Package ‘REMixed’

October 28, 2025

Type Package

Title Regularized Estimation in Mixed Effects Model
Version 1.1.0

Maintainer Auriane Gabaut <auriane.gabaut@inria.fr>

Description
Implementation of an algorithm in two steps to estimate parameters of a model whose latent dy-
namics are inferred through latent processes, jointly regularized. This package uses 'Mono-
lix" software (<https://monolixsuite.slp-software.com/>), which provide robust statisti-
cal method for non-linear mixed effects modeling. 'Monolix' must have been installed prior to use.

SystemRequirements 'Monolix'
(<https://monolixsuite.slp-software.com/>)

License GPL (>=3)
Encoding UTF-8
LazyData true

Imports deSolve, Rsmlx, doSNOW, dplyr, fastGHQuad, ggplot2, snow,
stringr, Rmpfr

RoxygenNote 7.3.2
Depends R (>=3.5.0), foreach
NeedsCompilation no

Author Auriane Gabaut [aut, cre],
Ariane Bercu [aut],
Mélanie Prague [aut],
Cécile Proust-Lima [aut]

Repository CRAN
Date/Publication 2025-10-28 11:20:13 UTC

Contents
AICIremixX o o e e e 2
BICremixX e e 3
BICcC e e 5

https://monolixsuite.slp-software.com/

2 AIC.remix
computeFinalTest e 6
CVIIEIMIX . o o v v v v v e e e e e e e e e e e e e e e e 8
dynFUN_demo e 12
eBIC . . . e 13
EXIIACE L L L e e 14
getMLXdir e 15
ghLL . . . e 16
indParm 19
INIEStrat L e e e e 21
model.clairon L 23
model.pasin e 24
model.pk e 25
plot.cvRemix L e e 26
plotCalibration e 27
plotConvergenceo e 28
plotlC e 29
plotlnit. e e e e e 30
PIOtSAEM 31
readMLX e 33
TEMIX © o v v e e e e e e e e e e e e e e e e e e e 35
retrieveBest 38
Index 41
AIC.remix AIC for remix object
Description
Computes akaike information criterion from the output of remix as
AIC = —2LL,(0,&) + k x P
where P is the total number of parameters estimated and £LL,(A, &) the log-likelihood of the model.
Usage
S3 method for class 'remix'
AIC(object, ..., k)
Arguments

object output of remix.

additional arguments.

numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

BIC.remix 3

Value

AIC.

References

Akaike, H. 1998. Information theory and an extension of the maximum likelihood principle, Se-
lected papers of hirotugu akaike, 199-213. New York: Springer.

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = 1list(S=1list(AB=logl19),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(S=5,AB=1000)
lambda = 1440

res = remix(project = project,
dynFUN = dynFUN_demo,
y =y,
ObsModel . transfo = ObsModel.transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),
eps2=1,
lambda=1ambda)

AIC(res)

End(Not run)

BIC.remix BIC for remix object

Description
Computes bayesian information criterion from the output of remix as

BIC = —2LL,(0,&) + log(N)P

where P is the total number of parameters estimated, N the number of subject and £LL, (0, &) the
log-likelihood of the model.

4 BIC.remix

Usage
S3 method for class 'remix'
BIC(object, ...)

Arguments
object output of remix.

additional arguments.

Value

BIC.

References

Schwarz, G. 1978. Estimating the dimension of a model. The annals of statistics 6 (2): 461-464

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = 1list(S=1list(AB=logl19),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(5=5,AB=1000)
lambda = 1440

res = remix(project = project,
dynFUN = dynFUN_demo,
y =y,
ObsModel . transfo = ObsModel.transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),
eps2=1,
lambda=1ambda)

BIC(res)

End(Not run)

BICc 5

BICc BICc

Description

Computes corrected bayesian information criterion as

BICc= —2LL,(0, &)+ Prlog(N) + Prlog(niot)

where Pp is the total number of parameters linked to fixed effects, APR to random effects, N the
number of subject, n;ot the total number of observations and LL, (6, &) the log-likelihood of the
model.

Usage
BICc(object, ...)

Arguments

object output of remix or cv.remix

opptional additional arguments.

Value

BICec.

References

Delattre M, Lavielle M, Poursat M-A. A note on BIC in mixed-effects models. Elect J Stat. 2014,
8(1): 456-475.

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = list(S=1list(AB=logl19),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),pasted("yG",1:5)))

y = c(5=5,AB=1000)
lambda = 1440

res = remix(project = project,
dynFUN = dynFUN_demo,

y =y,

ObsModel . transfo = ObsModel.transfo,

alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),

eps2=1,

lambda=1ambda)

BICc(res)

End(Not run)

computeFinalTest

computeFinalTest

Compute final estimation

Description

Computes a final saem and wald test if ‘test* on the final model found by remix algorithm.

Usage

computeFinalTest(
remix.output,
dynFUN,
Y,

ObsModel . transfo,

final.project = NULL,

pop.set = NULL,
prune = NULL,
n = NULL,

parallel = TRUE,

ncores = NULL,

print = TRUE,
digits = 3,
trueValue = NULL,
test = TRUE,
p.max = 0.05
)
Arguments

remix.output a remix outputs. It’s important that the project path of this outputs is still
existing.

dynFUN function computing the dynamics of interest for a set of parameters. This func-
tion need to contain every sub-function that it may needs (as it is called in a
foreach loop). The output of this function need to return a data.frame with
time as first columns and named dynamics in other columns. It must take in

input :

computeFinalTest

y

e y a named vector with the initial condition. The names are the dynamics
names.

* parms a named vector of parameter.
e time vector a timepoint.

See dynFUN_demo, model.clairon, model.pasin or model.pk for examples.

initial condition of the mechanism model, conform to what is asked in dynFUN.

ObsModel . transfo

final.project
pop.set

prune

n

parallel

ncores

print

digits
trueValue
test

p.max

Details

For population parameter estimation settings, see (<https://monolixsuite.slp-software.com/r-functions/2024R 1/setpopulation;

list containing two lists of transformations and two vectors linking each trans-
formations to their observation model name in the Monolix project. The list
should include identity transformations and be named S and R. The two vectors
should be named 1inkS and 1inkR.

Both S (for the direct observation models) and 1inkS, as well as R (for latent
process models) and 1inkR, must have the same length.

* S: alist of transformations for the direct observation models. Each transfor-
mation corresponds to a variable Y, = h,(S,), where the name indicates
which dynamic is observed (from dynFUN);

* 1inkS : a vector specifying the observation model names (that is used in the
monolix project, alphal, etc.) for each transformation, in the same order
asinS;

* R: similarly, a list of transformations for the latent process models. Al-
though currently there is only one latent dynamic, each s,k < K trans-
formation corresponds to the same dynamic but may vary for each Y}, ob-
served. The names should match the output from dynFUN;

* linkR : a vector specifying the observation model names for each transfor-
mation, in the same order as in R.

directory of the final Monolix project (default add "_upd" to the Monolix project).
population parameters setting for final estimation (see details).

percentage for prunning (€ [0;1]) in the Adaptative Gauss-Hermite algorithm
used to compute the log-likelihood and its derivates (see gh.LL).

number of points for gaussian quadrature (see gh.LL).

logical, if the computation should be done in parallel when possible (default
TRUE).

number of cores for parallelization (default NULL and detectCores is used).

logical, if the results and algotihm steps should be displayed in the console (de-
fault to TRUE).

number of digits to print (default to 3).
-for simulation purposes- named vector of true value for parameters.
if Wald test should be computed at the end of the iteration.

maximum value to each for wald test p.value (default 0.05).

8 cv.remix

Value

a remix object on which final SAEM and test, if test is TRUE, have been computed.

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = list(S=1list(AB=logl19),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(5=5,AB=1000)

res = cv.remix(project = project,
dynFUN = dynFUN_demo,
y =Y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10**(-2),
ncores=8,
nlambda=8,
eps2=1)

res_with_test = computeFinalTest(retrieveBest(res@,criterion=BICc),
dynFUN_demo,

yY
ObsModel. transfo)

End(Not run)

cv.remix REMixed algorithm over a grid of A

Description

Regularization and Estimation in Mixed effects model, over a regularization path.

Usage

cv.remix(
project = NULL,
final.project = NULL,
dynFUN,

cv.remix

Y

ObsModel. transfo,

alpha,

lambda.grid = NULL,
alambda = 0.001,

nlambda = 50,
lambda_max = NULL,
eps1 = 10*(-2),
eps2 = 10" (-1),
selfInit = FALSE,
pop.setl = NULL,
pop.set2 = NULL,
prune = NULL,
n = NULL,
parallel = TRUE,
ncores = NULL,
print = TRUE,
digits = 3,
trueValue = NULL,
unlinkBuildProject = TRUE,
max.iter = +Inf

)

Arguments
project directory of the Monolix project (in .mlxtran). If NULL, the current loaded

final.project

dynFUN

project is used (default is NULL).
directory of the final Monolix project (default add "_upd" to the Monolix project).

function computing the dynamics of interest for a set of parameters. This func-
tion need to contain every sub-function that it may needs (as it is called in a
foreach loop). The output of this function need to return a data.frame with
time as first columns and named dynamics in other columns. It must take in
put :

y anamed vector with the initial condition. The names are the dynamics names.

parms anamed vector of parameter.
time vector a timepoint.

See dynFUN_demo, model.clairon, model.pasin or model.pk for examples.

initial condition of the mechanism model, conform to what is asked in dynFUN.
If regressor used in Monolix provided a named list of vector of individual initial
conditions. Each vector need to be of length 1 (same for all), or exactly the
numbre of individuals (range in the same order as their id).

ObsModel . transfo

list containing two lists of transformations and two vectors linking each trans-
formations to their observation model name in the Monolix project. The list
should include identity transformations and be named S and R. The two vectors
should be named 1inkS and 1inkR.

10

alpha

lambda.grid

alambda

nlambda

lambda_max

eps1
eps2
selflInit

pop.seti
pop.set2

prune

n

parallel

ncores

print

digits

cv.remix

Both S (for the direct observation models) and 1inkS, as well as R (for latent
process models) and 1inkR, must have the same length.

S a list of transformations for the direct observation models. Each transfor-
mation corresponds to a variable Y, = h,(.S,), where the name indicates
which dynamic is observed (from dynFUN);

linkS a vector specifying the observation model names (that is used in the
monolix project, alphal, etc.) for each transformation, in the same order
asinS;

R similarly, a list of transformations for the latent process models. Although
currently there is only one latent dynamic, each si, k < K transformation
corresponds to the same dynamic but may vary for each Y observed. The
names should match the output from dynFUN;

linkR a vector specifying the observation model names for each transforma-
tion, in the same order as in R.

named list of named vector "alpha®", "alphal” (all alphal are mandatory).
The name of alpha$alpha® and alpha$alphal are the observation model names
from the monolix project to which they are linked (if the observations models
are defined whithout intercept, alpha$alpha0 need to be set to the vector NULL).

grid of user-suuplied penalisation parameters for the lasso regularization (if
NULL, the sequence is computed based on the data).

if lambda.grid is null, coefficients used to compute the grid (default to 0.05,
see details).

if lambda. grid is null, number of lambda parameter to test (default to 50).

if lambda. grid is null, maximum of the lambda grid to test (default is automat-
ically computed, see details)

integer (>0) used to define the convergence criteria for the regression parameters.
integer (>0) used to define the convergence criteria for the likelihood.

logical, if the SAEM is already done in the monolix project should be use as
the initial point of the algorithm (if FALSE, SAEM is automatically compute
according to pop.set1 settings ; if TRUE, a SAEM through monolix need to
have been launched).

population parameters setting for initialisation (see details).
population parameters setting for iterations.

percentage for prunning (€ [0;1]) in the Adaptative Gauss-Hermite algorithm
used to compute the log-likelihood and its derivates (see gh.LL).

number of points for gaussian quadrature (see gh.LL).

logical, if the computation should be done in parallel when possible (default
TRUE).

number of cores for parallelization (default NULL and detectCores is used).

logical, if the results and algotihm steps should be displayed in the console (de-
fault to TRUE).

number of digits to print (default to 3).

cv.remix 11

trueValue -for simulation purposes- named vector of true value for parameters.
unlinkBuildProject
logical, if the build project of each lambda should be deleted.
max.iter maximum number of iteration (default 20).
Details

See REMixed-package for details on the model. For each A € A, the remix is launched. For popula-
tion parameter estimation settings, see (<https://monolixsuite.slp-software.com/r-functions/2024R 1/setpopulationparametere

Value
A list of outputs of the final project and of the iterative process over each value of lambda.grid:

info Information about the parameters.

project The project path if not unlinked.

lambda The grid of .

BIC Vector of BIC values for the model built over the grid of \.

BICc Vector of BICc values for the model built over the grid of A.

LL Vector of log-likelihoods for the model built over the grid of A.

LL.pen Vector of penalized log-likelihoods for the model built over the grid of A.
res List of all REMixed results for each A (see remix).

outputs List of all REMixed outputs for each A (see remix).

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = 1list(S=1list(AB=logl19),
linkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),pasted("yG",1:5)))

y = c(5=5,AB=1000)

res = cv.remix(project = project,
dynFUN = dynFUN_demo,
y=y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10**(-2),
ncores=8,
nlambda=8,

12 dynFUN_demo

eps2=1)

End(Not run)

dynFUN_demo Dynamic functions demo

Description
Example of solver for remix and cv. remix algorithm. It is perfectly adapted for the Monolix demo
project (see getMLXdir).

Usage

dynFUN_demo

Format
dynFUN_demo function of t, y, parms :
t vector of timepoint.

y initial condition, named vector of form c (AB=<...>,S=<...>).

parms named vector of model parameter ; should contain phi_S,delta_AB,delta_S.

Details

Suppose you have antibodies secreting cells -S- that produces antibodies -AB- at rate ¢g. These
two biological entities decay respectively at rate dg and d 4 5. The biological mechanism behind is :

58 = —35S(t)
GAB(t) = ¢sS(t) —dapAB(t)
(5(0), AB(0)) (So, ABy)

References

Pasin C, Balelli I, Van Effelterre T, Bockstal V, Solforosi L, Prague M, Douoguih M, Thiébaut R,

for the EBOVACI Consortium. 2019. Dynamics of the humoral immune response to a prime-boost

Ebola vaccine: quantification and sources of variation. J Virol 93 : e00579-19. https://doi.org/10.1128/JVI.00579-
19

See Also

model.pasin, getMLXdir.

eBIC 13

Examples

t = seq(9,300,1)
y =c(AB=1000,S=5)
parms = c(phi_S = 611, delta_AB = 0.03, delta_S$=0.01)

res <- dynFUN_demo(t,y,parms)

plot(res[,"time"],
loglo(res[,"AB"]),
ylab="1log10(AB(t))",
xlab="time (days)",
main="Antibody titer over the time”,
type="1")

plot(res[,"time"],
res[,"S"],
ylab="S(t)",
xlab="time (days)",
main="Antibody secreting cells quantity over time”,
type="1")

eBIC eBIC

Description

Computes extended bayesian information criterion as

eBIC = —2LL,(0,&) + Plog(N) + 2vlog(<1§;) LK)

where P is the total number of parameters estimated, N the number of subject, L’Ey(é, &) the log-
likelihood of the model, K the number of submodel to explore (here the numbre of biomarkers
tested) and k the numbre of biomarkers selected in the model.

Usage
eBIC(object, ...)
Arguments
object output of remix or cv.remix.
opptional additional arguments.
Value

eBIC.

14 extract

References

Chen, J. and Z. Chen. 2008. Extended Bayesian information criteria for model selection with large
model spaces. Biometrika 95 (3): 759-771.

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = 1list(S=1list(AB=logl10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),pasted("yG",1:5)))

y = c(S=5,AB=1000)
lambda = 1440

res = remix(project = project,
dynFUN = dynFUN_demo,
y =y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*xx(-2),
eps2=1,
lambda=1ambda)

eBIC(res)

End(Not run)

extract extract remix results from cvRemix object

Description

Extracts a build from a cvRemix object.

Usage

extract(fit, n)

Arguments

fit output of cv.remix;

n rank (in the ‘fit$lambda*) to extract.

getMLXdir 15

Value

outputs from remix algorithm of rank ‘n‘ computed by cv.remix.

See Also

cv.remix, remix.

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = 1list(S=1list(AB=logl19),
linkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(S=5,AB=1000)

cv.outputs = cv.Remix(project = project,
dynFUN = dynFUN_demo,
y=1y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10**(-2),
ncores=8,
eps2=1)

res <- extract(cv.outputs,6)
plotConvergence(res)

trueValue = read.csv(paste@(dirname(project),”/demoSMLX/Simulation/populationParameters.txt"))

non

plotSAEM(res,paramToPlot = c("delta_S_pop”, "phi_S_pop”, "delta_AB_pop"), trueValue=trueValue)

End(Not run)

getMLXdir Get monolix demo project path

Description

Get monolix demo project path

16 ghLL

Usage
getMLXdir()

Value

path to the monolix demo from REMix package.

See Also

dynFUN_demo.

Examples

print(getMLXdir())

gh.LL Adaptive Gauss-Hermite approximation of log-likelihood derivatives

Description

Computes Adaptive Gauss-Hermite approximation of the log-likelihood and its derivatives in NLMEM
with latent observation processes, see REMixed-package for details on the model.

Usage
gh.LL(
dynFUN,
y)
mu = NULL,
Omega = NULL,
theta = NULL,

alphal = NULL,

covariates = NULL,
ParModel.transfo = NULL,
ParModel.transfo.inv = NULL,

Sobs = NULL,

Robs = NULL,

Serr = NULL,

Rerr = NULL,
ObsModel . transfo = NULL,
data = NULL,

n = NULL,

prune = NULL,

parallel = TRUE,
ncores = NULL,
onlylLL = FALSE,
verbose = TRUE,
precBits = 10

ghLL

Arguments

dynFUN

mu

Omega

theta

alphal

covariates

17

function computing the dynamics of interest for a set of parameters. This func-
tion need to contain every sub-function that it may needs (as it is called in a
foreach loop). The output of this function need to return a data.frame with time
: as first columns and named dynamics in other columns. It must take in input :

* y: a named vector with the initial condition. The names are the dynamics
names.
* parms : a named vector of parameter.
* time : vector a timepoint.
See dynFUN_demo, model.clairon, model.pasin or model.pk for examples.

initial condition of the mechanism model, conform to what is asked in dynFUN.
If regressor used in Monolix provided a named list of vector of individual initial
conditions. Each vector need to be of length 1 (same for all), or exactly the
numbre of individuals (range in the same order as their id).

list of individuals random effects estimation (vector of r.e. need to be named by
the parameter names), use to locate the density mass; (optional, see description).

list of individuals estimated standard deviation diagonal matrix (matrix need to
have rows and columns named by the parameter names), use to locate the density
mass; (optional, see description).

list of model parameters containing (see details)

* phi_pop : named vector with the population parameters with nor.e. (¢; pop)i<r

(NULL if none) ;
* psi_pop : named vector with the population parameters with r.e. (¢ pop)i<m
* gamma : named list (for each parameters) of named vector (for each covari-
ates) of covariate effects from parameters with no r.e. ;

* beta : named list (for each parameters) of named vector (for each covari-
ates) of covariate effects from parameters with r.e..

* alpha : named vector of (aoi)k<k parameters (names are identifier of
the observation model, such as in a Monolix project);

e omega : named vector of estimated r.e. standard deviation;
(optional, see description).

named vector of regulatization parameters () k<K, with identifier of obser-
vation model as names, (optional, see description).

matrix of individual covariates (size N x n). Individuals must be sorted in the
same order than in mu and Omega, (optional, see description).

ParModel. transfo

named list of transformation functions (h;);<, and (s)r<x for the individual
parameter model (names must be consistent with phi_pop and psi_pop, missing
entries are set by default to the identity function ; optional, see description).

ParModel. transfo.inv

Named list of inverse transformation functions for the individual parameter model
(names must be consistent with phi_pop and psi_pop ; optional, see descrip-
tion).

18

Sobs

Robs

Serr

Rerr

ghLL

list of individuals trajectories for the direct observation models (Y;)p<pi<n-
Each element ¢ < N of the list, is a list of p < P data.frame with time
(tpij)j<n., and observations (Y};;);j<n,,. Each data.frame is named with the
observation model identifiers.

list of individuals trajectories for the latent observation models (Z;)k<r i<nN-
Each element ¢ < N of the list, is a list of & < K data.frame with time
(tkij)j<n,, and observations (Zy;;);j<n,.. Each data.frame is named with the
observation model identifiers.

named vector of the estimated error mocel constants (s,),<p with observation
model identifiers as names.

named vector of the estimated error mocel constants (o)< x With observation
model identifiers as names.

ObsModel . transfo

data

n

prune

parallel

ncores

onlyLL
verbose

precBits

list containing two lists of transformations and two vectors linking each trans-
formations to their observation model name in the Monolix project. The list
should include identity transformations and be named S and R. The two vectors
should be named 1inkS and 1inkR.

Both S (for the direct observation models) and 1inkS, as well as R (for latent
process models) and 1inkR, must have the same length.

¢ S: a list of transformations for the direct observation models. Each transfor-
mation corresponds to a variable Y, = h,(S,), where the name indicates
which dynamic is observed (from dynFUN);

* 1inkS: a vector specifying the observation model names (that is used in the
monolix project, alphal, etc.) for each transformation, in the same order
asinS;

* R: similarly, a list of transformations for the latent process models. Al-
though currently there is only one latent dynamic, each s;,k < K trans-
formation corresponds to the same dynamic but may vary for each Y}, ob-
served. The names should match the output from dynFUN;

* 1linkR : a vector specifying the observation model names for each transfor-
mation, in the same order as in R.

output from readMLX containing parameters "mu”, "Omega", "theta", "alphal",

"covariates", "ParModel. transfo", "ParModel. transfo.inv", "Sobs", "Robs",

"Serr", "Rerr", "ObsModel. transfo" extract from a monolix project.
number of points per dimension to use for the Gauss-Hermite quadrature rule.

integer between 0 and 1, percentage of pruning for the Gauss-Hermite quadra-
ture rule (default NULL).

logical, if computation should be done in parallel.

number of cores to use for parallelization, default will detect the number of cores
available.

logical, if only the log-likelihood should be computed (and not d,,, L L or 5> LLL).
logical, if progress bar should be printed through the computation.

precision if needed

indParm 19

Details

Based on notation introduced REMixed-package. The log-likelihood of the model LL(6, ;) for
a set of population parameters 6 and regulatization parameters «; is estimated using Adaptative
Gausse-Hermite quadrature, using conditional distribution estimation to locate the mass of the in-
tegrand. If the project has been initialized as a Monolix project, the user can use readMLX function
to retrieve all the project information needed here.

Value

A list with the approximation by Gauss-Hermite quadrature of the likelihood L, the log-likelihood
LL, the gradient of the log-likelihood dLL, and the Hessian of the log-likelihood ddLL at the point
0, a provided.

Examples

Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

data <- readMLX(project,ObsModel.transfo,alpha)
LL <- gh.LL(dynFUN = dynFUN_demo,
y = c(S=5,AB=1000),
ObsModel . transfo=0bsModel. transfo,
data = data)

print(LL)

End(Not run)

indParm Generate individual parameters

Description
Generate the individual parameters of indivual whose covariates are covariates and random ef-
fects eta_i.

Usage

indParm(theta, covariates, eta_i, transfo, transfo.inv)

20 indParm

Arguments
theta list with at least phi_pop, psi_pop, gamma, beta (named ; corresponding to the
model parameter ¢pop, Vpop, V> 5) :
* phi_pop named vector of population parameters without r.e ;
* psi_pop named vector of population parameters with r.e ;
» gamma named list of vector of covariates effects for phi_pop parameters, if
NULL no covariates effect on parameters. ;
¢ beta named list of vector of covariates effects for each psi_pop, if NULL
no covariates effect on parameters.
covariates line data.frame of individual covariates ;
eta_i named vector of random effect for each psi parameter ;
transfo named list of transformation functions (k)< and (sx)x<x for the individual
parameter model (names must be consistent with phi_pop and psi_pop, missing
entries are set by default to the identity function).
transfo.inv amed list of inverse transformation functions for the individual parameter model
(names must be consistent withphi_pop andpsi_pop).
Details

The models used for the parameters are :

hl le‘) = hl(wlpop> + Xiﬁl + M

with h; the transformation, (3; the vector of covariates effect and with 7); the random effects associ-
ated v); parameter ;

9 (Pri) = gr(Prpop) + Xivi

with g;, the transformation and ~;, the vector of covariates effect associated ¢, parameter.

Value

a list with phi_i and psi_i parameters.

See Also

model.clairon, model.pasin.

Examples

phi_pop = c(delta_S = 0.231, delta_L = 0.000316)

psi_pop = c(delta_Ab = 0.025,phi_S = 3057, phi_L = 16.6)

gamma = NULL

covariates = data.frame(cAGE = runif(1,-15,15), G1 = rnorm(1), G2 = rnorm(1))
beta = list(delta_Ab=c(0,1.2,0),phi_S = c(0.93,0,0),phi_L=c(0,0,0.8))

theta=list(phi_pop = phi_pop,psi_pop = psi_pop,gamma = gamma, beta = beta)

eta_i = c(delta_Ab = rnorm(1,0,0.3),phi_S=rnorm(1,0,0.92),phi_L=rnorm(1,0,0.85))
transfo = list(delta_Ab=log,phi_S=log,phi_L=log)

transfo.inv = list(delta_Ab = exp,phi_S=exp,phi_L=exp)

initStrat 21

indParm(theta, covariates,eta_i,transfo,transfo.inv)

initStrat Initialization strategy

Description

Selecting an initialization point by grouping biomarkers of project and running the SAEM. Initial
condition is then selected using maximum log-likelihood.

Usage
initStrat(
project,
alpha,
ObsModel . transfo,
Nb_genes = 2,

trueValue = NULL,

pop.set = NULL,

useSettingsInAPI = FALSE,
conditionalDistributionSampling = FALSE,

print = TRUE,
digits = 2,
unlinkTemporaryProject = TRUE,
seed = NULL

)

Arguments
project directory of the Monolix project (in .mlxtran). If NULL, the current loaded
project is used (default is NULL).
alpha named list of named vector "alpha@", "alphal" (all alphal are mandatory).

The name of alpha$alpha® and alpha$alphal are the observation model names
from the monolix project to which they are linked (if the observations models
are defined whithout intercept, alpha$alpha0 need to be set to the vector NULL).
ObsModel. transfo

list containing two lists of transformations and two vectors linking each trans-
formations to their observation model name in the Monolix project. The list
should include identity transformations and be named S and R. The two vectors
should be named 1inkS and 1inkR.

Both S (for the direct observation models) and 1inkS, as well as R (for latent
process models) and 1inkR, must have the same length.

 S: alist of transformations for the direct observation models. Each transfor-
mation corresponds to a variable Y, = h,(.S,), where the name indicates
which dynamic is observed (from dynFUN);

22 initStrat

* 1inkS : a vector specifying the observation model names (that is used in the
monolix project, alphal, etc.) for each transformation, in the same order
asinS;

* R: similarly, a list of transformations for the latent process models. Al-
though currently there is only one latent dynamic, each s,k < K trans-
formation corresponds to the same dynamic but may vary for each Y}, ob-
served. The names should match the output from dynFUN;

* 1linkR : a vector specifying the observation model names for each transfor-
mation, in the same order as in R.

Nb_genes Size of group of genes.

truevValue -for simulation purposes- named vector of true value for parameters.
pop.set population parameters setting for initialization (see details).
useSettingsInAPI

logical, if the settings for SAEM should not be changed from what is currently
set in the project.

conditionalDistributionSampling
logical, if conditional distribution estimation should be done on the final project.

print logical, if the results and algotihm steps should be displayed in the console (de-
fault to TRUE).
digits number of digits to print (default to 2).

unlinkTemporaryProject
If temporary project (of genes group) is deleted (defaut: TRUE)

seed value of the seed used to initialize the group (see set.seed).

Details

For population parameter estimation settings, see (<https://monolixsuite.slp-software.com/r-functions/2024R 1/setpopulation;

Value

a list of outputs for every group of genes tested with composition of the group, final parameter
estimates, final scores estimates (OFV, AIC, BIC, BICc), temporary project directory. The final
selected set is initialize in the project.

Examples

Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

model.clairon 23

initStrat(project,alpha,ObsModel. transfo,seed=1710)

End(Not run)

model.clairon Model from Clairon and al.,2023

Description
Generates the dynamics of antibodies secreting cells -S- that produces antibodies -AB- over time,
with two injection of vaccine at time to = 0 and ;,,;, using Clairon and al., 2023, model.

Usage

model.clairon(t, y, parms, tinj = 21)

Arguments
t vector of timepoint.
y initial condition, named vector of form c(S=S0,Ab=A0).
parms named vector of model parameter (should contain "fM2","theta","delta_S","delta_Ab","delta_V").
tinj time of injection (default to 21).
Details
Model is defined as iS(t) _ p el s
{jitAb(t) = s - 5AbAb(i)

on each interval I; = [0;¢;,,;[and Io = [t;p,;; +00[. For each interval Iy, we have ¢, corresponding
to the last injection date of vaccine, such thatt; = 0 and t3 = ?;,,;. By definition, fﬁl = 1 (Clairon
and al., 2023).

Value

Matrix of time and observation of antibody secreting cells .S and antibody titer Ab.

References

Quentin Clairon, Melanie Prague, Delphine Planas, Timothee Bruel, Laurent Hocqueloux, et al.
Modeling the evolution of the neutralizing antibody response against SARS-CoV-2 variants after
several administrations of Bnt162b2. 2023. hal-03946556

See Also

indParm

24 model.pasin
Examples
y = c(S=1,Ab=0)
parms = c(fM2 = 4.5,
theta = 18.7,
delta_S = 0.01,
delta_Ab = 0.23,
delta_V = 2.7)
t = seq(9,35,1)

res <- model.clairon(t,y,parms)

plot(res)

model .pasin Model from Pasin and al.,2019

Description

Generate trajectory of the Humoral Immune Response to a Prime-Boost Ebola Vaccine.

Usage

model.pasin(t, y, parms)

Arguments

t vector of time ;

y initial condition, named vector of form c(Ab=<...>,S=<...>,L=<...>) ;

parms named vector of model parameter ; should contain "theta_S","theta_L","delta_Ab","delta_S","delta.
Details

The model correspond to the dynamics of the humoral response, from 7 days after the boost im-
munization with antibodies secreting cells -S and L, characterized by their half lives- that produces
antibodies - A B- at rate ¢ and 6,. All these biological entities decay at rate repectively dg, d7, and
0 ap. Model is then defined as

;i Ab(t) = 6sS(t) +0rL(t) — 04 AD(t)
%S(t) = —055(t)
diL(t) = —or L(¢t)

Value

Matrix of time and observation of antibody titer Ab, and ASCs S and L.

model.pk 25

References

Pasin C, Balelli I, Van Effelterre T, Bockstal V, Solforosi L, Prague M, Douoguih M, Thiébaut R,

for the EBOVACI Consortium. 2019. Dynamics of the humoral immune response to a prime-boost

Ebola vaccine: quantification and sources of variation. J Virol 93: e00579-19. https://doi.org/10.1128/JVI.00579-
19

See Also

indParm, model.clairon.

Examples

y = c(Ab=0,S=5,L=5)

parms = c(theta_S = 611,
theta_L = 3.5,
delta_Ab = 0.025,
delta_S = 0.231,
delta_L = 0.000152)

t = seq(0,100,5)
res <- model.pasin(t,y,parms)
plot(res)

model. pk Generate trajectory of PK model

Description

The administration is via a bolus. The PK model has one compartment (volume V) and a linear

elimination (clearance Cl). The parameter ka is defined as ka = i)

7
Usage

model.pk(t, y, parms)
Arguments

t vector of time ;

y initial condition, named vector of form ¢(C=CO) ;

parms named vector of model parameter ; should contain either "C1" and "V" or "ka".
Value

Matrix of time and observation of Concentration C.

26 plot.cvRemix

See Also

indParm.

Examples
res <- model.pk(seq(@,30,1),c(C=100),parms=c(ka=1))

plot(res)

plot.cvRemix Plot of cv.remix object

Description

Calibration plot for cvRemix object.

Usage
S3 method for class 'cvRemix'
plot(x, criterion = BICc, trueValue = NULL, ...)
Arguments
X output of cv.remix.
criterion which criterion function to take into account. Default is the function *BICc",
but one can use 'BIC’, AIC’, ’eBIC’ or any function depending on a ‘cvRemix*
object.
truevValue -for simulation purposes- named vector of true value for parameters.

opptional additional arguments.

Value

A plot.

See Also

cv.remix

plotCalibration 27

plotCalibration Calibration plot

Description

Calibration plot

Usage

plotCalibration(
fit,
legend.position = "none”,
trueValue = NULL,
criterion = BICc,
dismin = TRUE

Arguments

fit fit object of class cvRemix, from cv.remix.

legend.position
(default NULL) the default position of legends ("none", "left", "right", "bottom",

"non

"top", "inside").

truevValue (for simulation purpose) named vector containing the true value of regularization
parameter.
criterion function ; which criterion among *BIC’, ’eBIC’, *AIC’, *BICc’, or function of
cvRemix object to take into account (default : BICc).
dismin logical ; if minimizers of information criterion should be display.
Value

Calibration plot, over the lambda.grid.

See Also

remix, cv.remix.

Examples

Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

28 plotConvergence

alpha=list(alpha@=NULL,
alphal=setNames(paste@(”alpha_1",1:5),paste@("yG",1:5)))

y = c(5=5,AB=1000)

res = cv.remix(project = project,
dynFUN = dynFUN_demo,
y =1y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),
ncores=8,
nlambda=8,
eps2=1)

plotCalibration(res)
plotIC(res)

End(Not run)

plotConvergence Log-likelihood convergence

Description

Log-likelihood convergence

Usage
plotConvergence(fit, ...)
Arguments
fit fit object of class remix, from remix or a certain build from cv. remix output.
opptional additional arguments.
Value

Log-Likelihood values throughout the algorithm iteration.

See Also

remix, cv.remix.

plotIC 29

Examples

Not run:
project <- getMLXdir()

ObsModel . transfo = 1list(S=1list(AB=1logl10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(S=5,AB=1000)
lambda = 1440

res = remix(project = project,
dynFUN = dynFUN,
y =y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10**(-2),
eps2=1,
lambda=1ambda)

plotConvergence(res)
trueValue = read.csv(paste@(dirname(project),"”/demoSMLX/Simulation/populationParameters.txt"))#'

plotSAEM(res,paramToPlot = c("delta_S_pop”, "phi_S_pop”, "delta_AB_pop"), trueValue=trueValue)

End(Not run)

plotIC IC plot

Description

IC plot

Usage

plotIC(fit, criterion = BICc, dismin = TRUE)

Arguments
fit fit object of class cvRemix, from cv.remix;
criterion which criterion among 'BICc’, BIC’, AIC’ or ’eBIC’ to take into account (de-

fault: BICc);

dismin logical ; if minimizers of information criterion should be display.

30 plotInit

Value

IC trhoughout the lambda.grid.

See Also

remix, cv.remix.

Examples

Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log10),
1linkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(5=5,AB=1000)

res = cv.remix(project = project,
dynFUN = dynFUN_demo,
y =y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),
ncores=8,
nlambda=8,
eps2=1)

plotCalibration(res)
plotIC(res)

End(Not run)

plotInit Plot initialization

Description

Plot initialization

Usage

plotInit(init, alpha = NULL, trueValue = NULL)

plotSAEM 31
Arguments
init outputs from initStrat function.
alpha named list of named vector "alpha®", "alphal” (all alphal are mandatory).
The name of alpha$alpha® and alpha$alphal are the observation model names
from the monolix project to which they are linked (if the observations models
are defined whithout intercept, alpha$alpha0 need to be set to the vector NULL).
truevValue (for simulation purpose) named vector containing the true value of regularization
parameter.
Value

log-likelihood value for all groups of genes tested.

See Also

initStrat.

Examples

Not run:

project <- getMLXdir()

ObsModel . transfo = 1list(S=1list(AB=logl10),

1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

init <- initStrat(project,alpha,ObsModel.transfo,seed=1710)
plotInit(init)

End(Not run)

plotSAEM Display the value of parameters at each iteration

Description

Display the value of parameters at each iteration

Usage

plotSAEM(fit, paramToPlot = "all"”, trueValue = NULL)

32 plotSAEM

Arguments

fit object of class remix, from remix or a certain build from cv. remix output.
paramToPlot Population parameters to plot (which have been estimated by SAEM) ;

truevValue (for simulation purpose) vector named of true values ;

Value

For each parameters, the values at the end of each iteration of remix algorithm is drawn. Moreover,
the SAEM steps of each iteration are displayed.

See Also

remix, cv.remix.

Examples

Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(S=5,AB=1000)
lambda = 1440

res = remix(project = project,
dynFUN = dynFUN_demo,
y =y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),
eps2=1,
lambda=1ambda)

plotConvergence(res)
trueValue = read.csv(paste@(dirname(project),”/demoSMLX/Simulation/populationParameters.txt"))
plotSAEM(res,paramToPlot = c("delta_S_pop”, "phi_S_pop”, "delta_AB_pop"), trueValue=trueValue)

End(Not run)

readMLX 33

readMLX Extract Data for REMixed Algorithm from a Monolix Project

Description

This function retrieves all necessary information from a Monolix project file to format the input for
the REMixed package. It gathers all relevant data required for the REMix algorithm.

Usage

readMLX(project = NULL, ObsModel.transfo, alpha)

Arguments

project directory of the Monolix project (in .mlxtran). If NULL, the current loaded
project is used (default is NULL).

ObsModel . transfo
list containing two lists of transformations and two vectors linking each trans-
formations to their observation model name in the Monolix project. The list
should include identity transformations and be named S and R. The two vectors
should be named 1inkS and 1inkR.

Both S (for the direct observation models) and 1inkS, as well as R (for latent
process models) and 1inkR, must have the same length.

* S: alist of transformations for the direct observation models. Each transfor-
mation corresponds to a variable Y, = h,(S,), where the name indicates
which dynamic is observed (from dynFUN);

* 1inkS : a vector specifying the observation model names (that is used in the
monolix project, alphal, etc.) for each transformation, in the same order
asinS;

* R: similarly, a list of transformations for the latent process models. Al-
though currently there is only one latent dynamic, each si, k < K trans-
formation corresponds to the same dynamic but may vary for each Y} ob-
served. The names should match the output from dynFUN;

* linkR : a vector specifying the observation model names for each transfor-
mation, in the same order as in R.

"non

alpha named list of named vector "alpha@", "alphal" (all alphal are mandatory).
The names of alpha$alpha® and alpha$alphal are the observation model
names from the monolix project to which they are linked (if the observations
models are defined whithout intercept, alpha$alpha0 need to be set to the vector
NULL).

Details

To simplify its use, functions remix, cv.remix, gh.LL can be used with arguments data rather than
all necessary informations "theta", "alphal", "covariates", "ParModel. transfo", "ParModel . transfo.inv",

34

readMLX

"Sobs", "Robs", "Serr", "Rerr", "ObsModel . transfo" that could be extract from a monolix project.
If the SAEM task of the project hasn’t been launched, it’s the initial condition and not the estimated
parameters that are returned. If the conditional distribution estimation task has been launched, pa-
rameters "mu" and "Omega" are returned too.

Value

A list containing parameters, transformations, and observations from the Monolix project in the
format needed for the REMixed algorithm :

mu list of individuals random effects estimation (vector of r.e. need to be named by the pa-
rameter names), use to locate the density mass (if conditional distribution estimation through
Monolix has been launched);
Omega list of individuals estimated standard deviation diagonal matrix (matrix need to have
rows and columns named by the parameter names), use to locate the density mass (if condi-
tional distribution estimation through Monolix has been launched);
theta list of model parameters containing i
— phi_pop : named vector with the population parameters with no r.e. (¢; pop)i<r, (NULL
if none) ;
- psi_pop : named vector with the population parameters with r.e. (¢; pop)i<m ;
— gamma : named list (for each parameters) of named vector (for each covariates) of covari-
ate effects from parameters with no r.e. ;
— beta: named list (for each parameters) of named vector (for each covariates) of covariate
effects from parameters with r.e..
— alphao : named vector of (agk)k<x parameters (names are identifier of the observation
model, such as in a Monolix project);
— omega : named vector of estimated r.e. standard deviation;
alphal named vector of regulatization parameters (a1x)k< i, with identifier of observation
model as names;
covariates matrix of individual covariates (size N x n). Individuals must be sorted in the
same order than in mu and Omega;
ParModel. transfo named list of transformation functions (h;);<, and (sg)r<x for the in-
dividual parameter model (names must be consistent with phi_pop and psi_pop, missing
entries are set by default to the identity function ;
ParModel. transfo.inv named list of inverse transformation functions for the individual pa-
rameter model (names must be consistent with phi_pop and psi_pop ;
Sobs ist of individuals trajectories for the direct observation models (Y,;),<pi<n. Each
element ¢ < N of the list, is a list of p < P data.frame with time (tpij) J<nip and observations
(Ypij)j<n,,- Each data.frame is named with the observation model identifiers ;
Robs list of individuals trajectories for the latent observation models (Zx;)r<k i<n. Each
element ¢ < NN of the list, is a list of k£ < K data.frame with time (¢x;;)j<n,, and observations
(Zkij) j<n.,- Each data.frame is named with the observation model identifiers ;
Serr named vector of the estimated error mocel constants (,),<p with observation model
identifiers as names ;
Rerr named vector of the estimated error mocel constants (o),<x With observation model
identifiers as names ;

ObsModel . transfo same as inputObsModel. transfo list.

remix 35

See Also

remix, cv.remix.

Examples
Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

res <- readMLX(project,ObsModel.transfo,alpha)

End(Not run)

remix REMixed algorithm

Description

Regularization and Estimation in Mixed effects model.

Usage

remix(
project = NULL,
final.project = NULL,
dynFUN,
"
ObsModel. transfo,
alpha,
lambda,
eps1 = 10*(-2),
eps2 = 10" (-1),
selfInit = FALSE,
pop.setl NULL,
pop.set2 = NULL,
pop.set3 = NULL,
prune = NULL,
n = NULL,
parallel = TRUE,
ncores = NULL,
print = TRUE,

36

remix

verbose = FALSE,

digits = 3,

trueValue = NULL,
finalSAEM = FALSE,

test = TRUE,
max.iter = +Inf,
p.max = 0.05
)
Arguments
project

final.project
dynFUN

directory of the Monolix project (in .mlxtran). If NULL, the current loaded
project is used (default is NULL).

directory of the final Monolix project (default add "_upd" to the Monolix project).

function computing the dynamics of interest for a set of parameters. This func-
tion need to contain every sub-function that it may needs (as it is called in a
foreach loop). The output of this function need to return a data.frame with
time as first columns and named dynamics in other columns. It must take in
input :

y anamed vector with the initial condition. The names are the dynamics names.
parms anamed vector of parameter.

time vector a timepoint.

See dynFUN_demo, model.clairon, model.pasin or model. pk for examples.

initial condition of the mechanism model, conform to what is asked in dynFUN.
If regressor used in Monolix provided a named list of vector of individual initial
conditions. Each vector need to be of length 1 (same for all), or exactly the
numbre of individuals (range in the same order as their id).

ObsModel . transfo

list containing two lists of transformations and two vectors linking each trans-
formations to their observation model name in the Monolix project. The list
should include identity transformations and be named S and R. The two vectors
should be named 1inkS and 1inkR.

Both S (for the direct observation models) and 1inkS, as well as R (for latent
process models) and 1inkR, must have the same length.

S a list of transformations for the direct observation models. Each transfor-
mation corresponds to a variable Y, = h,(S,), where the name indicates
which dynamic is observed (from dynFUN);

linkS a vector specifying the observation model names (that is used in the
monolix project, alphal, etc.) for each transformation, in the same order
asinS;

R similarly, a list of transformations for the latent process models. Although
currently there is only one latent dynamic, each sg, k < K transformation
corresponds to the same dynamic but may vary for each Y} observed. The
names should match the output from dynFUN;

linkR a vector specifying the observation model names for each transforma-
tion, in the same order as in R.

remix

alpha

lambda
eps1
eps2
selfInit

pop.seti
pop.set2
pop.set3

prune

n

parallel

ncores

print

verbose
digits
trueValue
finalSAEM
test
max.iter

p.max

Details

37

named list of named vector "alpha®", "alphal” (all alphal are mandatory).
The name of alpha$alpha® and alpha$alphal are the observation model names
from the monolix project to which they are linked (if the observations models
are defined whithout intercept, alpha$alpha0 need to be set to the vector NULL).

penalization parameter .
integer (>0) used to define the convergence criteria for the regression parameters.
integer (>0) used to define the convergence criteria for the likelihood.

logical, if the SAEM is already done in the monolix project should be use as
the initial point of the algorithm (if FALSE, SAEM is automatically compute
according to pop.set1 settings ; if TRUE, a SAEM through monolix need to
have been launched).

population parameters setting for initialisation (see details).
population parameters setting for iterations.
population parameters setting for final estimation.

percentage for prunning (€ [0;1]) in the Adaptative Gauss-Hermite algorithm
used to compute the log-likelihood and its derivates (see gh.LL).

number of points for gaussian quadrature (see gh.LL).

logical, if the computation should be done in parallel when possible (default
TRUE).

number of cores for parallelization (default NULL and detectCores is used).

logical, if the results and algotihm steps should be displayed in the console (de-
fault to TRUE).

logical, if progress bar should be printed when possible.

number of digits to print (default to 3).

-for simulation purposes- named vector of true value for parameters.

logical, if a final SAEM should be launch with respect to the final selected set.
if Wald test should be computed at the end of the iteration.

maximum number of iterations (default 20).

maximum value to each for wald test p.value (default 0.05).

See REMixed-package for details on the model. For population parameter estimation settings, see

(<https://monolixsuite.slp-software.com/r-functions/2024R 1/setpopulationparameterestimationsettings>).

Value

a list of outputs of final project and through the iteration :

info informations about the parameters (project path, regulatization and population parameter
names, alpha names, value of lambda used, if final SAEM and test has been computed, pa-
rameters p.max and V) ;

38 retrieveBest

finalRes containing loglikelihood LL and penalized loglikelihood LL . pen values, final population
parameters param and final regularization parameters alpha values, number of iterations iter
and time needed , if computed, the estimated standard errors standardError and if test
computed, the final results before test saemBeforeTest ;

iterOutputs the list of all remix outputs, i.e. parameters, lieklihood, SAEM estimates and con-
vergence criterion value over the iteration.

See Also

cv.remix.

Examples

Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log1@),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(S=5,AB=1000)
lambda = 382.22

res = remix(project = project,
dynFUN = dynFUN_demo,
y =1y,
ObsModel . transfo = ObsModel. transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),
eps2=1,
lambda=1ambda)

summary(res)
trueValue = read.csv(paste@(dirname(project),"/demoSMLX/Simulation/populationParameters.txt"))

plotSAEM(res,paramToPlot = c("delta_S_pop”, "phi_S_pop”, "delta_AB_pop"), trueValue=trueValue)

End(Not run)

retrieveBest REMixed results

retrieveBest 39

Description

Extracts the build minimizing an information criterion over a grid of lambda.

Usage

retrieveBest(fit, criterion = BICc)

Arguments
fit output of cv.remix;
criterion which criterion function to take into account. Default is the function *BICc",
but one can use 'BIC’, *AIC’, ’eBIC’ or any function depending on a ‘cvRemix*
object.
Value

outputs from remix algorithm achieving the best IC among those computed by cv.remix.

See Also

cv.remix, remix, BIC.remix, eBIC, AIC.remix, BICc.

Examples

Not run:
project <- getMLXdir()

ObsModel.transfo = list(S=1list(AB=log10),
1inkS="yAB",
R=rep(list(S=function(x){x}),5),
linkR = paste@("yG",1:5))

alpha=list(alpha@=NULL,
alphal=setNames(paste@("alpha_1",1:5),paste@("yG",1:5)))

y = c(S=5,AB=1000)

cv.outputs = cv.Remix(project = project,
dynFUN = dynFUN_demo,
Y=y,
ObsModel.transfo = ObsModel.transfo,
alpha = alpha,
selfInit = TRUE,
eps1=10*x*(-2),
ncores=8,
eps2=1)

res <- retrieveBest(cv.outputs)

plotConvergence(res)

40

retrieveBest

trueValue = read.csv(paste@(dirname(project),”/demoSMLX/Simulation/populationParameters.txt"))#'

plotSAEM(res,paramToPlot = c("delta_S_pop”, "phi_S_pop”, "delta_AB_pop"), trueValue=trueValue)

End(Not run)

Index

x datasets
dynFUN_demo, 12

AIC.remix, 2, 39

BIC.remix, 3, 39
BICc, 5, 39

computeFinalTest, 6
cv.remix, 5, 8, 12-15, 26-30, 32, 33, 35, 38,
39

detectCores, 7, 10, 37
dynFUN_demo, 7, 9, 12, 16, 17, 36

eBIC, 13, 39
extract, 14

getMLXdir, 12, 15
gh.LL, 7, 10, 16, 33, 37

indParm, 19, 23, 25, 26
initStrat, 21, 3/

model.clairon, 7, 9, 17, 20, 23, 25, 36
model .pasin, 7,9, 12, 17, 20, 24, 36
model.pk, 7,9, 17,25, 36

plot.cvRemix, 26
plotCalibration, 27
plotConvergence, 28
plotIC, 29
plotInit, 30
plotSAEM, 31

readMLX, /8, 19, 33

remix, 2-6, 11-13, 15,27, 28, 30, 32, 33, 35,
35, 39

retrieveBest, 38

41

	AIC.remix
	BIC.remix
	BICc
	computeFinalTest
	cv.remix
	dynFUN_demo
	eBIC
	extract
	getMLXdir
	gh.LL
	indParm
	initStrat
	model.clairon
	model.pasin
	model.pk
	plot.cvRemix
	plotCalibration
	plotConvergence
	plotIC
	plotInit
	plotSAEM
	readMLX
	remix
	retrieveBest
	Index

