Preliminary
Consider the following setting:
Gaussian graphical model (GGM) assumption:
The data Xn × d consists of independent and identically distributed samples X1, …, Xn ∼ Nd(μ, Σ).
Disjoint group structure:
The d variables can be partitioned into disjoint groups.
Goal:
Estimate the precision matrix Ω = Σ−1 = (ωij)d × d.
Sparse-Group Estimator
where:
$S = n^{-1} \sum_{i=1}^n (X_i-\bar{X})(X_i-\bar{X})^\top$ is the empirical covariance matrix.
λ ≥ 0 is the global regularization parameter controlling overall shrinkage.
α ∈ [0, 1] is the mixing parameter controlling the balance between element-wise and block-wise penalties.
γ is the additional parameter controlling the curvature and effective degree of nonconvexity of the penalty.
Pα, γ(Ω) is a generic bi-level penalty template that can incorporate convex or non-convex regularizers while preserving the intrinsic group structure among variables.
Pγidv(Ω) is the element-wise individual penalty component.
Pγgrp(Ω) is the block-wise group penalty component.
pγ(⋅) is a penalty kernel parameterized by γ.
Ωgg′ is the submatrix of Ω with the rows from group g and columns from group g′.
The Frobenius norm ‖Ω‖F is defined as ‖Ω‖F = (∑i, j|ωij|2)1/2 = [tr(Ω⊤Ω)]1/2.
Note:
The regularization parameter λ acts as the scale factor for the entire penalty term λPα, γ(Ω).
The penalty kernel pγ(⋅) is the shape function that governs the fundamental characteristics of the regularization.
Penalties
- Lasso: Least absolute shrinkage and selection operator (Tibshirani 1996; Friedman, Hastie, and Tibshirani 2008)
λp(ωij) = λ|ωij|.
- Adaptive lasso (Zou 2006; Fan, Feng, and Wu 2009)
$$
\lambda p_\gamma(\omega_{ij}) = \lambda\frac{\vert\omega_{ij}\vert}{v_{ij}},
$$ where V = (vij)d × d = (|ω̃ij|γ)d × d is a matrix of adaptive weights, and ω̃ij is the initial estimate obtained using penalty = "lasso".
- Atan: Arctangent type penalty (Wang and Zhu 2016)
$$
\lambda p_\gamma(\omega_{ij})
= \lambda(\gamma+\frac{2}{\pi})
\arctan\left(\frac{\vert\omega_{ij}\vert}{\gamma}\right),
\quad \gamma > 0.
$$
- Exp: Exponential type penalty (Wang, Fan, and Zhu 2018)
$$
\lambda p_\gamma(\omega_{ij})
= \lambda\left[1-\exp\left(-\frac{\vert\omega_{ij}\vert}{\gamma}\right)\right],
\quad \gamma > 0.
$$
- Lq (Frank and Friedman 1993; Fu 1998; Fan and Li 2001)
λpγ(ωij) = λ|ωij|γ, 0 < γ < 1.
- LSP: Log-sum penalty (Candès, Wakin, and Boyd 2008)
$$
\lambda p_\gamma(\omega_{ij})
= \lambda\log\left(1+\frac{\vert\omega_{ij}\vert}{\gamma}\right),
\quad \gamma > 0.
$$
- MCP: Minimax concave penalty (Zhang 2010)
$$
\lambda p_\gamma(\omega_{ij})
= \begin{cases}
\lambda\vert\omega_{ij}\vert - \dfrac{\omega_{ij}^2}{2\gamma},
& \text{if } \vert\omega_{ij}\vert \leq \gamma\lambda, \\
\dfrac{1}{2}\gamma\lambda^2,
& \text{if } \vert\omega_{ij}\vert > \gamma\lambda.
\end{cases}
\quad \gamma > 1.
$$
- SCAD: Smoothly clipped absolute deviation (Fan and Li 2001; Fan, Feng, and Wu 2009)
$$
\lambda p_\gamma(\omega_{ij})
= \begin{cases}
\lambda\vert\omega_{ij}\vert
& \text{if } \vert\omega_{ij}\vert \leq \lambda, \\
\dfrac{2\gamma\lambda\vert\omega_{ij}\vert-\omega_{ij}^2-\lambda^2}{2(\gamma-1)}
& \text{if } \lambda < \vert\omega_{ij}\vert < \gamma\lambda, \\
\dfrac{\lambda^2(\gamma+1)}{2}
& \text{if } \vert\omega_{ij}\vert \geq \gamma\lambda.
\end{cases}
\quad \gamma > 2.
$$
Note:
For Lasso, which is convex, the additional parameter γ is not required, and the penalty kernel pγ(⋅) simplifies to p(⋅).
For MCP and SCAD, λ plays a dual role: it is the global regularization parameter, but it is also implicitly contained within the kernel pγ(⋅).
Illustrative Visualization
Figure 1 illustrates a comparison of various penalty functions λp(ω) evaluated over a range of ω values. The main panel (right) provides a wider view of the penalty functions’ behavior for larger |ω|, while the inset panel (left) magnifies the region near zero [−1, 1].
library(grasps) ## for penalty computation
library(ggplot2) ## for visualization
penalties <- c("atan", "exp", "lasso", "lq", "lsp", "mcp", "scad")
pen_df <- compute_penalty(seq(-4, 4, by = 0.01), penalties, lambda = 1)
plot(pen_df, xlim = c(-1, 1), ylim = c(0, 1), zoom.size = 1) +
guides(color = guide_legend(nrow = 2, byrow = TRUE))
Figure 2 displays the derivative function p′(ω) associated with a range of penalty types. The Lasso exhibits a constant derivative, corresponding to uniform shrinkage. For MCP and SCAD, the derivatives are piecewise: initially equal to the Lasso derivative, then decreasing over an intermediate region, and eventually dropping to zero, indicating that large |ω| receive no shrinkage. Other non-convex penalties show smoothly diminishing derivatives as |ω| increases, reflecting their tendency to shrink small |ω| strongly while exerting little to no shrinkage on large ones.
deriv_df <- compute_derivative(seq(0, 4, by = 0.01), penalties, lambda = 1)
plot(deriv_df) +
scale_y_continuous(limits = c(0, 1.5)) +
guides(color = guide_legend(nrow = 2, byrow = TRUE))
Reference
Candès, Emmanuel J., Michael B. Wakin, and Stephen P. Boyd. 2008.
“Enhancing Sparsity by Reweighted ℓ1 Minimization.” Journal of Fourier Analysis and Applications 14 (5): 877–905.
https://doi.org/10.1007/s00041-008-9045-x.
Fan, Jianqing, Yang Feng, and Yichao Wu. 2009.
“Network Exploration via the Adaptive LASSO and SCAD Penalties.” The Annals of Applied Statistics 3 (2): 521–41.
https://doi.org/10.1214/08-aoas215.
Fan, Jianqing, and Runze Li. 2001.
“Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties.” Journal of the American Statistical Association 96 (456): 1348–60.
https://doi.org/10.1198/016214501753382273.
Frank, Lldiko E., and Jerome H. Friedman. 1993.
“A Statistical View of Some Chemometrics Regression Tools.” Technometrics 35 (2): 109–35.
https://doi.org/10.1080/00401706.1993.10485033.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008.
“Sparse Inverse Covariance Estimation with the Graphical Lasso.” Biostatistics 9 (3): 432–41.
https://doi.org/10.1093/biostatistics/kxm045.
Fu, Wenjiang J. 1998.
“Penalized Regressions: The Bridge Versus the Lasso.” Journal of Computational and Graphical Statistics 7 (3): 397–416.
https://doi.org/10.1080/10618600.1998.10474784.
Tibshirani, Robert. 1996.
“Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society: Series B (Methodological) 58 (1): 267–88.
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
Wang, Yanxin, Qibin Fan, and Li Zhu. 2018.
“Variable Selection and Estimation Using a Continuous Approximation to the L0 Penalty.” Annals of the Institute of Statistical Mathematics 70 (1): 191–214.
https://doi.org/10.1007/s10463-016-0588-3.
Wang, Yanxin, and Li Zhu. 2016.
“Variable Selection and Parameter Estimation with the Atan Regularization Method.” Journal of Probability and Statistics 2016: 6495417.
https://doi.org/10.1155/2016/6495417.
Zhang, Cun-Hui. 2010.
“Nearly Unbiased Variable Selection Under Minimax Concave Penalty.” The Annals of Statistics 38 (2): 894–942.
https://doi.org/10.1214/09-AOS729.
Zou, Hui. 2006.
“The Adaptive Lasso and Its Oracle Properties.” Journal of the American Statistical Association 101 (476): 1418–29.
https://doi.org/10.1198/016214506000000735.