Install the latest stable version of cropgrowdays via CRAN with:
You can install the development version of
cropgrowdays from GitLab
with:
The cropgrowdays package provides functions to calculate agrometeorological quantities of interest for modelling crop data. Currently, functions are provided for calculating growing degree days, stress days, cumulative and daily means of weather data. Australian meteorological data can be obtained from Queensland Government’s Department of Environment and Science (DES) website. In addition, functions are provided to convert days of the year to dates, and vice-versa.
We recommend using the cropgrowdays package in conjunction with the tidyverse and lubridate packages. Additionally, we also recommend using the furrr package to speed up adding agrometeorological variables to large data frames. For this document, we only use the lubridate package as follows.
Note that if you are not familiar with the lubridate
package, then in order to see which functions are provided and which
functions conflict with other packages, initially it may best not to
suppress messages using suppressMessages
.
The boonah
dataset was obtained from the Queensland
Government DES longpaddock website https://www.longpaddock.qld.gov.au using the
get_silodata
function. Please see getting-weather-data vignette for
details.
The data obtained is
## weather data object
print(boonah, n=5)
#: # A tibble: 517 × 10
#: year day radn maxt mint rain evap vp code date_met
#: <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <date>
#: 1 2019 1 26.2 33.9 16.3 0 7.8 20.6 222222 2019-01-01
#: 2 2019 2 28.2 33.4 17.6 0 7.7 19.8 222222 2019-01-02
#: 3 2019 3 20.5 32.8 16.7 0 6.8 21.9 222222 2019-01-03
#: 4 2019 4 23 32.5 21 2 7.7 22 222222 2019-01-04
#: 5 2019 5 27 33.6 16.8 0 6 21.8 222222 2019-01-05
#: # ℹ 512 more rows
The crop
dataset consists of dates for a hypothetical
crop data set which would also usually contain agronomic traits of
interest such as yield, dry matter yield and so on. Each row of data
contains sowing, flowering and harvest dates for a typical field or farm
in Queensland, Australia.
## crop data object
print(crop, n=5)
#: # A tibble: 10 × 3
#: sowing_date flower_date harvest_date
#: <date> <date> <date>
#: 1 2019-08-25 2019-10-14 2019-11-03
#: 2 2019-09-20 2019-11-09 2019-11-29
#: 3 2019-12-18 2020-02-06 2020-02-26
#: 4 2020-01-15 2020-03-06 2020-03-26
#: 5 2020-02-15 2020-04-06 2020-04-26
#: # ℹ 5 more rows
Example R
syntax is provided for calculating daily mean
radiation, total rainfall, growing degree dates and the number of stress
days between two dates. Alternatively, a number of days before or after
a certain date may be specified.
Note that employing mapping functions to add agrometeorological
variables to large data frames can take a substantial amount of
computational time. We describe how to employ the furrr
package, which provides a relatively simple way to apply mapping
functions in parallel, to speed up these calculations.
The growing_degree_days
function calculates the sum of
degree days for each day \(i = 1 \ldots
n\). The growing degree days \(GDD\) summed over \(n\) days are
\[GDD = \sum_i^n (Tmax_{i} + Tmin_{i}) / 2 - T_{base}\]
during specified dates for a tibble/data frame of daily weather data.
For each day \(i\), the maximum
temperature is \(Tmax_{i}\) and minimum
is \(Tmin_{i}\). Note that the maximum
temperature \(Tmax\) is capped at
maxt_cap
degrees when calculating average temperature. The
defaults are \(T_{base} = 5^{\circ}C\)
and \(Tmax\) is capped at \(Tmax_{cap} = 30^{\circ}C\). (See McMaster and Wilhelm (1997) or https://farmwest.com/climate/calculator-information/gdd/
(Anon 2021))
The gdd functions in the pollen package (Nowosad 2019) and in agroclim (Serrano-Notivoli 2020) also calculate growing degree days. While these functions do not allow for a fixed number of days, and in the case of agroclim::gdd assume a more limited growing season since the function appears to be tailored to grapes, further variations on the formula above as outlined in Baskerville and Emin (1969) are available.
To calculate the growing degree days at Boonah using weather data
from the boonah
object between flowering and harvest
use:
## Growing Degree Days between two dates
crop$flower_date[4] # flowering date for 4th field or farm in 'crop'
#: [1] "2020-03-06"
crop$harvest_date[4] # harvest date for 4th field or farm in 'crop'
#: [1] "2020-03-26"
growing_degree_days(boonah, startdate = crop$flower_date[4],
enddate = crop$harvest_date[4]) #, monitor = TRUE)
#: [1] 359.05
stress_days_over
calculates the number of days when the
maximum temperature exceeded a base line stress_temp
during
specified dates for a tibble/data frame of daily weather data. The
default stress_temp
is set at \(30^{\circ}C\).
To calculate the number of stress days at Boonah between flowering and harvest, use:
cumulative
calculates the sum total of daily values
between two dates from a tibble/data frame of daily weather data.
Typically this is used for solar radiation or rainfall.
To calculate the total rainfall at Boonah between flowering and harvest, use:
daily_mean
calculates the daily average of a variable
between two dates from a tibble/data frame of daily weather data.
Typically this would be for temperature, rainfall or solar
radiation.
To calculate daily mean radiation in the 3 day period from day of flowering onwards (which also includes day of flowering), use:
## daily mean radiation for the three days ending on crop$flower_date[4]
crop$flower_date[4] # a particular flowering date
#: [1] "2020-03-06"
daily_mean(boonah, enddate = crop$flower_date[4], ndays = 3,
monitor = TRUE)
#: # A tibble: 3 × 2
#: date_met radn
#: <date> <dbl>
#: 1 2020-03-04 10.7
#: 2 2020-03-05 11.8
#: 3 2020-03-06 11
#: [1] 11.16667
To extract column(s) from a tibble/data frame of daily weather data
between two specified dates we use weather_extract
. Either
specify the start and end dates or specify one of these dates and also
the number of days after or before, respectively.
## Extract daily rainfall & maximum temperature data using %>% pipe operator
boonah |>
weather_extract(c(rain, maxt), date = date_met, startdate = ymd("2019-08-16"),
enddate = ymd("2019-08-21"))
#: # A tibble: 6 × 3
#: date_met rain maxt
#: <date> <dbl> <dbl>
#: 1 2019-08-16 0 26
#: 2 2019-08-17 0 28
#: 3 2019-08-18 0 25.7
#: 4 2019-08-19 0 26.8
#: 5 2019-08-20 0 23.1
#: 6 2019-08-21 0 26.3
We can add agrometeorological variables to the crop
tibble using the tidyverse
functions map_dbl
,
map_dbl2
and pmap
to calculate new columns
employing the weather data from the boonah
object. Use
map_dbl
for one varying date and map_dbl2
for
varying start and end dates. For more than two varying parameters, which
may be necessary if for instance our weather object contained multiple
locations or sites, then we can use pmap
. These functions
are from the purrr
library. Alternatively, we could use
functions from the apply
family such as mapply
from the base
package.
To add growing degree days 7 days post sowing and the number of
stress days above \(30^\circ C\) from
flowering to harvest to the crop
tibble, then we employ the
following mutate
syntax to extract the appropriate weather
data from the boonah
weather data object.
## Growing degree and stress days
crop2 <- crop |>
dplyr::mutate(gddays_post_sow_7d =
purrr::map_dbl(sowing_date, function(x)
growing_degree_days(boonah, startdate = x, ndays = 7)),
stressdays_flower_harvest =
purrr::map2_dbl(flower_date, harvest_date, function(x, y)
stress_days_over(boonah, startdate = x, enddate = y)))
print(crop2, n=5)
#: # A tibble: 10 × 5
#: sowing_date flower_date harvest_date gddays_post_sow_7d stressdays_flower_ha…¹
#: <date> <date> <date> <dbl> <dbl>
#: 1 2019-08-25 2019-10-14 2019-11-03 76.4 10
#: 2 2019-09-20 2019-11-09 2019-11-29 104. 20
#: 3 2019-12-18 2020-02-06 2020-02-26 132. 11
#: 4 2020-01-15 2020-03-06 2020-03-26 142. 4
#: 5 2020-02-15 2020-04-06 2020-04-26 145. 5
#: # ℹ 5 more rows
#: # ℹ abbreviated name: ¹stressdays_flower_harvest
Similarly, to add total rainfall for the 7 days post sowing and the mean daily radiation from flowering to harvest we use:
## Totals and daily means
crop3 <- crop |>
dplyr::mutate(totalrain_post_sow_7d =
purrr::map_dbl(sowing_date, function(x)
cumulative(boonah, var = rain, startdate = x, ndays = 7)),
meanrad_flower_harvest =
purrr::map2_dbl(flower_date, harvest_date, function(x, y)
daily_mean(boonah, var = radn, startdate = x, enddate = y)))
print(crop3, n=5)
#: # A tibble: 10 × 5
#: sowing_date flower_date harvest_date totalrain_post_sow_7d
#: <date> <date> <date> <dbl>
#: 1 2019-08-25 2019-10-14 2019-11-03 10.5
#: 2 2019-09-20 2019-11-09 2019-11-29 0
#: 3 2019-12-18 2020-02-06 2020-02-26 0
#: 4 2020-01-15 2020-03-06 2020-03-26 88.4
#: 5 2020-02-15 2020-04-06 2020-04-26 20.7
#: # ℹ 5 more rows
#: # ℹ 1 more variable: meanrad_flower_harvest <dbl>
furrr
For large datasets these calculations can be time consuming. One
approach that may prove useful is to use the furrr
package
which is a bridge between purrr‘s family of mapping functions and
future‘s parallel processing capabilities. If speed is an issue, then it
is worth trying because it is simple to implement. While some tweaking
may prove useful, it seems that the defaults work pretty well (see
?future::plan
). After setting the number of workers, then
simply replace mapping functions by putting future_
at the
front of the name of the mapping function. For instance,
map2_dbl
is replaced with future_map2_dbl
.
While the results are not shown here, to add total rain and mean
radiation as before, use something like:
ptm <- proc.time() # Start the clock!
## set number of 'furrr' workers
library(furrr)
plan(multisession, workers = 2)
## Totals and daily means
crop3 <- crop |>
dplyr::mutate(totalrain_post_sow_7d =
future_map_dbl(sowing_date, function(x)
cumulative(boonah, var = rain, startdate = x, ndays = 7)),
meanrad_flower_harvest =
future_map2_dbl(flower_date, harvest_date, function(x, y)
daily_mean(boonah, var = radn, startdate = x, enddate = y)))
print(crop3, n=5)
proc.time() - ptm # Stop the clock!
For recent work, we have found that setting 4 workers was optimal but this will of course depend on your setup.
When modelling crops, agronomists typically specify dates as the day
of year. Several functions are available for day of year calculations
and converting these back to dates. In R
, dates, times and
timezone data are easily manipulated using the lubridate
package.
The day_of_year
function is used to convert a date to
the day of year, which could be based on the calendar year starting on 1
January, the Australian financial year starting on 1 July or an
arbitrary starting date.
## Day of Calendar Year
day_of_year(ymd(c("2020-12-31", "2020-07-01", "2020-01-01")))
#: [1] 366 183 1
day_of_year(ymd(c("2020-12-31", "2020-07-01", "2020-01-01")), return_year = TRUE)
#: day year
#: 1 366 2020
#: 2 183 2020
#: 3 1 2020
## Day of Financial Year
day_of_year(ymd(c("2020-12-31", "2020-07-01", "2020-01-01")), type = "financial")
#: [1] 184 1 185
day_of_year(ymd(c("2020-12-31", "2020-07-01", "2020-01-01")), type = "fin",
return_year = TRUE)
#: day fin_year
#: 1 184 2020/2021
#: 2 1 2020/2021
#: 3 185 2019/2020
To convert a day of year to a date, use
date_from_day_year
noting that while the calendar year is
the default, we can specify the Australian financial year or an
arbitrary starting date.
## Convert day of year to a date
date_from_day_year(21,2021)
#: [1] "2021-01-21"
date_from_day_year(21,2021, type = "fina")
#: [1] "2021-07-21"
Finally, while we can use day_of_year
to obtain the day
of the current year, if a crop is planted near the end of the year then
we way wish to know the day of harvest which will fall in the next year.
The day_of_harvest
function provides the day of year in the
year of sowing which can be used to calculate other quantities like day
of flowering etc. Thus, quantities like the number of days between
harvest and sowing are easily calculated taking into account that the
crop may grow past the end of the year. Alternatively, these quantities
are also easily computed directly on the dates by using the
lubridate
package. For instance the convenience function
cropgrowdays::number_of_days
is essentially a call to
as.numeric(finish_date - start_date) + 1
.
## Day of harvest using the first day of the year of sowing as the base day
day_of_year(ymd("2021-01-05"))
#: [1] 5
day_of_harvest(x = ymd("2021-01-05"), sowing = ymd("2020-12-20")) # > 366
#: [1] 371
Note that the first calculation simply assumes the first day of the year is 1 January 2021 whereas the second calculation yields a result assuming the first day of the year is 1 January 2020. Hence, since 2020 is a leap year containing 366 days, then the day of harvest is \(366 + 5 = 371\).