| Type: | Package | 
| Title: | The Two Parameter Exponential Distribution | 
| Version: | 0.1.0 | 
| Maintainer: | Atchanut Rattanalertnusorn <atchanut_r@rmutt.ac.th> | 
| Description: | Density, distribution function, quantile function, and random generation function, maximum likelihood estimation (MLE), penalized maximum likelihood estimation (PMLE), the quartiles method estimation (QM), and median rank estimation (MEDRANK) for the two-parameter exponential distribution. MLE and PMLE are based on Mengjie Zheng (2013)https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf. QM is based on Entisar Elgmati and Nadia Gregni (2016)<doi:10.5539/ijsp.v5n5p12>. MEDRANK is based on Matthew Reid (2022)<doi:10.5281/ZENODO.3938000>. | 
| License: | GPL-3 | 
| Language: | en-US | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.2 | 
| Imports: | graphics, stats | 
| Depends: | R (≥ 2.10) | 
| Suggests: | testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2023-06-12 22:16:30 UTC; COM | 
| Author: | Atchanut Rattanalertnusorn [aut, cre] | 
| Repository: | CRAN | 
| Date/Publication: | 2023-06-13 08:30:02 UTC | 
Distribution function plot of the two-parameter exponential distribution
Description
Distribution function plot of the two-parameter exponential distribution with theta and beta
Usage
cdfplot(x, theta, beta)
Arguments
| x | vector of quantile. | 
| theta | location parameter, where  | 
| beta | scale parameter, where  | 
Value
a distribution function plot of the two-parameter exponential distribution
Examples
x <- seq(0,20,by=0.01)
theta <- 6
beta <- 2
cdfplot(x,theta,beta)
Median rank method to estimate parameters of the two-parameter exponential dist.
Description
Median rank method to estimate parameters of the two-parameter exponential dist.
Usage
medrank(x, methods = c("B"))
Arguments
| x | vector of quantile (or a data set). | 
| methods | there are some of median rank methods as follows; "B" stand for Benard median rank method (default), "BL" stand for Blom method, "MKM" stand for Hazen (Modified Kaplan Meier) method, "OT" stand for The one-third method, and "C" stand for Cunane method | 
Value
the estimate three values for the two-parameter exponential dist. as follows:
theta.hat  gives the estimate location parameter,
beta.hat   gives the estimate scale parameter,
and lamda.hat gives the estimate the rate.
Source
Reid, M. (2022). Reliability – a Python library for reliability engineering (Version 0.8.2) [Computer software]. Zenodo. doi: 10.5281/ZENODO.3938000.
Examples
x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
medrank(x1,"B")    # Benard method (default) or medrank(x1)
Maximum likelihood estimation for the two-parameter exponential dist.
Description
To estimate the location (or shift) and scale parameters for  the two-parameter exponential distribution
based on maximum likelihood method. See detail in source
Usage
mle_tpexp(x, theta = 0, beta = 1)
Arguments
| x | vector of quantile (or a data set). | 
| theta | location parameter, where  | 
| beta | scale parameter, where  | 
Value
the estimate three values for the two-parameter exponential dist. as follows:
theta.hat  gives the estimate location parameter,
beta.hat   gives the estimate scale parameter,
and lamda.hat gives the estimate the rate.
Source
Zheng, M. (2013). Penalized Maximum Likelihood Estimation of Two-Parameter Exponential Distributions [Master’s thesis]. https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf
Examples
x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
mle_tpexp(x1)
x2 <- c(20,15,10,25,35,30,40,70,50,60,90,100,80,5) # test a data set
mle_tpexp(x2)
Density plot of the two-parameter exponential distribution
Description
Density plot of the two-parameter exponential distribution with theta and beta
Usage
pdfplot(x, theta, beta)
Arguments
| x | vector of quantile. | 
| theta | location parameter, where  | 
| beta | scale parameter, where  | 
Value
a density plot of the two-parameter exponential distribution
Examples
x <- seq(0,20,by=0.01)
theta <- 6
beta <- 2
pdfplot(x,theta,beta)
Penalized maximum likelihood estimation for the two-parameter exponential dist.
Description
To estimate the location (or shift) and scale parameters for  the two-parameter exponential distribution
based on penalized maximum likelihood method. See detail in source
Usage
pmle_tpexp(x, theta = 0, beta = 1)
Arguments
| x | vector of quantile (or a data set). | 
| theta | location parameter, where  | 
| beta | scale parameter, where  | 
Value
the estimate three values for the two-parameter exponential dist. as follows:
ptheta.hat  gives the estimate location parameter,
pbeta.hat   gives the estimate scale parameter,
and plamda.hat gives the estimate the rate.
Source
Zheng, M. (2013). Penalized Maximum Likelihood Estimation of Two-Parameter Exponential Distributions [Master’s thesis]. https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf
Examples
x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
pmle_tpexp(x1)
x2 <- c(20,15,10,25,35,30,40,70,50,60,90,100,80,5) # test a data set
pmle_tpexp(x2)
Quartile method estimation of the two-parameter exponential distribution
Description
To estimate the location (or shift) and scale parameters for the two-parameter exponential distribution
based on quartile method. See detail in source
Usage
qm_tpexp(x, methods = c("Q13"))
Arguments
| x | vector of quantile (or a data set). | 
| methods | there are two quartile methods as follows; "Q13" stand for the first and the third quartile method (default), and "Q12" stand for the first and the second quartile (median) method. | 
Value
the estimate three values for the two-parameter exponential dist. as follows:
qmtheta.hat  gives the estimate location parameter,
qmbeta.hat   gives the estimate scale parameter,
and qmlamda.hat gives the estimate the rate.
Source
Elgmati, E., Gregni, N. (2016). Quartile Method Estimation of Two-Parameter Exponential Distribution Data with Outliers. International Journal of Statistics and Probability, 5(5), 12-15. doi: 10.5539/ijsp.v5n5p12
Examples
x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
qm_tpexp(x1,"Q13")  # or qm_tpexp(x1)
qm_tpexp(x1,"Q12")
Survival function plot of the two-parameter exponential distribution
Description
Survival function plot of the two-parameter exponential distribution with theta and beta
Usage
surplot(x, theta, beta)
Arguments
| x | vector of quantile. | 
| theta | location parameter, where  | 
| beta | scale parameter, where  | 
Value
a survival function plot of the two-parameter exponential distribution
Examples
x <- seq(0,20,by=0.01)
theta <- 8
beta <- 1
surplot(x,theta,beta)
The two-parameter exponential distribution(tpexp)
Description
Density, distribution function, quantile function, and random generation function
for the two-parameter exponential distribution with theta and beta
Usage
dtpexp(x, theta = 0, beta = 1, log = FALSE)
ptpexp(q, theta = 0, beta = 1, lower.tail = TRUE, log.p = FALSE)
qtpexp(p, theta = 0, beta = 1, lower.tail = TRUE, log.p = FALSE)
rtpexp(n, theta = 0, beta = 1)
Arguments
| x,q | vector of quantile. | 
| theta | location parameter, where  | 
| beta | scale parameter, where  | 
| log,log.p | logical; (default =  | 
| lower.tail | logical; if  | 
| p | vector of probabilities | 
| n | number of observations. If  | 
Value
dtpexp gives the density,
ptpexp gives the distribution function,
qtpexp gives the quantile function,
and rtpexp generates random samples.
Examples
x <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)
dtpexp(x,theta=0,beta=1)
dtpexp(x,theta=0,beta=1,log=TRUE)
q <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)
ptpexp(q,theta = 0, beta = 1)
ptpexp(q,theta=0, beta = 1, lower.tail = FALSE)
q <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)
p<- ptpexp(q,theta = 0, beta = 1); p
qtpexp(p,theta=0, beta = 1)
rtpexp(5, theta=0, beta=1)
rtpexp(10, theta=1, beta=1.5)