This package provides consistent utility functions for array programming with arbitrary dimensions (summary below).
We recommend to load this package in its own namespace to not shadow
base R functions using box or import.
# example referencing the package namespace
# do not load the package with 'library(...)' here
narray::stack(...)stack() is like cbind/rbind,
but along arbitrary axes, and taking care of (1) names along each
dimension and (2) padding partial matching arrays.
A = matrix(1:4, nrow=2, ncol=2, dimnames=list(c('a','b'),c('x','y')))
B = matrix(5:6, nrow=2, ncol=1, dimnames=list(c('b','a'),'z'))
C = stack(A, B, along=2)
C
#>   x y z
#> a 1 3 6
#> b 2 4 5
D = stack(m=A, n=C, along=3) # we can also introduce new dimensions
D
#> , , m
#> 
#>   x y  z
#> a 1 3 NA
#> b 2 4 NA
#> 
#> , , n
#> 
#>   x y z
#> a 1 3 6
#> b 2 4 5split() splits an array along a given axis; can do each
element or defined subsets.
split(C, along=2, subsets=c('s1','s1','s2'))
#> $s1
#>   x y
#> a 1 3
#> b 2 4
#> 
#> $s2
#>   z
#> a 6
#> b 5Like apply, but not reordering array dimensions and
allowing to specify subsets that the function should be applied on. The
function must either return a vector of the same length as the input
(returns matrix of same dimension) or of length 1 (drops current
dimension or returns subsets).
map(C, along=2, function(x) x*2) # return same length vector
#>   x y  z
#> a 2 6 12
#> b 4 8 10
map(C, along=2, mean, subsets=c('s1', 's1', 's2')) # summarize each subset to scalar
#>   s1 s2
#> a  2  6
#> b  3  5We can also index multiple arrays using the lambda
function. If the result is a scalar we will get back an array, and an
index with result column otherwise.
dot = function(x, y) sum(x * y)
lambda(~ dot(A, B), along=c(A=1, B=2))
#>    B
#> A    z
#>   a 23
#>   b 34
lambda(~ dot(A, B), along=c(A=1, B=2), simplify=FALSE)
#>   A B result
#> 1 a z     23
#> 2 b z     34Takes a number of arrays, intersects their names along a given
dimension, and returns sub-arrays that match in their names;
intersect_list takes a list of arrays and returns a list of
subsets.
E = matrix(1:6, nrow=3, dimnames=list(c('a','b','d'), c('x','y')))
F = matrix(7:9, nrow=3, dimnames=list(c('b','a','c'), 'z'))
intersect(E, F, along=1)
E
#>   x y
#> a 1 4
#> b 2 5
F
#>   z
#> a 8
#> b 7data.framesconstruct() takes a data frame and a formula specifying
dependent (values) and independent (axes) of the resulting array.
DF = data.frame(k1=base::rep(letters[1:3],2),
                k2=base::rep(letters[24:25],3), v=1:6)[-6,]
construct(v ~ k1 + k2, data=DF)
#>    k2
#> k1  x  y
#>   a 1  4
#>   b 5  2
#>   c 3 NATakes either a factor or a list of vectors and creates a binary matrix specifying whether each element is present.
G = list(a='e1', b=c('e1','e2'), c='e2')
mask(G)
#>      e1    e2
#> a  TRUE FALSE
#> b  TRUE  TRUE
#> c FALSE  TRUE