considerations 
The main motivation behind the current protocol is to enable identity pinning without the need
for manual operations. Manual operations are susceptible to human error, and in the case of
public key pinning, can easily result in "server bricking": the server becoming inaccessible to
some or all of its users. To achieve this goal, operations described in identity pinning are only
performed within the current TLS session, and there is no dependence on any TLS configuration
parameters such as CA identity or public keys. As a result, configuration changes are unlikely to
lead to desynchronized state between the client and the server.

5.1. Protection Key Synchronization 
The only operational requirement when deploying this protocol is that, if the server is part of a
cluster, protection keys (the keys used to encrypt tickets)  be synchronized between all
cluster members. The protocol is designed so that if resumption ticket protection keys 
are already synchronized between cluster members, nothing more needs to be done.

MUST
[RFC5077]
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Moreover, synchronization does not need to be instantaneous, e.g., protection keys can be
distributed a few minutes or hours in advance of their rollover. In such scenarios, each cluster
member  be able to accept tickets protected with a new version of the protection key, even
while it is still using an old version to generate keys. This ensures that, when a client receives a
"new" ticket, it does not next hit a cluster member that still rejects this ticket.

Misconfiguration can lead to the server's clock being off by a large amount of time. Consider a
case where a server's clock is misconfigured, for example, to be 1 year in the future, and the
system is allowed to delete expired keys automatically. The server will then delete many
outstanding keys because they are now long expired and will end up rejecting valid tickets that
are stored by clients. Such a scenario could make the server inaccessible to a large number of
clients.

The decision to delete a key should at least consider the largest value of the ticket lifetime as well
as the expected time desynchronization between the servers of the cluster and the time
difference for distributing the new key among the different servers in the cluster.

MUST

5.2. Ticket Lifetime 
The lifetime of the ticket is a commitment by the server to retain the ticket's corresponding
protection key for this duration, so that the server can prove to the client that it knows the secret
embedded in the ticket. For production systems, the lifetime  be between 7 and 31 days.SHOULD

5.3. Certificate Renewal 
The protocol ensures that the client will continue speaking to the correct server even when the
server's certificate is renewed. In this sense, pinning is not associated with certificates, which is
the reason we designate the protocol described in this document as "server identity pinning".

Note that this property is not impacted by the use of the server's public key in the pinning proof
because the scope of the public key used is only the current TLS session.

5.4. Certificate Revocation 
The protocol is orthogonal to certificate validation in the sense that, if the server's certificate has
been revoked or is invalid for some other reason, the client  refuse to connect to it
regardless of any ticket-related behavior.

MUST

5.5. Disabling Pinning 
A server implementing this protocol  have a "ramp down" mode of operation where:

• The server continues to accept valid pinning tickets and responds correctly with a proof. 
• The server does not send back a new pinning ticket. 

MUST
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After a while, no clients will hold valid tickets, and the feature may be disabled. Note that clients
that do not receive a new pinning ticket do not necessarily need to remove the original ticket.
Instead, the client may keep using the ticket until its lifetime expires. However, as detailed in 
Section 6.7, re-use of a ticket by the client may result in privacy concerns as the ticket value may
be used to correlate TLS sessions.

Issuing a new pinning ticket with a shorter lifetime would only delay the ramp down process, as
the shorter lifetime can only affect clients that actually initiated a new connection. Other clients
would still see the original lifetime for their pinning tickets.

5.6. Server Compromise 
If a server compromise is detected, the pinning protection key  be rotated immediately, but
the server  still accept valid tickets that use the old, compromised key. Clients that still hold
old pinning tickets will remain vulnerable to MITM attacks, but those that connect to the correct
server will immediately receive new tickets protected with the newly generated pinning
protection key.

The same procedure applies if the pinning protection key is compromised directly, e.g., if a
backup copy is inadvertently made public.

MUST
MUST

5.7. Disaster Recovery 
All web servers in production need to be backed up, so that they can be recovered if a disaster
(including a malicious activity) ever wipes them out. Backup often includes the certificate and its
private key, which must be backed up securely. The pinning secret, including earlier versions
that are still being accepted, must be backed up regularly. However since it is only used as an
authentication second factor, it does not require the same level of confidentiality as the server's
private key.

Readers should note that  session resumption keys are more security sensitive and
should normally not be backed up, but rather treated as ephemeral keys. Even when servers
derive pinning secrets from resumption keys (Section 4.1), they  back up resumption
keys.

[RFC5077]

MUST NOT

6. Security Considerations 
This section reviews several security aspects related to the proposed extension.

6.1. Trust-on-First-Use (TOFU) and MITM Attacks 
This protocol is a trust-on-first-use protocol. If a client initially connects to the "right" server, it
will be protected against MITM attackers for the lifetime of each received ticket. If it connects
regularly (depending, of course, on the server-selected lifetime), it will stay constantly protected
against fake certificates.
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However if it initially connects to an attacker, subsequent connections to the "right" server will
fail. Server operators might want to advise clients on how to remove corrupted pins, once such
large-scale attacks are detected and remediated.

The protocol is designed so that it is not vulnerable to an active MITM attacker who has real-time
access to the original server. The pinning proof includes a hash of the server's public key to
ensure the client that the proof was in fact generated by the server with which it is initiating the
connection.

6.2. Pervasive Monitoring 
Some organizations, and even some countries, perform pervasive monitoring on their
constituents . This often takes the form of always-active SSL proxies. Because of the
TOFU property, this protocol does not provide any security in such cases.

Pervasive monitoring may also result in privacy concerns detailed in Section 6.7.

[RFC7258]

6.3. Server-Side Error Detection 
Uniquely, this protocol allows the server to detect clients that present incorrect tickets and
therefore can be assumed to be victims of a MITM attack. Server operators can use such cases as
indications of ongoing attacks, similarly to fake certificate attacks that took place in a few
countries in the past.

6.4. Client Policy and SSL Proxies 
Like it or not, some clients are normally deployed behind an SSL proxy. Similar to , it is
acceptable to allow pinning to be disabled for some hosts according to local policy. For example,
a User Agent (UA)  disable pinning for hosts whose validated certificate chain terminates at a
user-defined trust anchor, rather than a trust anchor built into the UA (or underlying platform).
Moreover, a client  accept an empty PinningTicket extension from such hosts as a valid
response.

[RFC7469]

MAY

MAY

6.5. Client-Side Error Behavior 
When a client receives a malformed or empty PinningTicket extension from a pinned server, it 

 abort the handshake. If the client retries the request, it  omit the PinningTicket in
the retry message. Doing otherwise would expose the client to trivial fallback attacks, similar to
those described in .

However, this rule can negatively impact clients that move from behind SSL proxies into the
open Internet, and vice versa, if the advice in Section 6.4 is not followed. Therefore, it is 

 that browser and library vendors provide a documented way to remove stored
pins.

MUST MUST NOT

[RFC7507]

RECOMMENDED
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6.6. Stolen and Forged Tickets 
An attacker gains no benefit from stealing pinning tickets, even in conjunction with other
pinning parameters such as the associated pinning secret, since pinning tickets are used to
secure the client rather than the server. Similarly, it is useless to forge a ticket for a particular
server.

6.7. Client Privacy 
This protocol is designed so that an external attacker cannot link different requests to a single
client, provided the client requests and receives a fresh ticket upon each connection. This may be
of concern particularly during ramp down, if the server does not provide a new ticket, and the
client reuses the same ticket. To reduce or avoid such privacy concerns, it is  for
the server to issue a fresh ticket with a reduced lifetime. This would at least reduce the time
period in which the TLS sessions of the client can be linked. The server  also issue tickets
with a zero-second lifetime until it is confident all tickets are expired.

On the other hand, the server to which the client is connecting can easily track the client. This
may be an issue when the client expects to connect to the server (e.g., a mail server) with
multiple identities. Implementations  allow the user to opt out of pinning, either in
general or for particular servers.

This document does not define the exact content of tickets. Including client-specific information
in tickets would raise privacy concerns and is .

RECOMMENDED

MAY

SHOULD

NOT RECOMMENDED

6.8. Ticket Protection Key Management 
While the ticket format is not mandated by this document, protecting the ticket using
authenticated encryption is . Some of the algorithms commonly used for
authenticated encryption, e.g., Galois/Counter Mode (GCM), are highly vulnerable to nonce reuse,
and this problem is magnified in a cluster setting. Therefore, implementations that choose AES-
GCM or any AEAD equivalent  adopt one of these three alternatives:

• Partition the nonce namespace between cluster members and use monotonic counters on
each member, e.g., by setting the nonce to the concatenation of the cluster member ID and an
incremental counter. 

• Generate random nonces but avoid the so-called birthday bound, i.e., never generate more
than the maximum allowed number of encrypted tickets (2**64 for AES-128-GCM) for the
same ticket pinning protection key. 

• An alternative design that has been attributed to Karthik Bhargavan is as follows. Start with
a 128-bit master key K_master and then for each encryption, generate a 256-bit random
nonce and compute: K = HKDF(K_master, Nonce || "key"), then N = HKDF(K_master, Nonce
|| "nonce"). Use these values to encrypt the ticket, AES-GCM(K, N, data). This nonce should
then be stored and transmitted with the ticket. 

RECOMMENDED

MUST
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many attempts to resolve these weaknesses, including the Certificate Transparency (CT) protocol 
, HTTP Public Key Pinning (HPKP) , and Trust Assertions for Certificate Keys

(TACK) .

CT requires cooperation of a large portion of the hundreds of extant certificate authorities (CAs)
before it can be used "for real", in enforcing mode. It is noted that the relevant industry forum
(CA/Browser Forum) is indeed pushing for such extensive adoption. However the public nature
of CT often makes it inappropriate for enterprise use because many organizations are not willing
to expose their internal infrastructure publicly.

TACK has some similarities to the current proposal, but work on it seems to have stalled. 
Appendix A.2 compares our proposal to TACK.

HPKP is an IETF standard, but so far has proven hard to deploy. HPKP pins (fixes) a public key,
one of the public keys listed in the certificate chain. As a result, HPKP needs to be coordinated
with the certificate management process. Certificate management impacts HPKP and thus
increases the probability of HPKP failures. This risk is made even higher given the fact that, even
though work has been done in the Automated Certificate Management Environment (ACME)
working group to automate certificate management, in many or even most cases, certificates are
still managed manually. As a result, HPKP cannot be completely automated, resulting in error-
prone manual configuration. Such errors could prevent the web server from being accessed by
some clients. In addition, HPKP uses an HTTP header, which makes this solution HTTPS specific
and not generic to TLS. On the other hand, the current document provides a solution that is
independent of the server's certificate management, and that can be entirely and easily
automated. Appendix A.1 compares HPKP to the current document in more detail.

The ticket pinning proposal augments these mechanisms with a much easier to implement and
deploy solution for server identity pinning, by reusing some of the ideas behind TLS session
resumption.

This section compares ticket pinning to two earlier proposals, HPKP and TACK.

[RFC6962] [RFC7469]
[TLS-TACK]

A.1. Comparison: HPKP 
The current IETF standard for pinning the identity of web servers is HPKP .

The main differences between HPKP and the current document are the following:

• HPKP limits its scope to HTTPS, while the current document considers all application above
TLS. 

• HPKP pins the public key of the server (or another public key along the certificate chain),
and as such, is highly dependent on the management of certificates. Such dependency
increases the potential error surface, especially as certificate management is not yet largely
automated. The current proposal, on the other hand, is independent of certificate
management. 

• HPKP pins public keys that are public and used for the standard TLS authentication. Identity
pinning relies on the ownership of the pinning key, which is not disclosed to the public and

[RFC7469]

RFC 8672 Pinning with Tickets October 2019

Sheffer & Migault Experimental Page 19



not involved in the standard TLS authentication. As a result, identity pinning is a completely
independent, second-factor authentication mechanism. 

• HPKP relies on a backup key to recover the misissuance of a key. We believe such backup
mechanisms add excessive complexity and cost. Reliability of the current mechanism is
primarily based on its being highly automated. 

• HPKP relies on the client to report errors to the report-uri. The current document does not
need any out-of-band mechanism, and the server is informed automatically. This provides an
easier and more reliable health monitoring. 

On the other hand, HPKP shares the following aspects with identity pinning:

• Both mechanisms provide hard failure. With HPKP, only the client is aware of the failure,
while with the current proposal both client and server are informed of the failure. This
provides room for further mechanisms to automatically recover from such failures. 

• Both mechanisms are subject to a server compromise in which users are provided with an
invalid ticket (e.g., a random one) or HTTP header with a very long lifetime. For identity
pinning, this lifetime  be longer than 31 days. In both cases, clients will not be
able to reconnect the server during this lifetime. With the current proposal, an attacker
needs to compromise the TLS layer, while with HPKP, the attacker needs to compromise the
HTTP server. Arguably, the TLS-level compromise is typically more difficult for the attacker. 

Unfortunately HPKP has not seen wide deployment yet. As of March 2016, the number of servers
using HPKP was less than 3000 . This may simply be due to inertia, but we believe the
main reason is the interactions between HPKP and manual certificate management that is
needed to implement HPKP for enterprise servers. The penalty for making mistakes (e.g., being
too early or too late to deploy new pins) is that the server becomes unusable for some of the
clients.

To demonstrate this point, we present a list of the steps involved in deploying HPKP on a
security-sensitive web server.

1. Generate two public/private key pairs on a computer that is not the live server. The second
one is the "backup1" key pair.

2. Generate hashes for both of the public keys. These will be used in the HPKP header:

SHOULD NOT

[Netcraft]

openssl genrsa -out "example.com.key" 2048;

openssl genrsa -out "example.com.backup1.key" 2048;

openssl rsa -in "example.com.key" -outform der -pubout | \
openssl dgst -sha256 -binary | openssl enc -base64  

openssl rsa -in "example.com.backup1.key" -outform der \
-pubout | openssl dgst -sha256 -binary | openssl enc -base64
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3. Generate a single CSR (Certificate Signing Request) for the first key pair, where you include
the domain name in the CN (Common Name) field:

4. Send this CSR to the CA and go though the dance to prove you own the domain. The CA will
give you a single certificate that will typically expire within a year or two. 

5. On the live server, upload and set up the first key pair and its certificate. At this point, you
can add the "Public-Key-Pins" header, using the two hashes you created in step 2.

Note that only the first key pair has been uploaded to the server so far.

6. Store the second (backup1) key pair somewhere safe, probably somewhere encrypted like a
password manager. It won't expire, as it's just a key pair; it just needs to be ready for when
you need to get your next certificate. 

7. Time passes -- probably just under a year (if waiting for a certificate to expire), or maybe
sooner if you find that your server has been compromised, and you need to replace the key
pair and certificate. 

8. Create a new CSR using the "backup1" key pair, and get a new certificate from your CA. 
9. Generate a new backup key pair (backup2), get its hash, and store it in a safe place (again,

not on the live server). 
10. Replace your old certificate and old key pair, update the "Public-Key-Pins" header to remove

the old hash, and add the new "backup2" key pair. 

Note that in the above steps, both the certificate issuance as well as the storage of the backup key
pair involve manual steps. Even with an automated CA that runs the ACME protocol ,
key backup would be a challenge to automate.

openssl req -new -subj "/C=GB/ST=Area/L=Town/O=Org/ \
CN=example.com" -key "example.com.key" -out "example.com.csr"; 

[RFC8555]

A.2. Comparison: TACK 
Compared with HPKP, TACK  is more similar to the current document. It can even be
argued that this document is a symmetric-cryptography variant of TACK. That said, there are still
a few significant differences:

• Probably the most important difference is that with TACK, validation of the server certificate
is no longer required, and in fact TACK specifies it as a " " requirement (

). With ticket pinning, certificate validation by the client remains a 
requirement, and the ticket acts only as a second factor. If the pinning secret is
compromised, the server's security is not immediately at risk. 

• Both TACK and the current document are mostly orthogonal to the server certificate as far as
their life cycle, and so both can be deployed with no manual steps. 

• TACK uses Elliptic Curve Digital Signature Algorithm (ECDSA) to sign the server's public key.
This allows cooperating clients to share server assertions between themselves. This is an
optional TACK feature, and one that cannot be done with pinning tickets. 

[TLS-TACK]

MAY [TLS-TACK], 
Section 5.3 MUST
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• TACK allows multiple servers to share its public keys. Such sharing is disallowed by the
current document. 

• TACK does not allow the server to track a particular client, and so has better privacy
properties than the current document. 

• TACK has an interesting way to determine the pin's lifetime, setting it to the time period since
the pin was first observed, with a hard upper bound of 30 days. The current document
makes the lifetime explicit, which may be more flexible to deploy. For example, web sites
that are only visited rarely by users may opt for a longer period than other sites that expect
users to visit on a daily basis. 
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