library(dplyr); library(tidyr); library(purrr); library(ggplot2) # Data wrangling
library(tidyfit) # Model fitting
The combination of .cv = "bootstraps"
and .return_slices = TRUE
in tidyfit::regress
or tidyfit::classify
makes it very easy to calculate bootstrap confidence intervals for estimated coefficients. As an additional convenience function, coef.tidyfit.models
includes the option of adding percentile bootstrap intervals directly. In this short example, I will calculate and compare bootstrap confidence bands for a partial least squares regression and a principal components regression using Boston house price data:
data <- MASS::Boston %>%
scale %>%
as_tibble
tidyfit
handles data scaling internally (i.e. PLSR and PCR are always fitted on scaled data), however, scaling the data manually here will give us standardized coefficients, which are easier to visualize and compare.
Instead of selecting an optimal number of latent components, I define a preset. This keeps things a little simpler. Note that dropping the ncomp = 5
argument results the optimal number of components being selected using bootstrap resampling.
model_frame <- data %>%
regress(medv ~ ., m("plsr", ncomp = 5), m("pcr", ncomp = 5),
.cv = "bootstraps", .cv_args = list(times = 100),
.return_slices = TRUE)
The coefficients are returned for each slice when .add_bootstrap_intervals = FALSE
(default behavior — see coef(model_frame)
). To obtain bootstrap intervals, I pass .add_bootstrap_interval = TRUE
to coef
:
estimates <- coef(model_frame,
.add_bootstrap_interval = TRUE,
.bootstrap_alpha = 0.05)
estimates
#> # A tibble: 28 × 4
#> # Groups: model [2]
#> model term estimate model_info
#> <chr> <chr> <dbl> <list>
#> 1 plsr (Intercept) -0.000809 <tibble [1 × 3]>
#> 2 plsr crim -0.0698 <tibble [1 × 3]>
#> 3 plsr zn 0.0940 <tibble [1 × 3]>
#> 4 plsr indus -0.0271 <tibble [1 × 3]>
#> 5 plsr chas 0.0830 <tibble [1 × 3]>
#> 6 plsr nox -0.202 <tibble [1 × 3]>
#> 7 plsr rm 0.295 <tibble [1 × 3]>
#> 8 plsr age -0.0148 <tibble [1 × 3]>
#> 9 plsr dis -0.333 <tibble [1 × 3]>
#> 10 plsr rad 0.165 <tibble [1 × 3]>
#> # ℹ 18 more rows
The intervals are nested in model_info
:
estimates <- estimates %>%
unnest(model_info)
estimates
#> # A tibble: 28 × 6
#> # Groups: model [2]
#> model term estimate ncomp .upper .lower
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 plsr (Intercept) -0.000809 5 0.0418 -0.0377
#> 2 plsr crim -0.0698 5 0.0564 -0.148
#> 3 plsr zn 0.0940 5 0.164 0.0240
#> 4 plsr indus -0.0271 5 0.0466 -0.0963
#> 5 plsr chas 0.0830 5 0.142 0.0186
#> 6 plsr nox -0.202 5 -0.117 -0.302
#> 7 plsr rm 0.295 5 0.413 0.142
#> 8 plsr age -0.0148 5 0.102 -0.107
#> 9 plsr dis -0.333 5 -0.240 -0.432
#> 10 plsr rad 0.165 5 0.233 0.0758
#> # ℹ 18 more rows
And thus, in a concise workflow, we have 95% bootstrap confidence intervals for the coefficients of a PCR and PLS regression:
estimates %>%
filter(term != "(Intercept)") %>%
ggplot(aes(term, estimate, color = model)) +
geom_hline(yintercept = 0) +
geom_errorbar(aes(ymin = .lower, ymax = .upper), position = position_dodge()) +
theme_bw(8)
The pls
-package includes built-in functionality to jackknife confidence intervals for the coefficients. We can compare these results by passing jackknife = TRUE
and validation = "LOO"
to m()
, and setting .cv = "none"
(default):
model_frame_jackknife <- data %>%
regress(medv ~ ., m("plsr", ncomp = 5, jackknife = TRUE, validation = "LOO"),
m("pcr", ncomp = 5, jackknife = TRUE, validation = "LOO"))
jackknife_estimates <- coef(model_frame_jackknife)
Now the coef()
generic method also provides standard errors and \(p\)-values for the coefficients using pls::jack.test
:
jackknife_estimates <- jackknife_estimates %>%
unnest(model_info) %>%
# Create approximate 95% intervals using 2 standard deviations
mutate(.upper = estimate + 2 * std.error, .lower = estimate - 2 * std.error)
jackknife_estimates
#> # A tibble: 28 × 9
#> # Groups: model [2]
#> model term estimate ncomp std.error statistic p.value .upper .lower
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 plsr (Interce… -2.34e-16 5 NA NA NA NA NA
#> 2 plsr crim -8.46e- 2 5 0.0549 -1.54 1.24e- 1 0.0253 -0.194
#> 3 plsr zn 1.04e- 1 5 0.0400 2.60 9.61e- 3 0.184 0.0240
#> 4 plsr indus -3.13e- 2 5 0.0437 -0.718 4.73e- 1 0.0560 -0.119
#> 5 plsr chas 8.30e- 2 5 0.0365 2.28 2.33e- 2 0.156 0.0100
#> 6 plsr nox -2.06e- 1 5 0.0525 -3.92 9.91e- 5 -0.101 -0.311
#> 7 plsr rm 2.78e- 1 5 0.0771 3.61 3.38e- 4 0.433 0.124
#> 8 plsr age -2.43e- 2 5 0.0575 -0.422 6.73e- 1 0.0908 -0.139
#> 9 plsr dis -3.52e- 1 5 0.0510 -6.91 1.47e-11 -0.250 -0.454
#> 10 plsr rad 1.73e- 1 5 0.0457 3.79 1.71e- 4 0.265 0.0817
#> # ℹ 18 more rows
The plot is almost exactly identical to the bootstrap results above:
jackknife_estimates %>%
filter(term != "(Intercept)") %>%
ggplot(aes(term, estimate, color = model)) +
geom_hline(yintercept = 0) +
geom_errorbar(aes(ymin = .lower, ymax = .upper), position = position_dodge()) +
theme_bw(8)