'Rcpp' reimplementation of the the Bayesian non-parametric Dirichlet Process Regression model for penalized regression first published in Zeng and Zhou (2017) <doi:10.1038/s41467-017-00470-2>. A full Bayesian version is implemented with Gibbs sampling, as well as a faster but less accurate variational Bayes approximation.
| Version: | 0.1.10 | 
| Imports: | Rcpp (≥ 1.0.13) | 
| LinkingTo: | Rcpp, RcppArmadillo, RcppGSL | 
| Suggests: | testthat (≥ 3.0.0), snpStats | 
| Published: | 2025-03-19 | 
| DOI: | 10.32614/CRAN.package.RcppDPR | 
| Author: | Mohammad Abu Gazala [cre, aut], Daniel Nachun [ctb], Ping Zeng [ctb] | 
| Maintainer: | Mohammad Abu Gazala <abugazalamohammad at gmail.com> | 
| License: | GPL-3 | 
| NeedsCompilation: | yes | 
| Materials: | NEWS | 
| CRAN checks: | RcppDPR results | 
| Reference manual: | RcppDPR.html , RcppDPR.pdf | 
| Package source: | RcppDPR_0.1.10.tar.gz | 
| Windows binaries: | r-devel: RcppDPR_0.1.10.zip, r-release: RcppDPR_0.1.10.zip, r-oldrel: RcppDPR_0.1.10.zip | 
| macOS binaries: | r-release (arm64): RcppDPR_0.1.10.tgz, r-oldrel (arm64): RcppDPR_0.1.10.tgz, r-release (x86_64): RcppDPR_0.1.10.tgz, r-oldrel (x86_64): RcppDPR_0.1.10.tgz | 
| Old sources: | RcppDPR archive | 
Please use the canonical form https://CRAN.R-project.org/package=RcppDPR to link to this page.