Package ‘sevenbridges2’

July 2, 2024
Type Package
Title The 'Seven Bridges Platform' API Client
Version 0.2.0
Maintainer Marko Trifunovic <marko.trifunovic@velsera.com>

Description R client and utilities for 'Seven Bridges Platform' API, from 'Cancer Genomics Cloud'
to other 'Seven Bridges' supported platforms. API documentation is hosted publicly
at <https://docs.sevenbridges.com/docs/the-api>.

License Apache License 2.0
Encoding UTF-8
VignetteBuilder knitr

URL https://www.sevenbridges.com,
https://sbg.github.io/sevenbridges2/,
https://github.com/sbg/sevenbridges?

Depends R (>=4.2.0)

RoxygenNote 7.3.1

Imports httr, R6, purrr, jsonlite, cli, rlang, curl, glue, stringr,
utils, checkmate, DescTools, yaml, readr, data.table

Suggests knitr, rmarkdown, testthat (>= 3.0.0), stringi, withr,
remotes, pkgdown

Config/testthat/edition 3
Config/testthat/parallel true
Language en-US

BugReports https://github.com/sbg/sevenbridges2/issues
NeedsCompilation no

Author Marko Trifunovic [aut, cre],
Marija Gacic [aut],
Vladimir Obucina [aut],
Velsera [cph, fnd]

Repository CRAN
Date/Publication 2024-07-02 08:00:02 UTC

https://docs.sevenbridges.com/docs/the-api
https://www.sevenbridges.com
https://sbg.github.io/sevenbridges2/
https://github.com/sbg/sevenbridges2
https://github.com/sbg/sevenbridges2/issues

2 api

Contents
APL . v e e e e 2
ADD - o e 4
ADDS - o o e 14
Auth . . . e e e 19
Billing e 29
Billing_groups 36
Collection e e e e e 38
Export e 43
EXports e e 46
File e 54
Files o e 69
Import e 78
Imports e 81
Invoice L e e e e e 89
Invoices e e e 91
Item e e e e e e 94
Member e e e 95
Part . . . e e e e e 98
Permission. e e e 101
prepare_items_for_bulk_export oL o L 104
prepare_items_for_bulk_import o 107
Project L e 109
Projects L e e 132
Rate e 137
Resource e e e e 138
Task e e 139
Tasks e e e e e 153
Upload. 159
USer . . . o e e e e 164
Volume e e e e 166
VolumeContentCollection i e 182
VolumeFile e 187
VolumePrefix e 191
Volumes e e e e e e e e e e e 196

Index 210

api Core HTTP logic for Seven Bridges API
Description

Used for advanced users and the core method for higher level API in this package.

api 3
Usage
api(
token = NULL,
path = NULL,
method = c("GET", "POST", "PUT", "DELETE", "PATCH"),
query = NULL,
body = list(),
encode = c("json”, "form”, "multipart"”),
limit = getOption("sevenbridges2”)$limit,
offset = getOption("sevenbridges2")$offset,
advance_access = getOption("sevenbridges2")$advance_access,
authorization = FALSE,
fields = "_all”,
base_url = NULL,
url = NULL,
)
Arguments
token API authentication token or access_token for Seven Bridges single sign-on.
Authentication token uniquely identifies you on the Seven Bridges Platform and
has all your data access, app management and task execution permissions. Read
more about its usage here.
path Path connected with base_url.
method One of "GET", "POST", "PUT", "DELETE", or "PATCH".
query Query parameters passed to httr package GET/POST call.
body Body content passed to httr package GET/POST/PUT/DELETE/PATCH call.
encode If the body is a named list, how should it be encoded? Can be one of " json" (ap-
plication/json), "form” (application/x-www-form-urlencoded), or "multipart”
(multipart/form-data). Default is "json". For "multipart”, list elements can
be strings or objects created by httr: :upload_file(). For "form", elements
are coerced to strings and escaped, use I() to prevent double-escaping. For
"json", parameters are automatically "unboxed" (i.e. length 1 vectors are con-
verted to scalars). To preserve a length 1 vector as a vector, wrap in I().
limit The maximum number of collection items to return for a single request. Mini-
mum value is 1. The maximum value is 100 and the default value is 50. This is
a pagination-specific attribute.
offset The zero-based starting index in the entire collection of the first item to return.

The default value is @. This is a pagination-specific attribute.

advance_access Enable advance access features? Default is FALSE.

authorization Is the token an API authentication token (FALSE) or an access token from the

Seven Bridges single sign-on (TRUE)?

fields Selector specifying a subset of fields to include in the response. All API calls

take this optional query parameter. This parameter enables you to specify the

https://docs.sevenbridges.com/docs/get-your-authentication-token

4 App

fields you want to be returned when listing resources (e.g. all your projects) or
getting details of a specific resource (e.g. a given project).

For example, fields="id,name,size" to return the fields id, name and size
for files. Default value is set to _all, so all fields are always returned for each
resource. More details please check here.

base_url Platform URL, default is NULL.

url Full url of the resource. If url is provided, other parameters like base_url,
path, query, 1limit, of fset and fields will be ignored.

Other arguments passed to GET/POST/PUT/DELETE/PATCH call.

Value

Response in form of a list.

References

https://docs.sevenbridges.com/page/api

Examples

token <- "your_token"

list projects

Not run:

api(token = token, path = "projects”, method = "GET")

End(Not run)

App R6 Class representing an app

Description

R6 Class representing a resource for managing apps.

Super class

sevenbridges2::Item-> App

Public fields
URL List of URL endpoints for this resource.
id Character used as an app ID - short app name.
project Project ID if any, when returned by an API call.

name App name.

https://docs.sevenbridges.com/docs/the-api#section-general-api-information
https://docs.sevenbridges.com/page/api

App 5

revision App’s revision number.

copy_of The original application of which this is a copy.
latest_revision App’s latest revision number.

raw App’s raw CWL (JSON or YAML).

Methods

Public methods:

* App$new()

* App$print()

e App$reload()

* App$copy ()

* App$get_revision()
e App$create_revision()
* App$sync()

* App$input_matrix()
* App$output_matrix()
e App$create_task()

e App$clone()

Method new(): Create a new App object.
Usage:
App$new(res = NA, ...)
Arguments:
res Response containing App object information.
. Other response arguments.

Returns: A new App object.

Method print(): Print method for App class.
Usage:
App$print()
Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)
app_object$print()
3

Method reload(): Reload App object information. Suitable also for loading raw CWL in the
‘raw’ field, if it’s not already populated.

App

Usage:
App$reload(...)

Arguments:
. Other arguments that can be passed to core api () function like ’fields’, etc.

Returns: App object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$reload()

}

Method copy(): A method that copies the current app to the specified project.

Usage:
App$copy(project, name = NULL, strategy = "clone"”, use_revision = FALSE, ...)

Arguments:

project Project object or project ID. If you opt for the latter, remember that the project ID
should be specified in <project_owner>/<project-name> format, e.g.
rfranklin/my-project, or as <division>/<project-name> depending on the account

type.
name The new name the app will have in the target project. Optional.
strategy The method for copying the app. Supported strategies:
* clone - copy all revisions; get updates from the same app as the copied app (default)
* direct: copy latest revision; get updates from the copied app
* clone_direct: copy all revisions; get updates from the copied app
* transient: copy latest revision; get updates from the same app as the copied app.

use_revision Parameter specifying which app’s revision should be copied. If set to FALSE
(default), the latest revision of the app will be copied.

. Other arguments that can be passed to core api() function like "fields’, etc.
Returns: Copied App object.

Examples:

\dontrun{
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,

response = attr(x, "response")

App

app_object$copy(project)

b

Method get_revision(): Get app’s revision.

Usage:
App$get_revision(revision = self$revision, in_place = FALSE, ...)

Arguments:

revision Revision of the app.
in_place If TRUE, replace current app object with new for specified app revision.

. Other arguments that can be passed to core api() function like "fields’, etc.

Details: This call allows you to obtain a particular revision of an app, which is not necessarily
the most recent version.

Returns: App object.

Examples:
\dontrun{

}

x is API response when app is requested

app_object <- App$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response")

)
app_object$get_revision()

Method create_revision(): Create a new app revision.

Usage:
App$create_revision(

raw = NULL,

from_path = NULL,

raw_format = c("JSON", "YAML"),
in_place = FALSE,

) .

Arguments:
raw A list containing a raw CWL for the app revision you are about to create. To generate such

a list, you might want to load some existing JSON / YAML file. In case that your CWL
file is in JSON format, please use the fromJSON function from the jsonlite package to
minimize potential problems with parsing the JSON file. If you want to load a CWL file
in YAML format, it is highly recommended to use the read_yaml function from the yaml
package. Keep in mind that this parameter should not be used together with the file_path
parameter.

from_path A path to a file containing the raw CWL for the app (JSON or YAML). This param-

eter should not be used together with the raw parameter.

App

raw_format The type of format used (JSON or YAML).
in_place If TRUE, replace current app object with newly created revision.

. Other arguments that can be passed to core api() function like 'fields’, etc.
Details: This call creates a new revision for an existing app. It adds a new CWL app descrip-
tion, and stores it as the named revision for the specified app. The revision number must not
already exist and should follow the sequence of previously created revisions.

More documentation about how to create the app via API can be found here.
Returns: App object.

Examples:

\dontrun{
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,

response = attr(x, "response")

)
Create App object using raw CWL

app_object$create_revision(raw)

3

Method sync(): Synchronize a copied app with its parent app.
Usage:
App$sync(...)
Arguments:
. Other arguments that can be passed to core api () function like ’fields’, etc.
Details: This call synchronizes a copied app with the source app from which it has been copied.
Returns: App object.

Examples:

\dontrun{
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response")

app_object$sync()
}

Method input_matrix(): Get inputs matrix for the app - what are expected inputs required or
not, with their details about the expected types, descriptions etc.

https://docs.sevenbridges.com/reference/add-an-app-using-raw-cwl

App

Usage:
App$input_matrix()

Returns: Data frame.

Method output_matrix(): Get outputs matrix for the app - what are the expected outputs of
the task running this app, with their details about the expected types, descriptions etc.

Usage:
App$output_matrix()

Returns: Data frame.

Method create_task(): This call creates a new task. You can create either a single task or a
batch task by using the app’s default batching, override batching, or disable batching completely.
A parent task is a task that specifies criteria by which to batch its inputs into a series of further
sub-tasks, called child tasks. The documentation on batching tasks for more details on batching
criteria.
Usage:
App$create_task(
project,
revision = NULL,
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = output_location,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
use_interruptible_instances = NULL,
action = NULL,

)

Arguments:
project The ID string of a project or a Project object where you want to create the task in.
revision The app revision (version) number.
name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-
cution parameters:
* instance_type: Possible value is the specific instance type, e.g. "instance_type"” =
"c4.2xlarge;ebs-gp2;2000";
* max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances” =
2.;
* use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
» use_elastic_disk: Set to TRUE to enable Elastic Disk.

https://docs.sevenbridges.com/docs/about-batch-analyses
https://docs.sevenbridges.com/docs/app-versions
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk

10

App

Here is an example:

execution_settings <- list(

"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances” = 2,
"use_memoization” = TRUE,

"use_elastic_disk” = TRUE

)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:

inputs <- list(

"input_file"= "<file_id/file_object>",

"input_directory” = "<folder_id/folder_object>",
"input_array_string” = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,

"input_double” = 54.6,

"input_enum” = "enum_1",

"input_float” = 11.2,

"input_integer"” = "asdf",

"input_long"” = 4212,

"input_string” = "test_string”,

"input_record” = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42

)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.

main_location - Defines the output location for all output nodes in the task. Can be a
string path within the project in which the task is created, for example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume,

such as volumes://volume_name/<project_id>/html. Parts of the path enclosed in
angle brackets <> are tokens that are dynamically replaced with corresponding values
during task execution.

main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

https://docs.sevenbridges.com/docs/the-api#section-inputs

App

11

* nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(

"output_location” = "<output-path>",
"output_location_alias” = "<alias-path>"

)

Example:

b64html = list(
"output_location” = "volumes://outputs/tasks/mar-19",
"output_location_alias"” = "/rfranklin/tasks/picard”

)

In the example above, b64html is the ID of the output node for which
you want to define the output location, while the parameters are
defined as follows:

— output_location - Can be a path within the project in which the task is created, for
example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

— output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.
batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.
batch_by Batching criteria in form of list. For example:
batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")
)
use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.
action If set to run, the task will be run immediately upon creation.
. Other arguments that can be passed to core api () function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when app is requested
app_object <- App$new(

res = x,

href = x$href,

auth = auth,

response = attr(x, "response")
)

Create a DRAFT task

https://docs.sevenbridges.com/docs/about-spot-instances

12

app_object$create_task(project = project)
3

Method clone(): The objects of this class are cloneable with this method.

Usage:
App$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

B oo
Method ~App$print”
B oo

Not run:
x is API response when app is requested
app_object <- App$new(
res = Xx,
href = x$href,
auth = auth,
response = attr(x, "response")
)
app_object$print()

End(Not run)

B o
Method ~App$reload”
B oo

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$reload()

End(Not run)

B oo
Method ~App$copy”
o

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response"”)

)
app_object$copy(project)

End(Not run)

et
Method ~App$get_revision”
oo

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response”)

)
app_object$get_revision()

End(Not run)

H m o
Method ~App$create_revision”
B m o

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response")

)
Create App object using raw CWL

app_object$create_revision(raw)

End(Not run)

B m oo
Method ~App$sync”
e e LT

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,

14

href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$sync()

End(Not run)

et
Method ~App$create_task"”
oo

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response”)
)
Create a DRAFT task
app_object$create_task(project = project)

End(Not run)

Apps

Apps R6 Class representing apps endpoint

Description

R6 Class representing apps resource endpoint.

Super class

sevenbridges2: :Resource -> Apps

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
* Apps$new()
* Apps$query()
* Apps$get()

Apps 15

* Apps$copy ()
* Apps$create()
* Apps$clone()

Method new(): Create new Apps resource object.
Usage:
Apps$new(...)
Arguments:

. Other response arguments.

Method query(): This call lists all the apps available to you.
Usage:
Apps$query (
project = NULL,
visibility = c("private”, "public"),
query_terms = NULL,
id = NULL,
limit = getOption("sevenbridges2”)$limit,

offset = getOption("”sevenbridges2")$offset,
fields = "!raw",

)

Arguments:

project Project ID string in the form <project_owner>/<project_short_name> or
<division_name>/<project_short_name> or Project object,
to restrict the results to apps from that project only.

visibility Set this to public to see all public apps on the Seven Bridges Platform.

query_terms Enter one or more search terms to query apps. Read more about how to use the
query_terms parameter in our API documentation.

id Use this parameter to query apps based on their ID.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is @. This is a pagination-specific attribute.

fields Selector specifying a subset of fields to include in the response. For querying apps
it is set to return all fields except 'raw’ which stores CWL in form of a list. Please be
careful when setting to return all fields, since the execution of this API request could be
time-consuming.
. Other arguments that can be passed to core api () function.

Returns: Collection containing App objects.

Examples:

\dontrun{
apps_object <- Apps$new(

https://docs.sevenbridges.com/reference/list-all-apps-available-to-you#query-apps

Apps

auth = auth
)

List public apps
apps_object$query(visibility = "public")
3

Method get(): This call returns information about the specified app. The app should be one in
a project that you can access; this could be an app that has been uploaded to the Seven Bridges
Platform by a project member, or a publicly available app that has been copied to the project.
More about this operation you can find in our API documentation.

Usage:

Apps$get(id, revision = NULL, ...)

Arguments:

id The full <project_id>/<app_short_name> path for this API call is known as App ID. You

can also get the App ID for an app by making the call to list all apps available to you.
revision The number of the app revision you want to get.
. Other arguments that can be passed to core api () function like ’fields’, etc.

Returns: App object.

Examples:
\dontrun{
apps_object <- Apps$new(
auth = auth
)

Get app object
apps_object$get(id = "<some_id>")
3

Method copy(): This call copies the specified app to the specified project. The app should be
one in a project that you can access; this could be an app that has been uploaded to the Seven
Bridges Platform by a project member, or a publicly available app that has been copied to the
project.

Usage:

Apps$copy (
app,
project,
name = NULL,
strategy = c("clone”, "direct”, "clone_direct”, "transient"),

)

Arguments:

app App object or the short name of the app you are copying. Optionally, to copy a specific
revision of the app, use the <app_short_name>/<revision_number> format, for example
rfranklin/my-project/bamtools-index-2-4-0/1

https://docs.sevenbridges.com/reference/get-details-of-an-app

Apps 17

project The Project object or project ID you want to copy the app to.
name The new name the app will have in the target project. If its name will not change, omit
this key.
strategy The method for copying the app. Can be one of:
* clone : copy all revisions; get updates from the same app as the copied app (default);
* direct: copy latest revision; get updates from the copied app;
* clone_direct: copy all revisions; get updates from the copied app;
* transient: copy latest revision; get updates from the same app as the copied app.
Read more about the strategies here.
. Other arguments that can be passed to core api() function like 'fields’, etc.

Returns: Copied App object.

Examples:

\dontrun{
apps_object <- Apps$new(
auth = auth

)
Copy app object to a project

apps_object$copy(app = app, project = project)
3

Method create(): This call allows you to add an app using raw CWL.

Usage:

Apps$create(
raw = NULL,
from_path = NULL,
project,
name,
raw_format = c("JSON", "YAML"),

)...

Arguments:

raw The body of the request should be a CWL app description saved as a JSON or YAML file. For
a template of this description, try making the call to get raw CWL for an app about an app
already in one of your projects. Shouldn’t be used together with from_path parameter.

from_path File containing CWL app description. Shouldn’t be used together with raw param-
eter.
project String project ID or Project object in which you want to store the app.
name A short name for the app (without any non-alphanumeric characters or spaces)
raw_format The type of format used (JSON or YAML).
. Other arguments that can be passed to core api() function like "fields’, etc.

Returns: App object.

Examples:

https://docs.sevenbridges.com/reference/copy-an-app#methods-for-copying-an-app

\dontrun{
apps_object <- Apps$new(
auth = auth

Create new app object
apps_object$create(
raw = raw,
project = project,
name = name,
raw_format = "YAML"
)
3

Method clone(): The objects of this class are cloneable with this method.

Usage:
Apps$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

#H# -
Method ~Apps$query”
B oo
Not run:
apps_object <- Apps$new(
auth = auth
)

List public apps

apps_object$query(visibility = "public")

End(Not run)

B o
Method ~Apps$get”
B oo
Not run:
apps_object <- Apps$new(
auth = auth
)

Get app object
apps_object$get(id = "<some_id>")

Apps

Auth 19

End(Not run)

#H# - e
Method ~Apps$copy”
B oo
Not run:
apps_object <- Apps$new(
auth = auth
)

Copy app object to a project
apps_object$copy(app = app, project = project)

End(Not run)

-
Method ~Apps$create”
B o
Not run:
apps_object <- Apps$new(
auth = auth
)

Create new app object
apps_object$create(
raw = raw,
project = project,
name = name,
raw_format = "YAML"

)

End(Not run)

Auth R6 Class Representing Authentication Object

Description

Authentication object with methods to access API endpoints. Every object could be requested from
this Auth object and any action could start from this object using cascading style. Please check
vignette("Authentication_and_Billing", package = "sevenbridges2") for more informa-
tion.

Details

This is the main object for authentication to platforms powered by Seven Bridges.

20 Auth

Public fields

from Authentication method.

platform The platform to use.

url Base URL for APL

sysenv_url Name of the system environment variable storing the API base URL.
sysenv_token Name of the system environment variable storing the auth token.
config_file Location of the user configuration file.

profile_name Profile name in the user configuration file.

fs FS (FileSystem) object, for mount and unmount file system.

authorization Is the token an API authentication token (FALSE) or an access token from the
Seven Bridges single sign-on (TRUE)?

projects Projects object, for accessing projects resources on the platform.

files Files object, for accessing files resources on the platform.

apps Apps object, for accessing apps resources on the platform.

volumes Volumes object, for accessing volumes resources on the platform.

tasks Tasks object, for accessing volumes resources on the platform.

imports Storage imports object, for accessing volume imports resources on the platform.
exports Storage exports object, for accessing volume exports resources on the platform.
invoices Invoices object, for accessing invoice resources on the platform.

billing_groups Billing_groups object, for accessing billing groups resources on the platform.

Methods

Public methods:

* Auth$new()

* Auth$get_token()

* Auth$api()

e Auth$user()

e Auth$rate_limit()

e Auth$upload()

* Auth$list_ongoing_uploads()
e Auth$upload_abort()

* Auth$send_feedback()

e Auth$clone()

Method new(): Create a new Seven Bridges API Authentication object. All methods can be
accessed through this object.

Usage:

Auth

21

Auth$new(
from = c("direct”,
platform = NA,
url = NA,
token = NA,
sysenv_url = NA,
sysenv_token = NA,
config_file = NA,
profile_name = NA,
fs = NA,
authorization = FALSE

env", "file"),

)

Arguments:
from Authentication method. Could be:
e "direct” - pass the credential information to the arguments directly,
* "env” - read from pre-set system environment variables, or
» "file" - read configurations from a credentials file.
Default is "direct”.

platform The platform to use. If platform and url are both not specified, the default is
"aws-us" (Seven Bridges Platform - US). Other possible values include:

* "aws-eu” - Seven Bridges Platform - EU,

e "cgc" - Cancer Genomics Cloud,

* "ali-cn” - Seven Bridges Platform - China,

e "cavatica” - Cavatica, and

» "f4c” - BioData Catalyst Powered by Seven Bridges.

url Base URL for API. Please only use this when you want to specify a platform that is not in
the platform list above, and also leaving platform unspecified.

token API authentication token or access_token for Seven Bridges single sign-on. Authen-
tication token uniquely identifies you on the Seven Bridges Platform and has all your data
access, app management and task execution permissions. Read more about its usage here.

sysenv_url Name of the system environment variable storing the API base URL. By default:
"SB_API_ENDPOINT".

sysenv_token Name of the system environment variable storing the auth token. By default:
"SB_AUTH_TOKEN".

config_file Location of the user configuration file.
By default: "~/.sevenbridges/credentials”.

profile_name Profile name in the user configuration file. The default value is "default”.

fs FS (FileSystem) object, for mount and unmount file system.

authorization Is the token an API authentication token (FALSE) or an access token from the
Seven Bridges single sign-on (TRUE)?

Returns: Auth class object.

Examples:

\dontrun{
Multiple ways to create Auth object

https://docs.sevenbridges.com/docs/get-your-authentication-token

22 Auth

Using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

Authenticate using environment variables
a <- Auth$new(from = "env")

Authenticate using file configuration
a <- Auth$new(from = "file")

3

Method get_token(): Returns the authentication token read from system environment variable.

Usage:
Auth$get_token()

Returns: An API authentication token in form of a string.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

Get that same token
a$get_token()
3

Method api(): This method returns all API paths and pass arguments to core api() function.

Usage:
Auth$api (

D

limit = getOption("sevenbridges2”)$limit,

offset = getOption("sevenbridges2")$offset,
fields = "_all”

)

Arguments:

. Other arguments passed to core api() function, like path, query parameters or full url to
some resource.
limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

Auth 23

offset The zero-based starting index in the entire collection of the first item to return. The
default value is @. This is a pagination-specific attribute.

fields Selector specifying a subset of fields to include in the response. This parameter en-
ables you to specify the fields you want to be returned when listing resources (e.g. all your
projects) or getting details of a specific resource (e.g. a given project).

For example, fields="id,name, size" to return the fields id, name and size for files. De-
fault value is set to _all, so all fields are always returned for each resource. More details
please check general API documentation.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

Create API request using request parameters directly
a$api(params)

3

Method user (): Get details about the authenticated user.

Usage:
Auth$user(username = NULL)

Arguments:

username The username of a user for whom you want to get basic account information. If not
provided, information about the currently authenticated user will be returned.

Returns: User class object.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Get information about the currently authenticated user
a$user ()

3

Method rate_limit(): Get information about current rate limit.

This call returns information about your current rate limit. This is the number of API calls you
can make in one hour. This call also returns information about your current instance limit.

Usage:

https://docs.sevenbridges.com/docs/the-api#section-general-api-information

24

Auth

Auth$rate_limit()

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(

token = "<your_token>",

platform = "aws-us"

)

Get current rate limit
a$rate_limit()
3

Method upload(): This method allows you to upload a single file from your local computer to
the Platform.

Usage:
Auth$upload(
path,
project = NULL,
parent = NULL,
filename = NULL,
overwrite = FALSE,
part_size = getOption("sevenbridges2")$RECOMMENDED_PART_SIZE,
init = FALSE
)

Arguments:

path File path on local disk.

project Project object or its ID. Project should not be used together with parent. If parent
is used, the call will upload the file to the specified Platform folder, within the project to
which the folder belongs. If project is used, the call will upload the file to the root of the
project’s files.

parent Parent folder object (of File class) or its ID. Should not be used together with project.
If parent is used, the call will upload the file to the specified Platform folder, within the
project to which the folder belongs. If project is used, the call will upload the file to the root
of the project’s files.

filename Optional new file name. By default the uploaded file will have the same name as the
original file provided with the path parameter. If its name will not change, omit this key.

overwrite In case there is already a file with the same name in the selected platform project
or folder, this option allows you to control whether that file will be overwritten or not. If
overwrite is set to TRUE and a file already exists under the name specified in the request, the
existing file will be deleted and a new one created in its place.

part_size The preferred size for upload parts in bytes. If omitted or set to a value that is
incompatible with the cloud storage provider, a default value will be used.

init If TRUE, the method will initialize and return the Upload object and stop. If FALSE, the
method will return the Upload object and start the upload process immediately.

Auth

25

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

Create upload job and set destination project
upload_job <- a$upload(
path = "/path/to/your/file.txt",
project = destination_project,
overwrite = TRUE,
init = TRUE
)
}

Method 1ist_ongoing_uploads(): This method returns the list of all ongoing uploads.

Usage:
Auth$list_ongoing_uploads()

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

List ongoing uploads
a$list_ongoing_uploads()
3

Method upload_abort(): This call aborts an ongoing multipart upload.

Usage:
Auth$upload_abort(upload_id)

Arguments:
upload_id Upload object or ID of the upload process that you want to abort.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

Abort upload

26 Auth

a$abort_upload(upload_id = "<id_of_the_upload_process>")
3

Method send_feedback(): Send feedback to Seven Bridges.

Send feedback on ideas, thoughts, and problems via the sevenbridges2 API package with three
available types: idea, thought, and problem. You can send one feedback item per minute.
Usage:
Auth$send_feedback(
text,
type = c("idea"”, "thought"”, "problem”),
referrer = NULL
)
Arguments:
text Specifies the content for the feedback i.e. feedback text.
type Specifies the type of feedback. The following are available: idea, thought and problem.
referrer The name of the person submitting the feedback.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

Send feedback

a$send_feedback(
"This is a test for sending feedback via API.",
type = "thought”

)

}

Method clone(): The objects of this class are cloneable with this method.
Usage:
Auth$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

B oo
Method ~Auth$new”
B o

Not run:
Multiple ways to create Auth object

Auth

Using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

Authenticate using environment variables
a <- Auth$new(from = "env")

Authenticate using file configuration
a <- Auth$new(from = "file")

End(Not run)

B o
Method ~Auth$get_token™
B oo

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Get that same token
a$get_token()

End(Not run)

B oo
Method ~Auth$api-
HHE mm

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Create API request using request parameters directly
a$api(params)

End(Not run)
B oo

Method ~Auth$user=
H m o

27

28

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Get information about the currently authenticated user
asuser()

End(Not run)

B o
Method ~Auth$rate_limit"
oo

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Get current rate limit
a$rate_limit()

End(Not run)

B oo
Method ~Auth$upload”
HHE m

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Create upload job and set destination project
upload_job <- a$upload(

path = "/path/to/your/file.txt",

project = destination_project,

overwrite = TRUE,

init = TRUE

End(Not run)
oo

Method ~Auth$list_ongoing_uploads™
B oo

Auth

Billing

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

List ongoing uploads
a$list_ongoing_uploads()

End(Not run)

et
Method ~Auth$upload_abort=™
B m o

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Abort upload
a$abort_upload(upload_id = "<id_of_the_upload_process>")

End(Not run)

B oo
Method ~Auth$send_feedback™
HHE mm

Not run:

Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us”

)

Send feedback

a$send_feedback(
"This is a test for sending feedback via API.”,
type = "thought”

)

End(Not run)

29

Billing R6 Class representing billing information.

30 Billing

Description

R6 Class representing a central resource for managing billing groups.

Details

This is main object for Billing

Super class

sevenbridges2::Item->Billing

Public fields

URL List of URL endpoints for this resource.

id Billing group identifier.

owner Username of the user that owns the billing group.
name Billing group name.

type Billing group type

pending Billing group approval status.

disabled Indicator of whether the billing group is disabled.

balance Billing group balance.

Methods

Public methods:
e Billing$new()
* Billing$print()
e Billing$reload()
e Billing$analysis_breakdown()
e Billing$storage_breakdown()
* Billing$egress_breakdown()
e Billing$clone()

Method new(): Create a new Billing object.
Usage:
Billing$new(res = NA, ...)
Arguments:

res Response containing Billing object information.
. Other response arguments.

Method print(): Print billing group information as a bullet list.
Usage:
Billing$print()

Examples:

Billing 31

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,

href = x$href,

auth = auth,

response = attr(x, "response”)
)

Print billing group
billing_object$print()
3

Method reload(): Reload Billing group object.
Usage:
Billing$reload(...)
Arguments:
. Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,
etc.
Returns: Billing object.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,

href = x$href,

auth = auth,

response = attr(x, "response”)
)

Reload billing group
billing_object$reload()
3

Method analysis_breakdown(): Method for getting a analysis breakdown for a billing group.
Usage:
Billing$analysis_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,

32

Billing

Arguments:

date_from A string representing the starting date for retrieving transactions analysis in the
following format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving transactions analysis in the follow-
ing format: mm-dd-yyyy.

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is @. This is a pagination-specific attribute.

. Other arguments that can be passed to core api() function.

Examples:
\dontrun{

x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response”)
)

Get analysis breakdown
billing_object$analysis_breakdown()
3

Method storage_breakdown(): Method for getting a storage breakdown for a billing group.

Usage:
Billing$storage_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2”)$limit,
offset = getOption("sevenbridges2")$offset,

)

Arguments:

date_from A string representing the starting date for retrieving storage analysis in the follow-
ing format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving storage analysis in the following
format: mm-dd-yyyy.

Billing 33

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is @. This is a pagination-specific attribute.

. Other arguments that can be passed to core api () function.

Examples:
\dontrun{

x is API response when billing group is requested
billing_object <- Billing$new(

res = x,

href = x$href,

auth = auth,

response = attr(x, "response")
)

Get storage breakdown
billing_object$storage_breakdown()
}

Method egress_breakdown(): Method for getting a egress breakdown for a billing group.
Usage:
Billing$egress_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2"”)$limit,
offset = getOption("sevenbridges2")$offset,

)

Arguments:

date_from A string representing the starting date for retrieving egress analysis in the following
format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving egress analysis in the following
format: mm-dd-yyyy.

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

34 Billing

offset The zero-based starting index in the entire collection of the first item to return. The
default value is @. This is a pagination-specific attribute.

. Other arguments that can be passed to core api () function.

Examples:

\dontrun{

x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response")
)

Get egress breakdown
billing_object$egress_breakdown()
3

Method clone(): The objects of this class are cloneable with this method.

Usage:
Billing$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

P e
Method “Billing$print”
e

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print billing group
billing_object$print()

End(Not run)
B mm

Method “Billing$reload"
B o

Billing 35

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response”)

)

Reload billing group
billing_object$reload()

End(Not run)

H m o
Method “Billing$analysis_breakdown™
e e e

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response")

)

Get analysis breakdown
billing_object$analysis_breakdown()

End(Not run)

o
Method “Billing$storage_breakdown™
oo

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = X,
href = x$href,

auth = auth,

response = attr(x, "response")

)

Get storage breakdown
billing_object$storage_breakdown()

End(Not run)

36 Billing_groups

H m o
Method “Billing$egress_breakdown™
e

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get egress breakdown
billing_object$egress_breakdown()

End(Not run)

Billing_groups R6 Class representing billing groups endpoints

Description

R6 Class representing billing groups resource endpoints.

Super class

sevenbridges?2: :Resource ->Billing_groups

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
* Billing_groups$new()
e Billing_groups$query()
e Billing_groups$get()
e Billing_groups$clone()

Method new(): Create a new Billing_groups object.
Usage:
Billing_groups$new(...)
Arguments:

. Other response arguments.

Billing_groups 37

Method query(): List all your billing groups, including groups that are pending or have been
disabled.
Usage:
Billing_groups$query(
limit = getOption("sevenbridges2"”)$limit,
offset = getOption("sevenbridges2")$offset,

)

Arguments:

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is @. This is a pagination-specific attribute.

. Other arguments that can be passed to core api() function like query parameters, ’fields’,

etc.

Returns: Collection of Billing groups.

Examples:
\dontrun{
billing_groups_object <- Billing_groups$new(
auth = auth
)

List all your billing groups
billing_groups_object$query()
}

Method get(): Retrieve a single billing group, specified by its id. To find the billing_group,
use the call Billing_groups$query() to list all your billing groups. The information returned
includes the billing group owner, the total balance, and the status of the billing group (pending or
confirmed).

Usage:

Billing_groups$get(id, ...)

Arguments:

id The ID of the billing group you are querying.

. Other arguments that can be passed to core api() function like fields’, etc.

Returns: Billing object.

Examples:
\dontrun{
billing_groups_object <- Billing_groups$new(
auth = auth

)

38 Collection

Get single billing group
billing_groups_object$get(id = id)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Billing_groups$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

e
Method “Billing_groups$query”
B o

Not run:
billing_groups_object <- Billing_groups$new(
auth = auth
)

List all your billing groups
billing_groups_object$query()

End(Not run)

#H# -
Method “Billing_groups$get”
B m oo
Not run:
billing_groups_object <- Billing_groups$new(
auth = auth
)

Get single billing group
billing_groups_object$get(id = id)

End(Not run)

Collection R6 Class representing a Collection of objects

Collection 39

Description

R6 Class representing a resource for managing collections. Wrapper for Seven Bridges pageable
resources. Among the actual collection items it contains information regarding the total number of
entries available on the server and resource API request URL (href).

Public fields
href API request URL.

items Items returned in API response.

links List of links (hrefs) for next and/or previous page resources.
total Total number of items available on the server.

response Raw API response.

auth Seven Bridges Authentication object.

Methods

Public methods:
e Collection$new()
e Collection$print()
* Collection$next_page()
e Collection$prev_page()
e Collection$all()
e Collection$clone()

Method new(): Create a new Collection object.

Usage:

Collection$new(
href = NA,
items = NA,
links = NA,
total = NA,
response = NA,
auth = NA

)

Arguments:

href API request URL.

items Items returned in API response.

links List of links (hrefs) for next and/or previous page resources.
total Total number of items available on the server.

response Raw API response.

auth Seven Bridges Authentication object.

Method print(): Print method for Collection class.
Usage:

40 Collection

Collection$print(n = 10)

Arguments:

n Number of items to print in console.

Examples:

\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,

items = x$items,

links = x$links,

total = x$total,

auth = auth,

response = attr(x, "response”)

Print collection object
collection_object$print()
}

Method next_page(): Return next page of results.
Usage:
Collection$next_page(...)
Arguments:

. Other arguments that can be passed to core api () function like ’advanced_access’, *fields’,
etc.

Examples:

\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,

items = x$items,

links = x$links,

total = x$total,

auth = auth,

response = attr(x, "response”)

)

Get next page of collection results
collection_object$next_page()
}

Method prev_page(): Return previous page of results.

Usage:
Collection$prev_page(...)

Collection 41

Arguments:

. Other arguments that can be passed to core api () function like ’advanced_access’, fields’,
etc.

Examples:

\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,

items = x$items,

links = x$links,

total = x$total,

auth = auth,

response = attr(x, "response”)

)

Get previous page of collection results
collection_object$prev_page()
}

Method all(): Fetches all available items by iterating through all pages. Please be aware of the
API rate limit for your request.

Usage:

Collection$all(...)

Arguments:

. Other arguments that can be passed to core api () function like ’advanced_access’, *fields’,
etc.

Examples:

\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(
href = x$href,
items = x$items,
links = x$links,

total = x$total,
auth = auth,
response = attr(x, "response”)

Get all results of collection
collection_object$all()

}

Method clone(): The objects of this class are cloneable with this method.
Usage:

42

Collection$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

o
Method ~Collection$print”
oo

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

Print collection object
collection_object$print()

End(Not run)

B oo
Method ~Collection$next_page”
et

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get next page of collection results
collection_object$next_page()

End(Not run)
B m

Method ~Collection$prev_page”
B o

Collection

Export 43

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get previous page of collection results
collection_object$prev_page()

End(Not run)

oo
Method ~Collection$all”
e PR R

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

Get all results of collection
collection_object$all()

End(Not run)

Export R6 Class representing an Export

Description

R6 Class representing a resource for managing volume export jobs.

Super class

sevenbridges2::Item->Export

44 Export

Public fields

URL List of URL endpoints for this resource.
id Export job string identifier.
state The state of the export job. Possible values are:

* PENDING: the export is queued;

* RUNNING: the export is running;

* COMPLETED: the export has completed successfully;
e FAILED: the export has failed.

source List containing source file id that is being exported to the volume.

destination List containing destination volume id and location (file name) on the volume where
the file is being exported.

overwrite Whether the exported file name was overwritten or not, if another one with the same
name had already existed on the volume.

started_on Time when the export job started.

finished_on Time when the export job ended.

properties List of volume properties set.

error In case of error in the export job, standard API error is returned here.

result File object that was exported.

Methods

Public methods:

e Export$new()

e Export$print()
e Export$reload()
e Export$clone()

Method new(): Create a new Export object.

Usage:
Export$new(res = NA, ...)

Arguments:
res Response containing Export job information.
. Other response arguments.

Method print(): Print method for Export class.

Usage:
Export$print()

Examples:

Export

\dontrun{
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response”)
)

Print export object
export_object$print()
3

Method reload(): Reload Export object information.
Usage:
Export$reload(...)
Arguments:
. Other arguments that can be passed to core api () function like ’fields’, etc.
Returns: Export object.

Examples:

\dontrun{

x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response”)
)

Reload export object
export_object$reload()
3

Method clone(): The objects of this class are cloneable with this method.
Usage:
Export$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

H m o
Method “Export$print”
e R e

45

46

Not run:
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,

auth = auth,

response = attr(x, "response")

)

Print export object
export_object$print()

End(Not run)

oo
Method “Export$reload”
H m o

Not run:
x is API response when export is requested
export_object <- Export$new(

res = X,
href = x$href,

auth = auth,

response = attr(x, "response")

)

Reload export object
export_object$reload()

End(Not run)

Exports

Exports R6 Class representing storage exports endpoints

Description

R6 Class representing storage exports resource endpoints.

Super class

sevenbridges?2: :Resource -> Exports

Public fields

URL List of URL endpoints for this resource.

Exports 47

Methods

Public methods:

e Exports$new()

e Exports$query()

e Exports$get()

* Exports$submit_export()

e Exports$delete()

* Exports$bulk_get()

e Exports$bulk_submit_export()
* Exports$clone()

Method new(): Create a new Exports object.
Usage:
Exports$new(...)
Arguments:

. Other response arguments.

Method query(): This call lists export jobs initiated by particular user. Note that when you
export a file from a project on the Platform into a volume, you write to your cloud storage bucket.

Usage:

Exports$query(
volume = NULL,
state = NULL,

limit = getOption("sevenbridges2"”)$limit,
offset = getOption("”sevenbridges2")$offset,

)

Arguments:
volume Volume id or Volume object. List all exports into this particular volume. Optional.
state The state of the export job. Possible values are:

* PENDING: the export is queued;

* RUNNING: the export is running;

* COMPLETED: the export has completed successfully;

* FAILED: the export has failed.

Example:

state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is @. This is a pagination-specific attribute.

. Other arguments that can be passed to core api () function like ’fields’, etc.

Returns: Collection of Export objects.

48

Exports

Examples:
\dontrun{
exports_object <- Exports$new(
auth = auth
)

List all your running or failed export jobs on the volume
exports_object$query(volume = volume, state = c(”"RUNNING", "FAILED"))

b

Method get (): This call will return the details of an export job.
Usage:
Exports$get(id, ...)
Arguments:
id The export job identifier (id).
. Other arguments that can be passed to core api() function like 'fields’, etc.

Returns: Export object.

Examples:
\dontrun{
exports_object <- Exports$new(
auth = auth
)

Get export job by ID
exports_object$get(id = id)
3

Method submit_export(): This call lets you queue a job to export a file from a project on the
Platform into a volume. The file selected for export must not be a public file or an alias. Aliases
are objects stored in your cloud storage bucket which have been made available on the Platform.
The volume you are exporting to must be configured for read-write access. To do this, set the
access_mode parameter to RW when creating or modifying a volume.

Essentially, the call writes to your cloud storage bucket via the volume. If this call is successful,
the original project file will become an alias to the newly exported object on the volume. The
source file will be deleted from the Platform and, if no more copies of this file exist, it will no
longer count towards your total storage price on the Platform.

In summary, once you export a file from the Platform to a volume, it is no longer part of the
storage on the Platform and cannot be exported again.

Read more about this operation in our documentation here.

If you want to export multiple files, the recommended way is to do it in bulk considering the API
rate limit (learn more). Bulk operations will be implemented in next releases.

https://docs.sevenbridges.com/reference/start-an-export-job-v2
https://docs.sevenbridges.com/docs/api-rate-limit

Exports

Usage:

Exports$submit_export(

source_file,
destination_volume,
destination_location,
overwrite = FALSE,
copy_only = FALSE,
properties = NULL,

)

Arguments:

source_file File id or File object you want to export to the volume.
destination_volume Volume id or Volume object you want to export files into.

49

destination_location Volume-specific location to which the file will be exported. This lo-
cation should be recognizable to the underlying cloud service as a valid key or path to a new
file. Please note that if this volume has been configured with a prefix parameter, the value
of prefix will be prepended to location before attempting to create the file on the volume.
If you would like to export the file into some folder on the volume, please add folder name

as prefix before file name in form <folder-name>/<file-name>.

overwrite Set to TRUE if you want to overwrite the item if another one with the same name

already exists at the destination.

copy_only If TRUE, file will be copied to a volume but source file will remain on the Platform.

properties Named list of additional volume properties, like:

* sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-
ported values: AES256 (SSE-S3 encryption), aws : kms, null (no server-side encryption).

Default: AES256.

* sse_aws_kms_key_id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws: kms is set as sse_algorithm, default

KMS key is used.

* aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

. Other arguments that can be passed to core api() function like 'fields’, etc.

Returns: Export object.

Examples:
\dontrun{

exports_object <- Exports$new(

auth = auth
)

Submit export job

exp_job1 <- exports_object$submit_export(
source_file = test_file,
destination_volume
destination_location = "new_volume_file.txt"

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

50

Exports

Method delete(): Deleting export jobs is not possible.

Usage:
Exports$delete()

Method bulk_get(): This call returns the details of a bulk export job. When you export files
from a project on the Platform into a volume, you write to your cloud storage bucket. This call
obtains the details of that job.

Usage:
Exports$bulk_get(exports)
Arguments:

exports The list of the export job IDs as returned by the call to start a bulk export job or list of
Export objects.

Returns: Collection with list of Export objects.

Examples:
\dontrun{
exports_object <- Exports$new(
auth = auth,
)

List export jobs

exports_object$bulk_get(
exports = list("export-job-id-1", "export-job-id-2")
)

3

Method bulk_submit_export(): Bulk export files from your project on the Seven Bridges
Platform into your volume. One call can contain up to 100 items. Files selected for export must
not be public files or aliases. Aliases are objects stored in your cloud storage bucket which have
been made available on the Platform. The volume you are exporting to must be configured for
read-write access. To do this, set the access_mode parameter to RW when creating or modifying
a volume.

Essentially, the call writes to your cloud storage bucket via the volume. If this call is successful,
the original project files will become aliases to the newly exported objects on the volume. Source
files will be deleted from the Platform and, if no more copies of the files exist, they will no longer
count towards your total storage price on the Platform. In summary, once you export files from
the Platform to a volume, they are no longer part of the storage on the Platform and cannot be
exported again.

Learn more about using the Volumes API for Amazon S3 and for Google Cloud Storage.
Usage:
Exports$bulk_submit_export(items, copy_only = FALSE)

Arguments:

https://docs.sevenbridges.com/docs/aws-cloud