library(meteospain)
library(sf)
library(purrr)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(units)
# provide keys for aemet and meteocat if not done already
# keyring::key_set('aemet')
# keyring::key_set('meteocat')
meteospain
aims to return stations data in a compatible
format between services. This means:
sf
object.This ease combining data from different services. Let’s see an example.
We are gonna download daily data for April, 2020 for all services providing this information, and combine them in one object:
Don’t forget to store the keys for AEMET and MeteoCat if not done already (see code above)
aemet_daily <- get_meteo_from(
'aemet', aemet_options(
'daily', start_date = as.Date('2020-04-01'), end_date = as.Date('2020-04-30'),
api_key = keyring::key_get('aemet')
)
)
#> ℹ © AEMET. Autorizado el uso de la información y su reproducción citando a
#> AEMET como autora de la misma.
#> https://www.aemet.es/es/nota_legal
meteocat_daily <- get_meteo_from(
'meteocat',
meteocat_options('daily', start_date = as.Date('2020-04-01'), api_key = keyring::key_get('meteocat'))
)
meteogalicia_daily <- get_meteo_from(
'meteogalicia',
meteogalicia_options('daily', start_date = as.Date('2020-04-01'), end_date = as.Date('2020-04-30'))
)
#> ℹ A información divulgada a través deste servidor ofrécese gratuitamente aos
#> cidadáns para que poida ser
#> utilizada libremente por eles, co único compromiso de mencionar expresamente a
#> MeteoGalicia e á
#> Consellería de Medio Ambiente, Territorio e Vivenda da Xunta de Galicia como
#> fonte da mesma cada vez
#> que as utilice para os usos distintos do particular e privado.
#> https://www.meteogalicia.gal/web/informacion/notaIndex.action
ria_daily <- get_meteo_from(
'ria',
ria_options('daily', start_date = as.Date('2020-04-01'), end_date = as.Date('2020-04-30'))
)
#> Some stations didn't return data for some dates:
#> 11-3
#> 11-8
#> 11-9
#> 14-3
#> 18-4
#> 18-9
#> 21-1
#> 21-104
#> 21-106
#> 21-107
#> 23-10
#> 23-13
#> 23-9
#> 29-3
#> 29-5
#> 4-3
#> 4-9
#> 41-1
#> 41-14
#> 41-4
#> 41-6
#> ℹ Data provided by Red de Información Agroclimática de Andalucía (RIA)
#> https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/
Now we have all daily data for April, lets join them. We are gonna
use the purrr package to do it in one pipe.
Here we convert the data to tibble before the join, that way we are not
joining by the spatial data, but by timestamp and the stations metadata.
After the join we convert back to sf
.
april_2020_spain <- list(
dplyr::as_tibble(aemet_daily),
dplyr::as_tibble(meteocat_daily),
dplyr::as_tibble(meteogalicia_daily),
dplyr::as_tibble(ria_daily)
) |>
purrr::reduce(dplyr::full_join) |>
sf::st_as_sf()
#> Joining with `by = join_by(timestamp, service, station_id, station_name,
#> station_province, altitude, mean_temperature, min_temperature, max_temperature,
#> precipitation, mean_wind_speed, geometry)`
#> Joining with `by = join_by(timestamp, service, station_id, station_name,
#> station_province, altitude, mean_temperature, min_temperature, max_temperature,
#> precipitation, mean_wind_speed, insolation, geometry, mean_relative_humidity,
#> min_relative_humidity, max_relative_humidity, mean_wind_direction)`
#> Joining with `by = join_by(timestamp, service, station_id, station_name,
#> station_province, altitude, mean_temperature, min_temperature, max_temperature,
#> precipitation, mean_wind_speed, geometry, mean_relative_humidity,
#> min_relative_humidity, max_relative_humidity, mean_wind_direction)`
april_2020_spain
#> Simple feature collection with 20412 features and 19 fields (with 150 geometries empty)
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -17.91528 ymin: 27.73583 xmax: 4.215556 ymax: 43.78611
#> Geodetic CRS: WGS 84
#> # A tibble: 20,412 × 20
#> timestamp service station_id station_name station_province altitude
#> <dttm> <chr> <chr> <chr> <chr> [m]
#> 1 2020-04-01 00:00:00 aemet 0016A REUS AEROPU… TARRAGONA 71
#> 2 2020-04-01 00:00:00 aemet 0076 BARCELONA A… BARCELONA 4
#> 3 2020-04-01 00:00:00 aemet 0149X MANRESA BARCELONA 291
#> 4 2020-04-01 00:00:00 aemet 0200E BARCELONA, … BARCELONA 408
#> 5 2020-04-01 00:00:00 aemet 0201D BARCELONA BARCELONA 6
#> 6 2020-04-01 00:00:00 aemet 0252D ARENYS DE M… BARCELONA 74
#> 7 2020-04-01 00:00:00 aemet 0255B SANTA SUSAN… BARCELONA 40
#> 8 2020-04-01 00:00:00 aemet 0324A RIPOLL GIRONA 675
#> 9 2020-04-01 00:00:00 aemet 0367 GIRONA AERO… GIRONA 143
#> 10 2020-04-01 00:00:00 aemet 0372C PORQUERES GIRONA 157
#> # ℹ 20,402 more rows
#> # ℹ 14 more variables: mean_temperature [°C], min_temperature [°C],
#> # max_temperature [°C], precipitation [L/m^2], mean_wind_speed [m/s],
#> # insolation [h], geometry <POINT [°]>, mean_relative_humidity [%],
#> # min_relative_humidity [%], max_relative_humidity [%],
#> # mean_wind_direction [°], global_solar_radiation [MJ/m^2],
#> # solar_radiation [MJ/d/m^2], under_plastic <lgl>
We can visualize the data, only one day.