
Package ‘DescTools’
November 8, 2024

Type Package

Title Tools for Descriptive Statistics

Version 0.99.58

Date 2024-11-08

Description A collection of miscellaneous basic statistic functions and convenience wrappers for effi-
ciently describing data. The author's intention was to create a toolbox, which facilitates the (no-
toriously time consuming) first descriptive tasks in data analysis, consisting of calculating de-
scriptive statistics, drawing graphical summaries and reporting the results. The package con-
tains furthermore functions to produce documents using MS Word (or PowerPoint) and func-
tions to import data from Excel. Many of the included functions can be found scat-
tered in other packages and other sources written partly by Titans of R. The reason for collect-
ing them here, was primarily to have them consolidated in ONE instead of dozens of pack-
ages (which themselves might depend on other packages which are not needed at all), and to pro-
vide a common and consistent interface as far as function and arguments naming, NA han-
dling, recycling rules etc. are concerned. Google style guides were used as naming rules (in ab-
sence of convincing alternatives). The 'BigCamelCase' style was consequently applied to func-
tions borrowed from contributed R packages as well.

Suggests RDCOMClient, tcltk, VGAM, R.rsp, testthat (>= 3.0.0)

Depends base, stats, R (>= 4.2.0)

Imports graphics, grDevices, methods, MASS, utils, boot, mvtnorm,
expm, Rcpp (>= 0.12.10), rstudioapi, Exact, gld, data.table,
readxl, haven, httr, withr, cli

LinkingTo Rcpp

License GPL (>= 2)

LazyLoad yes

LazyData yes

Additional_repositories http://www.omegahat.net/R

URL https://andrisignorell.github.io/DescTools/,

https://github.com/AndriSignorell/DescTools/

BugReports https://github.com/AndriSignorell/DescTools/issues

1

http://www.omegahat.net/R
https://andrisignorell.github.io/DescTools/
https://github.com/AndriSignorell/DescTools/
https://github.com/AndriSignorell/DescTools/issues


2

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation yes

SystemRequirements C++17

VignetteBuilder R.rsp

Config/testthat/edition 3

Author Andri Signorell [aut, cre] (<https://orcid.org/0000-0003-4311-1969>),
Ken Aho [ctb],
Andreas Alfons [ctb],
Nanina Anderegg [ctb],
Tomas Aragon [ctb],
Chandima Arachchige [ctb],
Antti Arppe [ctb],
Adrian Baddeley [ctb],
Kamil Barton [ctb],
Ben Bolker [ctb],
Hans W. Borchers [ctb],
Frederico Caeiro [ctb],
Stephane Champely [ctb],
Daniel Chessel [ctb],
Leanne Chhay [ctb],
Nicholas Cooper [ctb],
Clint Cummins [ctb],
Michael Dewey [ctb],
Harold C. Doran [ctb],
Stephane Dray [ctb],
Charles Dupont [ctb],
Dirk Eddelbuettel [ctb],
Claus Ekstrom [ctb],
Martin Elff [ctb],
Jeff Enos [ctb],
Richard W. Farebrother [ctb],
John Fox [ctb],
Romain Francois [ctb],
Michael Friendly [ctb],
Tal Galili [ctb],
Matthias Gamer [ctb],
Joseph L. Gastwirth [ctb],
Vilmantas Gegzna [ctb],
Yulia R. Gel [ctb],
Sereina Graber [ctb],
Juergen Gross [ctb],
Gabor Grothendieck [ctb],
Frank E. Harrell Jr [ctb],
Richard Heiberger [ctb],
Michael Hoehle [ctb],
Christian W. Hoffmann [ctb],

https://orcid.org/0000-0003-4311-1969


3

Soeren Hojsgaard [ctb],
Torsten Hothorn [ctb],
Markus Huerzeler [ctb],
Wallace W. Hui [ctb],
Pete Hurd [ctb],
Rob J. Hyndman [ctb],
Christopher Jackson [ctb],
Matthias Kohl [ctb],
Mikko Korpela [ctb],
Max Kuhn [ctb],
Detlew Labes [ctb],
Friederich Leisch [ctb],
Jim Lemon [ctb],
Dong Li [ctb],
Martin Maechler [ctb],
Arni Magnusson [ctb],
Ben Mainwaring [ctb],
Daniel Malter [ctb],
George Marsaglia [ctb],
John Marsaglia [ctb],
Alina Matei [ctb],
David Meyer [ctb],
Weiwen Miao [ctb],
Giovanni Millo [ctb],
Yongyi Min [ctb],
David Mitchell [ctb],
Cyril Flurin Moser [ctb],
Franziska Mueller [ctb],
Markus Naepflin [ctb],
Danielle Navarro [ctb],
Henric Nilsson [ctb],
Klaus Nordhausen [ctb],
Derek Ogle [ctb],
Hong Ooi [ctb],
Nick Parsons [ctb],
Sandrine Pavoine [ctb],
Tony Plate [ctb],
Luke Prendergast [ctb],
Roland Rapold [ctb],
William Revelle [ctb],
Tyler Rinker [ctb],
Brian D. Ripley [ctb],
Caroline Rodriguez [ctb],
Nathan Russell [ctb],
Nick Sabbe [ctb],
Ralph Scherer [ctb],
Venkatraman E. Seshan [ctb],
Michael Smithson [ctb],



4 Contents

Greg Snow [ctb],
Karline Soetaert [ctb],
Werner A. Stahel [ctb],
Alec Stephenson [ctb],
Mark Stevenson [ctb],
Ralf Stubner [ctb],
Matthias Templ [ctb],
Duncan Temple Lang [ctb],
Terry Therneau [ctb],
Yves Tille [ctb],
Luis Torgo [ctb],
Adrian Trapletti [ctb],
Joshua Ulrich [ctb],
Kevin Ushey [ctb],
Jeremy VanDerWal [ctb],
Bill Venables [ctb],
John Verzani [ctb],
Pablo J. Villacorta Iglesias [ctb],
Gregory R. Warnes [ctb],
Stefan Wellek [ctb],
Hadley Wickham [ctb],
Rand R. Wilcox [ctb],
Peter Wolf [ctb],
Daniel Wollschlaeger [ctb],
Joseph Wood [ctb],
Ying Wu [ctb],
Thomas Yee [ctb],
Achim Zeileis [ctb]

Maintainer Andri Signorell <andri@signorell.net>

Repository CRAN

Date/Publication 2024-11-08 09:40:02 UTC

Contents
DescTools-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ABCCoords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Abind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
AddMonths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Agree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
AllDuplicated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
AllIdentical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
AndersonDarlingTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
AppendRowNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
as.matrix.xtabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
as.ym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Contents 5

AscToChar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Asp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Association measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Assocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Atkinson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
AxisBreak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
axTicks.POSIXct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
BarnardTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
BartelsRankTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
BarText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Base Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Benford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Between, Outside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Bg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
BhapkarTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
BinomCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
BinomCIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
BinomDiffCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
BinomRatioCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
BinTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
BootCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
BoxCox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
BoxCoxLambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
BoxedText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
BreslowDayTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
BreuschGodfreyTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
BrierScore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
BrierScoreCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
BubbleLegend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
CartToPol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
CatTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
CCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Clockwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Closest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Coalesce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
CochranArmitageTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
CochranQTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
CoefVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
CohenD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
CohenKappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
CollapseTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ColorLegend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
ColToGrey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
ColToHex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ColToHsv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
ColToOpaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



6 Contents

ColToRgb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ColumnWrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
CombPairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
CompleteColumns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ConDisPairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Conf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
ConnLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
ConoverTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
ConvUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Cor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
CorPart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
CorPolychor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
CountCompCases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
CountWorkDays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
CourseData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
CramerVonMisesTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
CronbachAlpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
CrossN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Cstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
CstatCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
CutAge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
CutQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
d.countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
d.diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
d.periodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
d.pizza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
d.whisky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Datasets for Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Date Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
day.name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
DegToRad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Desc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
DescTools Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
DescTools Palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
DescToolsOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
DigitSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
DivCoef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
DivCoefMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
DoBy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
DoCall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
DrawArc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
DrawBand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
DrawBezier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



Contents 7

DrawCircle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
DrawEllipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
DrawRegPolygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Dummy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
DunnettTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
DunnTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
DurbinWatsonTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Eps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
ErrBars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
EtaSq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
EX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
ExpFreq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
ExtrVal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Factorize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
FctArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
FindColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
FindCorr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
FisherZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
FixToTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Frac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Frechet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Freq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Freq2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
GCD, LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
GenExtrVal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
GenPareto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
GenRandGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
GeomSn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
GeomTrans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
GetCalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
GetCurrWrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
GetNewWrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
GetNewXL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Gini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
GiniSimpson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Gmean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Gompertz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
GoodmanKruskalGamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
GoodmanKruskalTau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
GTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Gumbel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Herfindahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
HexToCol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
HexToRgb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266



8 Contents

Hmean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
HmsToSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
HodgesLehmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
HoeffD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
HosmerLemeshowTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
HotellingsT2Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
HuberM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
identify.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
IdentifyA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
ImputeKnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
InDots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
IQRw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
IsDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
IsDichotomous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
IsEuclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
IsOdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
IsPrime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
IsValidHwnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
JarqueBeraTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
JonckheereTerpstraTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
KappaM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
KendallTauA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
KendallTauB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
KendallW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
KrippAlpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Label, Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Lc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
LehmacherTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
LeveneTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
LillieTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
lines.lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
lines.loess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
LineToUser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
LinScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
List Variety Of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
LOCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Logit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
LogSt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
MAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
MADCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Mar and Mgp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
matpow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
MeanAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



Contents 9

MeanCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
MeanCIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
MeanDiffCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
MeanSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Measures of Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Measures of Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
MedianCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Mgsub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
MHChisqTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Midx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
MixColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
MosesTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
MoveAvg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
MultinomCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
MultMerge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
NALevel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
NemenyiTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Nf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
NPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
NZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
OddsRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
ORToRelRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Outlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
PageTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
PairApply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
ParseFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
ParseSASDatalines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
PasswordDlg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
PDFManual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
PearsonTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
PercentRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
PercTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Permn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Phrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
PlotACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
PlotArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
PlotBag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
PlotBubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
PlotCandlestick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
PlotCashFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
PlotCirc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
PlotConDens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
PlotCorr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
PlotDot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
PlotECDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413



10 Contents

PlotFaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
PlotFdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
PlotFun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
PlotLinesA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
PlotLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
PlotMarDens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
PlotMiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
PlotMonth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
PlotMosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
PlotMultiDens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
PlotPairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
PlotPolar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
PlotProbDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
PlotPyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
PlotQQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
PlotTernary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
PlotTreemap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
PlotVenn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
PlotViolin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
PlotWeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
PMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
PoissonCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
PolarGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
PostHocTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
power.chisq.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
PowerPoint Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
pRevGumbel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
PseudoR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
PtInPoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
QuantileCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Quot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
ReadSPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Recode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Recycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
RelRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Rename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
reorder.factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
RevCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
RevWeibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
RgbToCmy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
RgbToCol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
RndPairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
RobScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489



Contents 11

RomanToInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
RoundTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
RSessionAlive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
RSqCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
rSum21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
RunsTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
SampleTwins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
SaveAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
ScheffeTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
SendOutlookMail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
SetAlpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
SetNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Shade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
ShapiroFranciaTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
SiegelTukeyTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
SignTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
SmoothSpline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Some . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Some numeric checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
SomersDelta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
SortMixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
SpearmanRho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
split.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
SplitAt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
SplitPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
SplitToCol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
SplitToDummy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
SpreadOut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Stamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
StdCoef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
Str . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
StrAbbr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
StrAlign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Strata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
StrCap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
StrChop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
StrCountW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
StrDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
StrExtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
StripAttr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
StrIsNumeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
StrLeft, StrRight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
StrPad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
StrPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554



12 Contents

StrRev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
StrSpell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
StrSplit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
StrTrim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
StrTrunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
StrVal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
StuartMaxwellTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
StuartTauC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
SysInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
TextContrastColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
TextToTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
TheilU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
TitleRect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
TMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
ToLong, ToWide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
TOne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
ToWrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
ToWrdB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
ToWrdPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Triangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
TTestA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
TukeyBiweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
TwoGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
UncertCoef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
UnirootAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Untable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
Unwhich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
VanWaerdenTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
VarCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
VarTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
VecRot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
VIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
Vigenere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
VonNeumannTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
wdConst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Winsorize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
WithOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
WoolfTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
WrdBookmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
WrdCaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
WrdCellRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
WrdFont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
WrdFormatCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
WrdMergeCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
WrdPageBreak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
WrdParagraphFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625



DescTools-package 13

WrdPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
WrdSaveAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
WrdStyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
WrdTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
WrdTableBorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
WrdTableHeading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
XLDateToPOSIXct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
XLGetRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
XLSaveAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
XLView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
YuenTTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
ZeroIfNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
Zodiac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
ZTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
%like% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
%nin% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
%overlaps% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
%c% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Index 653

DescTools-package Tools for Descriptive Statistics and Exploratory Data Analysis

Description

DescTools is an extensive collection of miscellaneous basic statistics functions and comfort wrap-
pers not available in the R basic system for efficient description of data. The author’s intention was
to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data
analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting
the results. Special attention was paid to the integration of various approaches to the calculation
of confidence intervals. For most basic statistics functions, variants are included that allow the use
of weights. The package contains furthermore functions to produce documents using MS Word (or
PowerPoint) and functions to import data from Excel.
A considerable part of the included functions can be found scattered in other packages and other
sources written partly by Titans of R. The reason for collecting them here, was primarily to have
them consolidated in ONE instead of dozens of packages (which themselves might depend on other
packages which are not needed at all), and to provide a common and consistent interface as far
as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style
guides were used as naming rules (in absence of convincing alternatives). The ’CamelStyle’ was
consequently applied to functions borrowed from contributed R packages as well.

Feedback, feature requests, bugreports and other suggestions are welcome! Please report problems
to Stack Overflow using tag [desctools] or directly to the maintainer.



14 DescTools-package

Details

A grouped list of the functions:

Operators, calculus, transformations:
%()% Between operators determine if a value lies within a range [a,b]
%)(% Outside operators: %)(%, %](%, %)[%, %][%
%nin% "not in" operator
%overlaps% Do two collections have common elements?
%like%, %like any% Simple operator to search for a specified pattern
%^% Powers of matrices
Interval The number of days of the overlapping part

of two date periods
AUC Area under the curve
Primes Find all primes less than n
Factorize Prime factorization of integers
Divisors All divisors of an integer
GCD Greatest common divisor
LCM Least common multiple
Permn Determine all possible permutations of a set
Fibonacci Generates single Fibonacci numbers or a Fibonacci sequence
DigitSum Digit sum of a number
Frac Return the fractional part of a numeric value
Ndec Count decimal places of a number
MaxDigits Maximum used digits for a vector of numbers
Prec Precision of a number
BoxCox, BoxCoxInv Box Cox transformation and its inverse transformation
BoxCoxLambda Return the optimal lambda for a BoxCox transformation
LogSt, LogStInv Calculate started logarithmic transformation and it’s inverse
Logit, LogitInv Generalized logit and inverse logit function
LinScale Simple linear scaling of a vector x
Winsorize Data cleaning by winsorization
Trim Trim data by omitting outlying observations
CutQ Cut a numeric variable into quartiles or other quantiles
Recode Recode a factor with altered levels
Rename Change name(s) of a named object
Sort Sort extension for matrices and data.frames
SortMixed, OrderMixed Mixed sort order
Rank Calculate ranks including dense type for ties
PercentRank Calculate the percent rank
RoundTo Round to a multiple
Large, Small Returns the kth largest, resp. smallest values
HighLow Combines Large and Small.
Rev Reverses the order of rows and/or columns of a matrix or a data.frame
Untable Recreates original list based on a n-dimensional frequency table
CollapseTable Collapse some rows/columns in a table.
Dummy Generate dummy codes for a factor



DescTools-package 15

FisherZ, FisherZInv Fisher’s z-transformation and its inverse
Midx Calculate sequentially the midpoints of the elements of a vector
Unwhich Inverse function to which, create a logical vector/matrix from indices
Vigenere Implements a Vigenere cypher, both encryption and decryption
BinTree, PlotBinTree Create and plot a binary tree structure with a given length

Information and manipulation functions:
AllDuplicated Find all values involved in ties
Closest Return the value in a vector being closest to a given one
Coalesce Return the first value in a vector not being NA
ZeroIfNA, NAIfZero Replace NAs by 0, resp. vice versa
Impute Replace NAs by the median or another value
LOCF Imputation of datapoints following the "last observation

carried forward" rule
CombN Returns the number of subsets out of a list of elements
CombSet Generates all possible subsets out of a list of elements
CombPairs Generates all pairs out of one or two sets of elements
SampleTwins Create sample using stratifying groups
RndPairs Create pairs of correlated random numbers
RndWord Produce random combinations of characters
IsNumeric Check a vector for being numeric, zero Or a whole number
IsWhole Is x a whole number?
IsDichotomous Check if x contains exactly 2 values
IsOdd Is x even or odd?
IsPrime Is x a prime number?
IsZero Is numeric(x) == 0, say x < machine.eps?
IsEuclid Check if a distance matrix is euclidean
Label, Unit Get or set the label, resp. unit, attribute of an object
Abind Bind matrices to n-dimensional arrays
Append Append elements to several classes of objects
VecRot, VecShift Shift the elements of a vector in a circular mode to the right

or to the left by n characters.
Clockwise Transform angles from counter clock into clockwise mode
split.formula A formula interface for the base function split
reorder.factor Reorder the levels of a factor
ToLong, ToWide Simple reshaping of a vector
SetNames Set the names, rownames or columnnames in an object and return it
Some Return some randomly chosen elements of an object
SplitAt Split a vector into several pieces at given positions
SplitToCol Splits the columns of a data frame using a split character
SplitPath Split a path string in drive, path, filename
Str Compactly display the structure of any R object
TextToTable Converts a string to a table

String functions:
StrCountW Count the words in a string



16 DescTools-package

StrTrim Delete white spaces from a string
StrTrunc Truncate string on a given length and add ellipses if it really

was truncated
StrLeft, StrRight Returns the left/right part or the a string.
StrAlign Align strings to the left/right/center or to a given character
StrAbbr Abbreviates a string
StrCap Capitalize the first letter of a string
StrPad Fill a string with defined characters to fit a given length
StrRev Reverse a string
StrChop Split a string by a fixed number of characters.
StrExtract Extract a part of a string, defined as regular expression.
StrVal Extract numeric values from a string
StrIsNumeric Check whether a string does only contain numeric data
StrPos Find position of first occurrence of a string in another one
StrDist Compute Levenshtein or Hamming distance between strings
FixToTable Create table out of a running text, by using columns of spaces as delimiter

Conversion functions:
AscToChar, CharToAsc Converts ASCII codes to characters and vice versa
DecToBin, BinToDec Converts numbers from binmode to decimal and vice versa
DecToHex, HexToDec Converts numbers from hexmode to decimal and vice versa
DecToOct, OctToDec Converts numbers from octmode to decimal and vice versa
DegToRad, RadToDeg Convert degrees to radians and vice versa
CartToPol, PolToCart Transform cartesian to polar coordinates and vice versa
CartToSph, SphToCart Transform cartesian to spherical coordinates and vice versa
RomanToInt Convert roman numerals to integers
RgbToLong, LongToRgb Convert a rgb color to a long number and vice versa
ColToGray, ColToGrey Convert colors to gcrey/grayscale
ColToHex, HexToCol Convert a color into hex string
HexToRgb Convert a hexnumber to an RGB-color
ColToHsv R color to HSV conversion
ColToRgb, RgbToCol Color to RGB conversion and back
ConvUnit Return the most common unit conversions

Colors:
SetAlpha Add transperancy (alpha channel) to a color.
ColorLegend Add a color legend to a plot
FindColor Get color on a defined color range
MixColor Get the mix of two colors
TextContrastColor Choose textcolor depending on background color
Pal Some custom color palettes

Plots (low level):
Canvas Canvas for geometric plotting
Mar Set margins more comfortably.



DescTools-package 17

Asp Return aspect ratio of the current plot
LineToUser Convert line coordinates to user coordinates
lines.loess Add a loess smoother and its CIs to an existing plot
lines.lm Add the prediction of linear model and its CIs to a plot
lines.smooth.spline Add the prediction of a smooth.spline and its CIs to a plot
BubbleLegend Add a legend for bubbles to a bubble plot
TitleRect Add a main title to a plot surrounded by a rectangular box
BarText Add the value labels to a barplot
ErrBars Add horizontal or vertical error bars to an existing plot
DrawArc, DrawRegPolygon Draw elliptic, circular arc(s) or regular polygon(s)
DrawCircle, DrawEllipse Draw a circle, a circle annulus or a sector or an annulus
DrawBezier Draw a Bezier curve
DrawBand Draw confidence band
BoxedText Add text surrounded by a box to a plot
Rotate Rotate a geometric structure
SpreadOut Spread out a vector of numbers so that there is a minimum

interval between any two elements. This can be used
to place textlabels in a plot so that they do not overlap.

IdentifyA Helps identifying all the points in a specific area.
identify.formula Formula interface for identify.
PtInPoly Identify all the points within a polygon.
ConnLines Calculate and insert connecting lines in a barplot
AxisBreak Place a break mark on an axis
Shade Produce a shaded curve
Stamp Stamp the current plot with Date/Time/Directory or any other expression

Plots (high level):
PlotACF, PlotGACF Create a combined plot of a time series including its

autocorrelation and partial autocorrelation
PlotMonth Plot seasonal effects of a univariate time series
PlotArea Create an area plot
PlotBag Create a two-dimensional boxplot
PlotBagPairs Produce pairwise 2-dimensional boxplots (bagplot)
PlotBubble Draw a bubble plot
PlotCandlestick Plot candlestick chart
PlotCirc Create a circular plot
PlotCorr Plot a correlation matrix
PlotDot Plot a dotchart with confidence intervals
PlotFaces Produce a plot of Chernoff faces
PlotFdist Frequency distribution plot, combination of histogram,

boxplot and ecdf.plot
PlotMarDens Scatterplot with marginal densities
PlotMultiDens Plot multiple density curves
PlotPolar Plot values on a circular grid
PlotFun Plot mathematical expression or a function
PolarGrid Plot a grid in polar coordinates
PlotPyramid Pyramid plot (back-back histogram)



18 DescTools-package

PlotTreemap Plot of a treemap.
PlotVenn Plot a Venn diagram
PlotViolin Plot violins instead of boxplots
PlotQQ QQ-plot for an optional distribution
PlotWeb Create a web plot
PlotTernary Create a triangle or ternary plot
PlotMiss Plot missing values
PlotECDF Plot empirical cumulative distribution function
PlotLinesA Plot the columns of one matrix against the columns of another
PlotLog Create a plot with logarithmic axis and log grid
PlotMosaic Plots a mosaic describing a contingency table in array form

Distributions:
_Benf Benford distribution, including qBenf, dBenf, rBenf
_ExtrVal Extreme value distribution (dExtrVal)
_Frechet Frechet distribution (dFrechet)
_GenExtrVal Generalized Extreme Value Distribution (dGenExtrVal)
_GenPareto Generalized Pareto Distribution (dGenPareto)
_Gompertz Gompertz distribution (dGompertz)
_Gumbel Gumbel distribution (dGumbel)
_NegWeibull Negative Weibull distribution (dNegWeibull)
_Order Distributions of Order Statistics (dOrder)
_RevGumbel Reverse Gumbel distribution (dRevGumbel),
_RevGumbelExp Expontial reverse Gumbel distribution (quantile only)
_RevWeibull Reverse Weibull distribution (dRevWeibull)

Statistics:
Freq Univariate frequency table
PercTable Bivariate percentage table
Margins (Extended) margin tables of a table
ExpFreq Expected frequencies of a n-dimensional table
Mode Mode, the most frequent value (including frequency)
Gmean, Gsd Geometric mean and geometric standard deviation
Hmean Harmonic Mean
Median Extended median function supporting weights and ordered factors
HuberM, TukeyBiweight Huber M-estimator of location and Tukey’s biweight robust mean
HodgesLehmann the Hodges-Lehmann estimator
HoeffD Hoeffding’s D statistic
MeanSE Standard error of mean
MeanCI, MedianCI Confidence interval for the mean and median
MeanDiffCI Confidence interval for the difference of two means
MoveAvg Moving average
MeanAD Mean absolute deviation
VarCI Confidence interval for the variance
CoefVar Coefficient of variation and its confidence interval
RobScale Robust data standardization



DescTools-package 19

Range (Robust) range
BinomCI, MultinomCI Confidence intervals for binomial and multinomial proportions
BinomDiffCI Calculate confidence interval for a risk difference
BinomRatioCI Calculate confidence interval for the ratio of binomial proportions.
PoissonCI Confidence interval for a Poisson lambda
Skew, Kurt Skewness and kurtosis
YuleQ, YuleY Yule’s Q and Yule’s Y
TschuprowT Tschuprow’s T
Phi, ContCoef, CramerV Phi, Pearson’s Contingency Coefficient and Cramer’s V
GoodmanKruskalGamma Goodman Kruskal’s gamma
KendallTauA Kendall’s tau-a
KendallTauB Kendall’s tau-b
StuartTauC Stuart’s tau-c
SomersDelta Somers’ delta
Lambda Goodman Kruskal’s lambda
GoodmanKruskalTau Goodman Kruskal’s tau
UncertCoef Uncertainty coefficient
Entropy, MutInf Shannon’s entropy, mutual information
DivCoef, DivCoefMax Rao’s diversity coefficient ("quadratic entropy")
TheilU Theil’s U1 and U2 coefficient
Assocs Combines the association measures above.
OddsRatio, RelRisk Odds ratio and relative risk
ORToRelRisk Transform odds ratio to relative risk
CohenKappa, KappaM Cohen’s Kappa, weighted Kappa and Kappa for

more than 2 raters
CronbachAlpha Cronbach’s alpha
ICC Intraclass correlations
KrippAlpha Return Kripp’s alpha coefficient
KendallW Compute the Kendall coefficient of concordance
Lc Calculate and plot Lorenz curve
Gini, Atkinson Gini- and Atkinson coefficient
Herfindahl, Rosenbluth Herfindahl- and Rosenbluth coefficient
GiniSimpson Compute Gini-Simpson Coefficient
CorCI Confidence interval for Pearson’s correlation coefficient
CorPart Find the correlations for a set x of variables with set y removed
CorPolychor Polychoric correlation coefficient
SpearmanRho Spearman rank correlation and its confidence intervals
ConDisPairs Return concordant and discordant pairs of two vectors
FindCorr Determine highly correlated variables
CohenD Cohen’s Effect Size
EtaSq Effect size calculations for ANOVAs
Contrasts Generate pairwise contrasts for using in a post-hoc test
Strata Stratified sampling with equal/unequal probabilities
Outlier Outliers following Tukey’s boxplot definition
LOF Local outlier factor
BrierScore Brier score, assessing the quality of predictions of binary events
Cstat C statistic, equivalent to the area under the ROC curve)
CCC Lin’s concordance correlation coef for agreement on a continuous measure



20 DescTools-package

MAE Mean absolute error
MAPE, SMAPE Mean absolute and symmetric mean absolute percentage error
MSE, RMSE Mean squared error and root mean squared error
NMAE, NMSE Normalized mean absolute and mean squared error
Conf Confusion matrix, a cross-tabulation of observed and predicted classes

with associated statistics
Sens, Spec Sensitivity and specificity
PseudoR2 Variants of pseudo R squared statistics: McFadden, Aldrich-Nelson,

Nagelkerke, CoxSnell, Effron, McKelvey-Zavoina, Tjur
Mean, SD, Var, IQRw Variants of base statistics, allowing to define weights: Mean,
Quantile, MAD, Cor standard deviation, variance, quantile, mad, correlation
VIF, StdCoef Variance inflation factors and standardised coefficents for linear models

Tests:
SignTest Signtest to test whether two groups are equally sized
ZTest Z–test for known population variance
TTestA Student’s t-test based on sample statistics
JonckheereTerpstraTest Jonckheere-Terpstra trend test for medians
PageTest Page test for ordered alternatives
CochranQTest Cochran’s Q-test to find differences in matched sets

of three or more frequencies or proportions.
VarTest ChiSquare test for one variance and F test for two variances
SiegelTukeyTest Siegel-Tukey test for equality in variability
SiegelTukeyRank Calculate Siegel-Tukey’s ranks (auxiliary function)
LeveneTest Levene’s test for homogeneity of variance
MosesTest Moses Test of extreme reactions
RunsTest Runs test for detecting non-randomness
DurbinWatsonTest Durbin-Watson test for autocorrelation
BartelsRankTest Bartels rank test for randomness
JarqueBeraTest Jarque-Bera Test for normality
AndersonDarlingTest Anderson-Darling test for normality
CramerVonMisesTest Cramer-von Mises test for normality
LillieTest Lilliefors (Kolmogorov-Smirnov) test for normality
PearsonTest Pearson chi-square test for normality
ShapiroFranciaTest Shapiro-Francia test for normality
MHChisqTest Mantel-Haenszel Chisquare test
StuartMaxwellTest Stuart-Maxwell marginal homogeneity test
LehmacherTest Lehmacher marginal homogeneity test
CochranArmitageTest Cochran-Armitage test for trend in binomial proportions
BreslowDayTest, WoolfTest Test for homogeneity on 2x2xk tables over strata
PostHocTest Post hoc tests by Scheffe, LSD, Tukey for a aov-object
ScheffeTest Multiple comparisons Scheffe test
DunnTest Dunn’s test of multiple comparisons
DunnettTest Dunnett’s test of multiple comparisons
ConoverTest Conover’s test of multiple comparisons (following a kruskal test)
NemenyiTest Nemenyi’s test of multiple comparisons
HotellingsT2Test Hotelling’s T2 test for the one and two sample case



DescTools-package 21

YuenTTest Yuen’s robust t-Test with trimmed means and winsorized variances
BarnardTest Barnard’s test for 2x2 tables
BreuschGodfreyTest Breusch-Godfrey test for higher-order serial correlation.
GTest Chi-squared contingency table test and goodness-of-fit test
HosmerLemeshowTest Hosmer-Lemeshow goodness of fit tests
VonNeumannTest Von Neumann’s successive difference test

Date functions:
day.name, day.abb Defined names of the days
AddMonths Add a number of months to a given date
IsDate Check whether x is a date object
IsWeekend Check whether x falls on a weekend
IsLeapYear Check whether x is a leap year
LastDayOfMonth Return the last day of the month of the date x
DiffDays360 Calculate the difference of two dates using the 360-days system
Date Create a date from numeric representation of year, month, day
Day, Month, Year Extract part of a date
Hour, Minute, Second Extract part of time
Week, Weekday Returns ISO week and weekday of a date
Quarter Quarter of a date
Timezone Timezone of a POSIXct/POSIXlt date
YearDay, YearMonth The day in the year of a date
Now, Today Get current date or date-time
HmsToSec, SecToHms Convert h:m:s times to seconds and vice versa
Overlap Determine if and how extensively two date ranges overlap
Zodiac The zodiac sign of a date :-)

Finance functions:
OPR One period returns (simple and log returns)
NPV Net present value
NPVFixBond Net present value for fix bonds
IRR Internal rate of return
YTM Return yield to maturity for a bond
SLN, DB, SYD Several methods of depreciation of an asset

GUI-Helpers:
PasswordDlg Display a dialog containing an edit field, showing only ***.

Reporting, InOut:
CatTable Print a table with the option to have controlled linebreaks
Format, Fmt Easy format for numbers and dates
Desc Produce a rich description of an object
Abstract Display compact overview of the structure of a data frame
TMod Create comparison table for (general) linear models



22 DescTools-package

TOne Create "Table One"" describing baseline characteristics
GetNewWrd, GetNewXL, GetNewPP Create a new Word, Excel or PowerPoint Instance
GetCurrWrd, GetCurrXL, GetCurrPP Get a handle to a running Word, Excel or PowerPoint instance
WrdKill, XLKill Ends a (possibly hidden) Word/Excel process
IsValidHwnd Check if the handle to a MS Office application is valid or outdated
WrdCaption Insert a title in Word
WrdFont Get and set the font for the current selection in Word
WrdParagraphFormat Get and set the paragraph format
WrdTable Create a table in Word
WrdCellRange Select a cell range of a table in Word
WrdMergeCells Merge cells of a table in Word
WrdFormatCells Format selected cells of a table in word
WrdTableBorders Set or edit table border style of a table in Word
ToWrd, ToXL Mord flexible wrapper to send diverse objects to Word, resp. Excel
WrdPlot Insert the active plot to Word
WrdInsertBookmark Insert a new bookmark in a Word document
WrdDeleteBookmark Delete an existing bookmark in a Word document
WrdGoto Place cursor to a specific bookmark, or another text position.
WrdUpdateBookmark Update the text of a bookmark’s range
WrdSaveAs Saves documents in Word
WrdStyle Get and set the style of a paragraph in Word
XLDateToPOSIXct Convert XL-Date format to POSIXct format
XLGetRange Get the values of one or several cell range(s) in Excel
XLGetWorkbook Get the values of all sheets of an Excel workbook
XLView Use Excel as viewer for a data.frame
PpPlot Insert active plot to PowerPoint
PpAddSlide Adds a slide to a PowerPoint presentation
PpText Adds a textbox with text to a PP-presentation
ParseSASDatalines Parse a SAS "datalines" statement to read data

Tools:
PairApply Helper for calculating functions pairwise
LsFct, LsObj List the functions (or the data, all objects) of a package
FctArgs Retrieve the arguments of a functions
InDots Check if an argument is contained in ... argument and return it’s value
ParseFormula Parse a formula and return the splitted parts of if
Recycle Recycle a list of elements to the maximal found dimension
Keywords Get the keywords of a man page
SysInfo Get some more information about system and environment
DescToolsOptions Get the DescTools specific options
PDFManual Get the pdf-manual of any package on CRAN and open it

Data:
d.pizza Synthetic dataset created for testing the description
d.whisky of Scotch Single Malts



DescTools-package 23

Reference Data:
d.units, d.prefix Unit conversion factors and metric prefixes
d.periodic Periodic table of elements
d.countries ISO 3166-1 country codes
roulette, cards, tarot Datasets for probabilistic simulation

Warning

This package is still under development. Although the code seems meanwhile quite stable, until
release of version 1.0 (which is expected in hmm: near future?) you should be aware that everything
in the package might be subject to change. Backward compatibility is not yet guaranteed. Functions
may be deleted or renamed and new syntax may be inconsistent with earlier versions. By release of
version 1.0 the "deprecated-defunct process" will be installed.

MS-Office

To make use of MS-Office features you must have Office in one of its variants installed, as well
as the package RDCOMClient. This package uses the COM interface to control the Office appli-
cations. There is no direct equivalent to COM interface for Mac or Linux, hence the use of these
functions is restricted to Windows systems. All Wrd*, XL* and Pp* functions require this basis to
run.

RDCOMClient can be installed with:

install.packages("RDCOMClient", repos="http://www.omegahat.net/R")

The omegahat repository does not benefit from the same update service as CRAN. So you may be
forced to install a package compiled with an earlier version, which usually is no problem. For R 4.2
you can use:

url <- "http://www.omegahat.net/R/bin/windows/contrib/4.2/RDCOMClient_0.96-1.zip"
install.packages(url, repos=NULL, type="binary")

RDCOMClient does not exist for Mac or Linux, sorry.

Author(s)

Andri Signorell
Helsana Versicherungen AG, Health Sciences, Zurich
HWZ University of Applied Sciences in Business Administration Zurich.

R is a community project. This can also be seen in this package, which contains R source code
and/or documentation previously published elsewhere by (in alphabetical order):

Ken Aho, Andreas Alfons, Nanina Anderegg, Tomas Aragon, Antti Arppe, Adrian Baddeley, Kamil
Barton, Ben Bolker, Hans W. Borchers, Frederico Caeiro, Stephane Champely, Daniel Chessel,



24 ABCCoords

Leanne Chhay, Clint Cummins, Michael Dewey, Harold C. Doran, Stephane Dray, Charles Dupont,
Dirk Eddelbuettel, Jeff Enos, Claus Ekstrom, Martin Elff, Kamil Erguler, Richard W. Farebrother,
John Fox, Romain Francois, Michael Friendly, Tal Galili, Matthias Gamer, Joseph L. Gastwirth,
Yulia R. Gel, Juergen Gross, Gabor Grothendieck, Frank E. Harrell Jr, Richard Heiberger, Michael
Hoehle, Christian W. Hoffmann, Soeren Hojsgaard, Torsten Hothorn, Markus Huerzeler, Wallace
W. Hui, Pete Hurd, Rob J. Hyndman, Pablo J. Villacorta Iglesias, Christopher Jackson, Matthias
Kohl, Mikko Korpela, Max Kuhn, Detlew Labes, Duncan Temple Lang, Friederich Leisch, Jim
Lemon, Dong Li, Martin Maechler, Arni Magnusson, Daniel Malter, George Marsaglia, John
Marsaglia, Alina Matei, David Meyer, Weiwen Miao, Giovanni Millo, Yongyi Min, David Mitchell,
Franziska Mueller, Markus Naepflin, Danielle Navarro, Henric Nilsson, Klaus Nordhausen, Derek
Ogle, Hong Ooi, Nick Parsons, Sandrine Pavoine, Tony Plate, Roland Rapold, William Revelle,
Tyler Rinker, Brian D. Ripley, Caroline Rodriguez, Nathan Russell, Nick Sabbe, Venkatraman E.
Seshan, Greg Snow, Michael Smithson, Karline Soetaert, Werner A. Stahel, Alec Stephenson, Mark
Stevenson, Matthias Templ, Terry Therneau, Yves Tille, Adrian Trapletti, Joshua Ulrich, Kevin
Ushey, Jeremy VanDerWal, Bill Venables, John Verzani, Gregory R. Warnes, Stefan Wellek, Hadley
Wickham, Rand R. Wilcox, Peter Wolf, Daniel Wollschlaeger, Thomas Yee, Achim Zeileis

Special thanks go to Beat Bruengger, Mathias Frueh, Daniel Wollschlaeger, Vilmantas Gegzna for
their valuable contributions and testing.

The good things come from all these guys, any problems are likely due to my tweaking. Thank you
all!

Maintainer: Andri Signorell <andri@signorell.net>

Examples

# ******************************************************
# There are no examples defined here. But see the demos:
#
# demo(describe)
# demo(plots))
#
# ******************************************************

ABCCoords Coordinates for "bottomright", etc.

Description

Return the xy.coordinates for the literal positions "bottomright", etc. as used to place legends.

Usage

ABCCoords(x = "topleft", region = "figure", cex = NULL, linset = 0, ...)



ABCCoords 25

Arguments

x one out of "bottomright", "bottom", "bottomleft", "left", "topleft",
"top", "topright", "right", "center"

region one out of plot or figure

cex the character extension for the text.

linset line inset in lines of text.

... the dots are passed to the strwidth() and strheight() functions in case there
where more specific text formats.

Details

The same logic as for the legend can be useful for placing texts, too. This function returns the
coordinates for the text, which can be used in the specific text functions.

Value

nothing returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

text, BoxedText

Examples

plot(x = rnorm(10), type="n", xlab="", ylab="")
# note that plot.new() has to be called before we can grab the geometry
ABCCoords("bottomleft")

lapply(c("bottomleft", "left"), ABCCoords)

plot(x = rnorm(10), type="n", xlab="", ylab="")
text(x=(xy <- ABCCoords("bottomleft", region = "plot"))$xy,

labels = "My Maybe Long Text", adj = xy$adj, xpd=NA)

text(x=(xy <- ABCCoords("topleft", region = "figure"))$xy,
labels = "My Maybe Long Text", adj = xy$adj, xpd=NA)

plot(x = rnorm(10), type="n", xlab="", ylab="")
sapply(c("topleft", "top", "topright", "left", "center",

"right", "bottomleft", "bottom", "bottomright"),
function(x)

text(x=(xy <- ABCCoords(x, region = "plot", linset=1))$xy,
labels = "MyMarginText", adj = xy$adj, xpd=NA)

)



26 Abind

plot(x = rnorm(100), type="n", xlab="", ylab="",
panel.first={Bg(c("red", "lightyellow"))

grid()})
xy <- ABCCoords("topleft", region = "plot")
par(xpd=NA)
BoxedText(x=xy$xy$x, y=xy$xy$y, xpad = 1, ypad = 1,

labels = "My Maybe Long Text", adj = xy$adj, col=SetAlpha("green", 0.8))

Abind Combine Multidimensional Arrays

Description

Base R functions cbind and rbind bind columns and rows, but there’s no built-in function for bind-
ing higher dimensional datastructures like matrices. Abind takes a sequence of vectors, matrices,
or arrays and produces a single array of the same or higher dimension.

Usage

Abind(..., along = N, rev.along = NULL, new.names = NULL, force.array = TRUE,
make.names = FALSE, use.first.dimnames = FALSE, hier.names = FALSE,
use.dnns = FALSE)

Arguments

... Any number of vectors, matrices, arrays, or data frames. The dimensions of all
the arrays must match, except on one dimension (specified by along=). If these
arguments are named, the name will be used for the name of the dimension
along which the arrays are joined. Vectors are treated as having a dim attribute
of length one.
Alternatively, there can be one (and only one) list argument supplied, whose
components are the objects to be bound together. Names of the list components
are treated in the same way as argument names.

along The dimension along which to bind the arrays. The default is the last dimension,
i.e., the maximum length of the dim attribute of the supplied arrays. along= can
take any non-negative value up to the minimum length of the dim attribute of
supplied arrays plus one. When along= has a fractional value, a value less than
1, or a value greater than N (N is the maximum of the lengths of the dim attribute
of the objects to be bound together), a new dimension is created in the result. In
these cases, the dimensions of all arguments must be identical.

rev.along Alternate way to specify the dimension along which to bind the arrays: along
= N + 1 - rev.along. This is provided mainly to allow easy specification of
along = N + 1 (by supplying rev.along=0). If both along and rev.along are
supplied, the supplied value of along is ignored.



Abind 27

new.names If new.names is a list, it is the first choice for the dimnames attribute of the
result. It should have the same structure as a dimnames attribute. If the names
for a particular dimension are NULL, names for this dimension are constructed in
other ways.
If new.names is a character vector, it is used for dimension names in the same
way as argument names are used. Zero length ("") names are ignored.

force.array If FALSE, rbind or cbind are called when possible, i.e., when the arguments are
all vectors, and along is not 1, or when the arguments are vectors or matrices or
data frames and along is 1 or 2. If rbind or cbind are used, they will preserve the
data.frame classes (or any other class that r/cbind preserve). Otherwise, Abind
will convert objects to class array. Thus, to guarantee that an array object is
returned, supply the argument force.array=TRUE. Note that the use of rbind or
cbind introduces some subtle changes in the way default dimension names are
constructed: see the examples below.

make.names If TRUE, the last resort for dimnames for the along dimension will be the deparsed
versions of anonymous arguments. This can result in cumbersome names when
arguments are expressions. The default is FALSE.

use.first.dimnames

When dimension names are present on more than one argument, should dimen-
sion names for the result be take from the first available (the default is to take
them from the last available, which is the same behavior as rbind and cbind.)

hier.names If TRUE, dimension names on the concatenated dimension will be composed of
the argument name and the dimension names of the objects being bound. If a
single list argument is supplied, then the names of the components serve as the
argument names. hier.names can also have values "before" or "after"; these
determine the order in which the argument name and the dimension name are
put together (TRUE has the same effect as "before").

use.dnns (default FALSE) Use names on dimensions, e.g., so that names(dimnames(x)) is
non-empty. When there are multiple possible sources for names of dimnames,
the value of use.first.dimnames determines the result.

Details

The dimensions of the supplied vectors or arrays do not need to be identical, e.g., arguments can be
a mixture of vectors and matrices. Abind coerces arguments by the addition of one dimension in
order to make them consistent with other arguments and along=. The extra dimension is added in
the place specified by along=.

The default action of Abind is to concatenate on the last dimension, rather than increase the number
of dimensions. For example, the result of calling Abind with vectors is a longer vector (see first
example below). This differs from the action of rbind and cbind which is to return a matrix when
called with vectors. Abind can be made to behave like cbind on vectors by specifying along=2, and
like rbind by specifying along=0.

The dimnames of the returned object are pieced together from the dimnames of the arguments, and
the names of the arguments. Names for each dimension are searched for in the following order:
new.names, argument name, dimnames (or names) attribute of last argument, dimnames (or names)
attribute of second last argument, etc. (Supplying the argument use.first.dimnames=TRUE changes
this to cause Abind to use dimnames or names from the first argument first. The default behavior



28 Abind

is the same as for rbind and cbind: use dimnames from later arguments.) If some names are sup-
plied for the along dimension (either as argument names or dimnames in arguments), names are
constructed for anonymous arguments unless maken.ames=FALSE.

Value

An array with a dim attribute calculated as follows.

Let rMin=min(sapply(list(...), function(x) length(dim(x)))) and
rMax=max(sapply(list(...), function(x) length(dim(x)))) (where the length of the dimen-
sions of a vector are taken to be 1). Then rMax should be equal to or one greater than rMin.

If along refers to an existing dimension, then the length of the dim attribute of the result is rMax. If
along does not refer to an existing dimension, then rMax should equal rMin and the length of the
dim attribute of the result will be rMax+1.

rbind or cbind are called to compute the result if (a) force.array=FALSE; and (b) the result will
be a two-dimensional object.

Note

It would be nice to make Abind() an S3 generic, but S3 generics cannot dispatch off anonymous
arguments.

The ability of Abind() to accept a single list argument removes much of the need for constructs
like do.call("Abind", list.of.arrays). Instead, just do Abind(list.of.arrays). The direct
construct is preferred because do.call() construct can sometimes consume more memory during
evaluation.

Author(s)

Tony Plate <tplate@acm.org> and Richard Heiberger

See Also

rbind, cbind, array

Examples

# Five different ways of binding together two matrices
x <- matrix(1:12, 3, 4)
y <- x + 100
dim(Abind(x, y, along=0)) # binds on new dimension before first
dim(Abind(x, y, along=1)) # binds on first dimension
dim(Abind(x, y, along=1.5))
dim(Abind(x, y, along=2))
dim(Abind(x, y, along=3))
dim(Abind(x, y, rev.along=1)) # binds on last dimension
dim(Abind(x, y, rev.along=0)) # binds on new dimension after last

# Unlike cbind or rbind in that the default is to bind
# along the last dimension of the inputs, which for vectors
# means the result is a vector (because a vector is
# treated as an array with length(dim(x))==1).



Abstract 29

Abind(x=1:4, y=5:8)

# Like cbind
Abind(x=1:4, y=5:8, along=2)
Abind(x=1:4, matrix(5:20, nrow=4), along=2)
Abind(1:4, matrix(5:20, nrow=4), along=2)

# Like rbind
Abind(x=1:4, matrix(5:20, nrow=4), along=1)
Abind(1:4, matrix(5:20, nrow=4), along=1)

# Create a 3-d array out of two matrices
Abind(x=matrix(1:16, nrow=4), y=matrix(17:32, nrow=4), along=3)

# Use of hier.names
Abind(x=cbind(a=1:3, b=4:6), y=cbind(a=7:9, b=10:12), hier.names=TRUE)

# Use a list argument
Abind(list(x=x, y=x), along=3)
# Use lapply(..., get) to get the objects
an <- c('x', 'y')
names(an) <- an
Abind(lapply(an, get), along=3)

Abstract Display Compact Abstract of a Data Frame

Description

Compactly display the content and structure of a data.frame, including variable labels. str() is
optimized for lists and its output is relatively technical, when it comes to e.g. attributes. summary()
on the other side already calculates some basic statistics.

Usage

Abstract(
x,
sep = ", ",
zero.form = ".",
maxlevels = 5,
trunc = TRUE,
list.len = 999

)

## S3 method for class 'abstract'
print(x, sep = NULL, width = NULL, trunc = NULL, print.gap = 2, ...)



30 Abstract

Arguments

x a data.frame to be described

sep the separator for concatenating the levels of a factor

zero.form a symbol to be used, when a variable has zero NAs.

maxlevels (integer, Inf) Max. number of factor levels to display. Default is 5. Set this to
Inf, if all levels are needed.

trunc logical, defining if level names exceeding the column with should be truncated.
Default is TRUE.

list.len numeric; maximum number of list elements to display.

width Console width. If NULL, defaults to options("width").

print.gap (integer) Number of spaces between columns.

... Further arguments to print method.

Details

The levels of a factor and describing variable labels (as created by Label()) will be wrapped within
the columns.

The first 4 columns are printed with the needed fix width, the last 2 (Levels and Labels) are wrapped
within the column. The width is calculated depending on the width of the screen as given by
getOption("width").

ToWord has an interface for the class abstract.

Value

an object of class abstract, essentially a character matrix with 5 or 6 columns containing:

1. a column number (Nr),

2. the name of the column (ColName),

3. the column class (Class),

4. the number of NAs (NAs),

5. the levels if the variable is a factor (Levels),

6. (if there are any) descriptive labels for the column (Labels).

Author(s)

Andri Signorell andri@signorell.net

See Also

utils::str(), base::summary(), ColumnWrap(), Desc()

Other Statistical summary functions: Desc()

mailto:andri@signorell.net


AddMonths 31

Examples

d.mydata <- d.pizza
# let's use some labels
Label(d.mydata) <- "Lorem ipsum dolor sit amet, consetetur sadipscing elitr,
sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam."

Label(d.mydata$temperature) <- "Amet, consetetur sadipscing elitr, sed diam nonumy "

Abstract(d.mydata)

AddMonths Add a Month to a Date

Description

Clueless adding numbers of months to a date will in some cases lead to invalid dates, think of e.g.
2012-01-30 + 1 month.
AddMonths ensures that the result is always a valid date, e.g. as.Date("2013-01-31") + 1 month
will be "2013-02-28". If number n is negative, the months will be subtracted.

Usage

AddMonths(x, n, ...)

Arguments

x a Date object (or something which can be coerced by as.Date(x, ...) to such an
object) to which a number of months has to be added.

n the number of months to be added. If n is negative the months will be subtracted.

... the dots are passed to as.Date, e.g. for supplying origin.

Details

All parameters will be recyled if necessary.

Value

a vector of class Date with the same dimension as x, containing the transformed dates.

Author(s)

Andri Signorell <andri@signorell.net>, based on code by Roland Rapold and Antonio

References

Thanks to Antonio: https://stackoverflow.com/questions/14169620/add-a-month-to-a-date

https://stackoverflow.com/questions/14169620/add-a-month-to-a-date


32 Agree

See Also

as.ym; Date functions: Year, Month, etc.

Examples

# characters will be coerced to Date
AddMonths("2013-01-31", 1)

# negative n
AddMonths(as.Date("2013-03-31"), -1)

# Arguments will be recycled
# (with warning if the longer is not a multiple of length of shorter)
AddMonths(c("2013-01-31", "2013-03-31", "2013-10-31", "2013-12-31"), c(1,-1))

x <- as.POSIXct(c("2015-01-31", "2015-08-31"))
n <- c(1, 3)
AddMonths(x, n)

# mind the origin if x supplied as numeric ...
x <- as.numeric(as.Date(x))
AddMonths(x, n, origin=as.Date("1970-01-01"))

Agree Raw Simple And Extended Percentage Agreement

Description

Computes raw simple and extended percentage agreement among raters.

Usage

Agree(x, tolerance = 0, na.rm = FALSE)

Arguments

x a data.frame or a k ×m matrix, k subjects (in rows) m raters (in columns).

tolerance number of successive rating categories that should be regarded as rater agree-
ment (see details).

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. If set to TRUE only the complete cases of the ratings will be used.
Defaults to FALSE.

Details

Using extended percentage agreement (tolerance != 0) is only possible for numerical values. If
tolerance equals 1, for example, raters differing by one scale degree are interpreted as agreeing.



AllDuplicated 33

Value

numeric value of coefficient of interrater reliability

The number of finally (potentially after omitting missing values) used subjects and raters are re-
turned as attributes:

subjects the number of subjects examined.

raters the number of raters.

Author(s)

Matthias Gamer <m.gamer@uke.uni-hamburg.de>,
some editorial amendments Andri Signorell <andri@signorell.net>

See Also

CohenKappa, KappaM

Examples

categ <- c("V", "N", "P")
lvls <- factor(categ, levels=categ)
rtr1 <- rep(lvls, c(60, 30, 10))
rtr2 <- rep(rep(lvls, nlevels(lvls)), c(53,5,2, 11,14,5, 1,6,3))
rtr3 <- rep(rep(lvls, nlevels(lvls)), c(48,8,3, 15,10,7, 3,4,2))

Agree(cbind(rtr1, rtr2)) # Simple percentage Agreement
Agree(data.frame(rtr1, rtr2)) # can be a data.frame
Agree(cbind(rtr1, rtr2, rtr3)) # Simple percentage Agreement

Agree(cbind(rtr1, rtr2), 1) # Extended percentage Agreement

AllDuplicated Index Vector of All Values Involved in Ties

Description

The function duplicated returns a logical vector indicating which elements x are duplicates, but
will not include the very first appearance of subsequently duplicated elements. AllDuplicated
returns an index vector of ALL the values in x which are involved in ties.
So !AllDuplicated can be used to determine all elements of x, which appear exactly once (thus
with frequency 1).

Usage

AllDuplicated(x)

Arguments

x vector of any type.



34 AllDuplicated

Value

logical vector of the same dimension as x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

unique returns a unique list of all values in x
duplicated returns an index vector flagging all elements, which appeared more than once (leaving
out the first appearance!)
union(A, B) returns a list with the unique values from A and B
intersect returns all elements which appear in A and in B
setdiff(A, B) returns all elements appearing in A but not in B
setequal(A, B) returns TRUE if A contains exactly the same elements as B
split(A, A) returns a list with all the tied values in A (see examples)

Examples

x <- c(1:10, 4:6)

AllDuplicated(x)

# compare to:
duplicated(x)

x[!AllDuplicated(x)]

# union, intersect and friends...
A <- c(sort(sample(1:20, 9)),NA)
B <- c(sort(sample(3:23, 7)),NA)

# all elements from A and B (no duplicates)
union(A, B)
# all elements appearing in A and in B
intersect(A, B)
# elements in A, but not in B
setdiff(A, B)
# elements in B, but not in A
setdiff(B, A)
# Does A contain the same elements as B?
setequal(A, B)

# Find ties in a vector x
x <- sample(letters[1:10], 20, replace=TRUE)
ties <- split(x, x)

# count tied groups



AllIdentical 35

sum(sapply(ties, length) > 1)

# length of tied groups
(x <- sapply(ties, length))[x>1]

# by means of table
tab <- table(x)
tab[tab>1]

# count elements involved in ties
sum(tab>1)
# count tied groups
sum(tab[tab>1])

AllIdentical Test Multiple Objects for Exact Equality

Description

The function identical() is the safe and reliable way to test two objects for being exactly equal.
But it is restricted to the comparison of two objects. AllIdentical() allows the input of multiple
objects and returns TRUE in the case that all of them are exactly equal, FALSE in every other case.

Usage

AllIdentical(...)

Arguments

... any R objects

Details

The function checks the first object against all others, so if the first object is identical to the second
and to the third, then also the second and the third are identical. (If A=B and A=C then is B=C)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

identical()



36 AndersonDarlingTest

Examples

A <- LETTERS[1:5]
B <- LETTERS[1:5]
C <- LETTERS[1:5]
D <- LETTERS[1:5]
E <- factor(LETTERS[1:5])

# all ok
AllIdentical(A, B, C, D)

# at least one odd man
AllIdentical(A, B, C, D, E)

AndersonDarlingTest Anderson-Darling Test of Goodness-of-Fit

Description

Performs the Anderson-Darling test of goodness-of-fit to a specified continuous univariate proba-
bility distribution.

Usage

AndersonDarlingTest(x, null = "punif", ..., nullname)

Arguments

x numeric vector of data values.
null a function, or a character string giving the name of a function, to compute the

cumulative distribution function for the null distribution.
... additional arguments for the cumulative distribution function.
nullname optional character string describing the null distribution.

The default is "uniform distribution".

Details

This command performs the Anderson-Darling test of goodness-of-fit to the distribution specified
by the argument null. It is assumed that the values in x are independent and identically distributed
random values, with some cumulative distribution function F . The null hypothesis is that F is the
function specified by the argument null, while the alternative hypothesis is that F is some other
function.

The procedures currently implemented are for the case of a SIMPLE null hypothesis, that is, where
all the parameters of the distribution are known. Note that other packages such as ’normtest’ support
the test of a COMPOSITE null hypothesis where some or all of the parameters are unknown leading
to different results concerning the test statistic and the p-value. Thus in ’normtest’ you can test
whether the data come from a normal distribution with some mean and variance (which will be
estimated from the same data).

The discrepancies can be large if you don’t have a lot of data (say less than 1000 observations).



Append 37

Value

An object of class "htest" representing the result of the hypothesis test.

Author(s)

Original C code by George Marsaglia and John Marsaglia. R interface by Adrian Baddeley.

References

Anderson, T.W. and Darling, D.A. (1952) Asymptotic theory of certain ’goodness-of-fit’ criteria
based on stochastic processes. Annals of Mathematical Statistics 23, 193–212.

Anderson, T.W. and Darling, D.A. (1954) A test of goodness of fit. Journal of the American Statis-
tical Association 49, 765–769.

Marsaglia, G. and Marsaglia, J. (2004) Evaluating the Anderson-Darling Distribution. Journal of
Statistical Software 9 (2), 1–5. February 2004. https://www.jstatsoft.org/v09/i02

See Also

shapiro.test and all other tests for normality.

Examples

x <- rnorm(10, mean=2, sd=1)
AndersonDarlingTest(x, "pnorm", mean=2, sd=1)

Append Append Elements to Objects

Description

Append elements to a number of various objects as vectors, matrices, data.frames and lists. In a
matrix either rows or columns can be inserted at any position. In data frames any vectors can be
inserted. values will be recycled to the necessary length.

Usage

Append(x, values, after = NULL, ...)

## S3 method for class 'matrix'
Append(x, values, after = NULL, rows = FALSE, names = NULL, ...)
## S3 method for class 'data.frame'
Append(x, values, after = NULL, rows = FALSE, names = NULL, ...)
## Default S3 method:
Append(x, values, after = NULL, ...)

https://www.jstatsoft.org/v09/i02


38 Append

Arguments

x object for the elements to be inserted
values the elements to be inserted
after a subscript, after which the values are to be appended. If it’s missing the values

will be appended after the last element (or column/row).
rows logical, defining if vector should be added as row or as column. Default is

column (rows=FALSE).
names the dimension names for the inserted elements(s)
... further arguments (not used here)

Details

The vector x will be recycled to a length of the next multiple of the number of rows (or columns)
of the matrix m and will be inserted such that the first inserted row (column) has the index i. If the
dimnames are given, they will be used no matter if the matrix m has already dimnames defined or
not.

Value

An object containing the values in x with the elements of values appended after the specified element
of x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

rbind, cbind, append

Examples

Append(1:5, 0:1, after = 3) # the same as append

# Insert columns and rows
x <- matrix(runif(25), 5)

Append(x, values=1:10, after=2, names = c("X","Y"))
Append(x, values=1:10, after=2)

Append(x, values=1:10, after=2, names = c("X","Y"))
Append(x, values=1:10, after=2)

# append to a data.frame
d.frm <- data.frame("id" = c(1,2,3),

"code" = c("AAA", "BBB", "CCC"),
"val" = c(111, 222, 333))

z <- c(10, 20, 30)

Append(d.frm, z, after=2, names="ZZZ")



AppendRowNames 39

AppendRowNames Append Rownames to a Data Frame

Description

Append rownames to a data.frame as first column.

Usage

AppendRowNames(x, names = "rownames", after = 0, remove_rownames = TRUE)

Arguments

x a data.frame

names the name of the new inserted column containing the rownames.

after a subscript, after which the values are to be appended. If missing the rownames
will be inserted as first column.

remove_rownames

logical defining if the existing rownames should be removed. Default is TRUE.

Value

the object x with appended rownames

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Append

Examples

(dd <- data.frame(x=1:5, y=6:10, z=LETTERS[1:5],
row.names = letters[1:5]))

AppendRowNames(dd)



40 as.matrix.xtabs

as.matrix.xtabs Convert xtabs To matrix

Description

This function converts an xtabs object to a matrix.

Usage

## S3 method for class 'xtabs'
as.matrix(x, ...)

Arguments

x an object of class xtabs

... additional arguments to be passed to or from methods.

Details

An xtabs object is indeed already a matrix, but won’t be converted to a pure matrix by as.matrix.default
function, as its class definition will remain unchanged. Some functions expecting a pure matrix may
fail, when fed with a xtabs object. as.matrix.xtabs will drop the classes and the call attribute.
Note that unclass would as well discard the classes xtabs and table, but retain the "call" at-
tribute.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

as.matrix, xtabs, unclass

Examples

tab <- xtabs( ~ driver + operator, data=d.pizza)

str(tab)
class(tab)

str(as.matrix(tab))
class(as.matrix(tab))



as.ym 41

as.ym A Class for Dealing with the Yearmonth Format

Description

The representation of year and month information in YYYYYMM format as an integer is often
handy and a useful and efficient data structure. Adding a number of months to such a date is not
quite catchy, however, since the date structure is to be retained. For example, 201201 - 2 [months]
is expected to result in 201111 instead of 201199. AddMonthsYM does this job.

Usage

as.ym(x)
## S3 method for class 'ym'
as.Date(x, d = 1, ...)

## S3 method for class 'ym'
AddMonths(x, n, ...)

Arguments

x a vector of integers, representing the dates in the format YYYYMM, to which a
number of months has to be added. YYYY must lie in the range of 1000-3000,
MM in 1-12.

d the day to be used for converting a yearmonth to a date. Default is 1.

n the number of months to be added. If n is negative the months will be subtracted.

... further arguments (not used here).

Details

All parameters will be recyled if necessary. The therefore used function mapply will display a
warning, if the longer argument is not a multiple of the length of the shorter one.

Value

a vector of class integer with the same dimension as x, containing the transformed dates.

Author(s)

Andri Signorell <andri@signorell.net>, originally based on code by Roland Rapold

See Also

AddMonths; Date functions, like Year, Month, etc.



42 AscToChar

Examples

Month(as.ym(202408))
Year(as.ym(202408))

Year(as.Date("2024-12-05"))
Year(as.ym(202412))

Month(as.Date("2024-12-05"), fmt = "mm")
Month(as.ym(202412), fmt="mm")

AddMonths(201511, 5)

AddMonths(c(201511, 201302), c(5, 15))
AddMonths(c(201511, 201302), c(5, -4))

AscToChar Convert ASCII Codes to Characters and Vice Versa

Description

AscToChar returns a character for each ASCII code (integer) supplied.
CharToAsc returns integer codes in 0:255 for each (one byte) character in all strings in x.

Usage

AscToChar(i)
CharToAsc(x)

Arguments

i numeric (integer) vector of values in 1:255.

x vector of strings.

Details

Only codes in 1:127 make up the ASCII encoding which should be identical for all R versions,
whereas the ‘upper’ half is often determined from the ISO-8859-1 (aka “ISO-Latin 1)” encoding,
but may well differ, depending on the locale setting, see also Sys.setlocale.

Note that 0 is no longer allowed since, R does not allow \0 aka nul characters in a string anymore.

Value

AscToChar returns a vector of the same length as i. CharToAsc returns a list of numeric vectors of
character length of each string in x.

Author(s)

unknown guy out there, help text partly taken from M. Maechler’s sfsmisc.



Asp 43

See Also

charToRaw

Examples

(x <- CharToAsc("Silvia"))

# will be pasted together
AscToChar(x)

# use strsplit if the single characters are needed
strsplit(AscToChar(x), split=NULL)

# this would be an alternative, but the latter would be of class raw
DecToHex(CharToAsc("Silvia"))
charToRaw("Silvia")

Asp Get Aspect Ratio of the Current Plot

Description

Returns the aspect ratio of the current plot in user coordinates.

Usage

Asp()

Details

The aspect ratio of the plot is calculated as

w <- par("pin")[1] / diff(par("usr")[1:2])
h <- par("pin")[2] / diff(par("usr")[3:4])
asp <- w/h

Author(s)

Andri Signorell <andri@signorell.net>

Examples

Asp()



44 Association measures

Association measures Cramer’s V, Pearson’s Contingency Coefficient and Phi Coefficient
Yule’s Q and Y, Tschuprow’s T

Description

Calculate Cramer’s V, Pearson’s contingency coefficient and phi, Yule’s Q and Y and Tschuprow’s
T of x, if x is a table. If both, x and y are given, then the according table will be built first.

Usage

Phi(x, y = NULL, ...)
ContCoef(x, y = NULL, correct = FALSE, ...)
CramerV(x, y = NULL, conf.level = NA,

method = c("ncchisq", "ncchisqadj", "fisher", "fisheradj"),
correct = FALSE, ...)

YuleQ(x, y = NULL, ...)
YuleY(x, y = NULL, ...)
TschuprowT(x, y = NULL, correct = FALSE, ...)

Arguments

x can be a numeric vector, a matrix or a table.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated.

conf.level confidence level of the interval. This is only implemented for Cramer’s V. If set
to NA (which is the default) no confidence interval will be calculated.
See examples for calculating bootstrap intervals.

method string defining the method to calculate confidence intervals for Cramer’s V. One
out of "ncchisq" (using noncentral chisquare), "ncchisqadj", "fisher" (us-
ing fisher z transformation), "fisheradj" (using fisher z transformation and
bias correction). Default is "ncchisq".

correct logical. Applying to ContCoef this indicates, whether the Sakoda’s adjusted
Pearson’s C should be returned. For CramerV() and TschuprowT() it defines,
whether a bias correction should be applied or not. Default is FALSE.

... further arguments are passed to the function table, allowing i.e. to set useNA.

Details

For x either a matrix or two vectors x and y are expected. In latter case table(x, y, ...) is cal-
culated. The function handles NAs the same way the table function does, so tables are by default
calculated with NAs omitted.

A provided matrix is interpreted as a contingency table, which seems in the case of frequency



Association measures 45

data the natural interpretation (this is e.g. also what chisq.test expects).

Use the function PairApply (pairwise apply) if the measure should be calculated pairwise for all
columns. This allows matrices of association measures to be calculated the same way cor does.
NAs are by default omitted pairwise, which corresponds to the pairwise.complete option of cor.
Use complete.cases, if only the complete cases of a data.frame are to be used. (see examples)

The maximum value for Phi is
√

(min(r, c) − 1). The contingency coefficient goes from 0 to√
(min(r,c)−1

min(r,c) ). For the corrected contingency coefficient and for Cramer’s V the range is 0 to 1.
A Cramer’s V in the range of [0, 0.3] is considered as weak, [0.3,0.7] as medium and > 0.7 as
strong. The minimum value for all is 0 under statistical independence.

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Andri Signorell <andri@signorell.net>,
Michael Smithson <michael.smithson@anu.edu.au> (confidence intervals for Cramer V)

References

Yule, G. Uday (1912) On the methods of measuring association between two attributes. Journal of
the Royal Statistical Society, LXXV, 579-652

Tschuprow, A. A. (1939) Principles of the Mathematical Theory of Correlation, translated by M.
Kantorowitsch. W. Hodge & Co.

Cramer, H. (1946) Mathematical Methods of Statistics. Princeton University Press

Agresti, Alan (1996) Introduction to categorical data analysis. NY: John Wiley and Sons

Sakoda, J.M. (1977) Measures of Association for Multivariate Contingency Tables, Proceedings of
the Social Statistics Section of the American Statistical Association (Part III), 777-780.

Smithson, M.J. (2003) Confidence Intervals, Quantitative Applications in the Social Sciences Se-
ries, No. 140. Thousand Oaks, CA: Sage. pp. 39-41

Bergsma, W. (2013) A bias-correction for Cramer’s V and Tschuprow’s T Journal of the Korean
Statistical Society 42(3) DOI: 10.1016/j.jkss.2012.10.002

See Also

table, PlotCorr, PairApply, Assocs

Examples

tab <- table(d.pizza$driver, d.pizza$wine_delivered)
Phi(tab)
ContCoef(tab)
CramerV(tab)
TschuprowT(tab)



46 Assocs

# just x and y
CramerV(d.pizza$driver, d.pizza$wine_delivered)

# data.frame
PairApply(d.pizza[,c("driver","operator","area")], CramerV, symmetric = TRUE)

# useNA is passed to table
PairApply(d.pizza[,c("driver","operator","area")], CramerV,

useNA="ifany", symmetric = TRUE)

d.frm <- d.pizza[,c("driver","operator","area")]
PairApply(d.frm[complete.cases(d.frm),], CramerV, symmetric = TRUE)

m <- as.table(matrix(c(2,4,1,7), nrow=2))
YuleQ(m)
YuleY(m)

# Bootstrap confidence intervals for Cramer's V
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf, p. 1821

tab <- as.table(rbind(
c(26,26,23,18, 9),
c( 6, 7, 9,14,23)))

d.frm <- Untable(tab)

n <- 1000
idx <- matrix(sample(nrow(d.frm), size=nrow(d.frm) * n, replace=TRUE), ncol=n, byrow=FALSE)
v <- apply(idx, 2, function(x) CramerV(d.frm[x,1], d.frm[x,2]))
quantile(v, probs=c(0.025,0.975))

# compare this to the analytical ones
CramerV(tab, conf.level=0.95)

Assocs Association Measures

Description

Collects a number of association measures for nominal and ordinal data.

Usage

Assocs(x, conf.level = 0.95, verbose = NULL)

## S3 method for class 'Assocs'
print(x, digits = 4, ...)



Assocs 47

Arguments

x a 2 dimensional contingency table or a matrix.

conf.level confidence level of the interval. If set to NA no confidence interval will be calcu-
lated. Default is 0.95.

verbose integer out of c(2, 1, 3) defining the verbosity of the reported results. 2 (de-
fault) means medium, 1 less and 3 extensive results.
Applies only to tables and is ignored else.

digits integer which determines the number of digits used in formatting the measures
of association.

... further arguments to be passed to or from methods.

Details

This function wraps the association measures phi, contingency coefficient, Cramer’s V, Goodman
Kruskal’s Gamma, Kendall’s Tau-b, Stuart’s Tau-c, Somers’ Delta, Pearson and Spearman correla-
tion, Guttman’s Lambda, Theil’s Uncertainty Coefficient and the mutual information.

Value

numeric matrix, dimension [1:17, 1:3]
the first column contains the estimate, the second the lower confidence interval, the third the upper
one.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Phi, ContCoef, CramerV, GoodmanKruskalGamma, KendallTauB, StuartTauC, SomersDelta, SpearmanRho,
Lambda, UncertCoef, MutInf

Examples

options(scipen=8)

# Example taken from: SAS/STAT(R) 9.2 User's Guide, Second Edition, The FREQ Procedure
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# Hair-Eye-Color pp. 1816

tob <- as.table(matrix(c(
69, 28, 68, 51, 6,
69, 38, 55, 37, 0,
90, 47, 94, 94, 16

), nrow=3, byrow=TRUE,
dimnames=list(eye=c("blue","green","brown"),

hair=c("fair","red","medium","dark","black")) ))
Desc(tob)
Assocs(tob)



48 Atkinson

# Example taken from: http://www.math.wpi.edu/saspdf/stat/chap28.pdf
# pp. 1349

pain <- as.table(matrix(c(
26, 6,
26, 7,
23, 9,
18, 14,
9, 23
), ncol=2, byrow=TRUE))

Desc(pain)
Assocs(pain)

Atkinson Atkinson Index - A Measure of Inequality.

Description

The Atkinson index is an inequality measure and is useful in determining which end of the distri-
bution contributed most to the observed inequality.

Usage

Atkinson(x, n = rep(1, length(x)), parameter = 0.5, na.rm = FALSE)

Arguments

x a vector containing at least non-negative elements.

n a vector of frequencies, must be same length as x.

parameter parameter of the inequality measure (if set to NULL the default parameter of the
respective measure is used).

na.rm logical. Should missing values be removed? Defaults to FALSE.

Value

the value of the Akinson Index.

Note

This function was previously published as ineq() in the ineq package and has been integrated here
without logical changes, but with some extensions for NA-handling and the use of weights.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>



AUC 49

References

Cowell, F. A. (2000) Measurement of Inequality in Atkinson, A. B. / Bourguignon, F. (Eds): Hand-
book of Income Distribution. Amsterdam.

Cowell, F. A. (1995) Measuring Inequality Harvester Wheatshef: Prentice Hall.

Marshall, Olkin (1979) Inequalities: Theory of Majorization and Its Applications. New York:
Academic Press.

Atkinson, A. B. (1970): On the Measurment of Inequality, Journal of Economic Theory, Vol. 2(3),
pp. 244-263.

See Also

See Herfindahl, Rosenbluth for concentration measures and ineq() in the package ineq for
additional inequality measures

Examples

# generate vector (of incomes)
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)

# compute Atkinson coefficient with parameter=1
Atkinson(x, parameter=1)

AUC Area Under the Curve

Description

Calculate the area under the curve with a naive algorithm and with a more elaborated spline ap-
proach. The curve must be given by vectors of xy-coordinates.

Usage

AUC(x, y, from = min(x, na.rm = TRUE), to = max(x, na.rm = TRUE),
method = c("trapezoid", "step", "spline", "linear"),
absolutearea = FALSE, subdivisions = 100, na.rm = FALSE, ...)

Arguments

x, y the xy-points of the curve

method The type of interpolation. Can be "trapezoid" (default), "step", "linear" or
"spline". The value "spline" results in the area under the natural cubic spline
interpolation.

from The value from where to start calculating the area under the curve. Defaults to
the smallest x value.



50 AUC

to The value from where to end the calculation of the area under the curve. Defaults
to the greatest x value.

absolutearea A logical value that determines if negative areas should be added to the total area
under the curve. By default the auc function subtracts areas that have negative
y values. Set absolutearea=TRUE to _add_ the absolute value of the negative
areas to the total area. Ignored if method is not spline.

subdivisions an integer telling how many subdivisions should be used for integrate (for non-
linear approximations). Ignored if method is not spline.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. In this case only the complete.cases of x and y will be used. na.rm
defaults to FALSE.

... additional arguments passed on to approx (for linear approximations). In partic-
ular rule can be set to determine how values outside the range of x is handled.

Details

If method is set to "trapezoid" then the curve is formed by connecting all points by a direct line
(composite trapezoid rule). If "step" is chosen then a stepwise connection of two points is used.

For linear interpolation the AUC() function computes the area under the curve using the composite
trapezoid rule. For area under a spline interpolation, AUC() uses the splinefun function in combina-
tion with the integrate to calculate a numerical integral.

The AUC() function can handle unsorted time values (by sorting x), missing observations, ties for
the x values (by ignoring duplicates), and integrating over part of the area or even outside the area.

Value

Numeric value of the area under the curve.

Author(s)

Andri Signorell <andri@signorell.net>, spline part by Claus Ekstrom <claus@rprimer.dk>

See Also

integrate, splinefun

Examples

AUC(x=c(1,3), y=c(1,1))

AUC(x=c(1,2,3), y=c(1,2,4), method="trapezoid")
AUC(x=c(1,2,3), y=c(1,2,4), method="step")

plot(x=c(1,2,2.5), y=c(1,2,4), type="l", col="blue", ylim=c(0,4))
lines(x=c(1,2,2.5), y=c(1,2,4), type="s", col="red")

x <- seq(0, pi, length.out=200)
AUC(x=x, y=sin(x))
AUC(x=x, y=sin(x), method="spline")



AxisBreak 51

AxisBreak Place a Break Mark on an Axis

Description

Places a break mark on an axis on an existing plot.

Usage

AxisBreak(axis = 1, breakpos = NULL, pos = NA, bgcol = "white",
breakcol = "black", style = "slash", brw = 0.02)

Arguments

axis which axis to break.

breakpos where to place the break in user units.

pos position of the axis (see axis).

bgcol the color of the plot background.

breakcol the color of the "break" marker.

style Either ‘gap’, ‘slash’ or ‘zigzag’.

brw break width relative to plot width.

Details

The ‘pos’ argument is not needed unless the user has specified a different position from the default
for the axis to be broken.

Note

There is some controversy about the propriety of using discontinuous coordinates for plotting, and
thus axis breaks. Discontinuous coordinates allow widely separated groups of values or outliers to
appear without devoting too much of the plot to empty space.
The major objection seems to be that the reader will be misled by assuming continuous coordinates.
The ‘gap’ style that clearly separates the two sections of the plot is probably best for avoiding this.

Author(s)

Jim Lemon and Ben Bolker

Examples

plot(3:10, main="Axis break test")

# put a break at the default axis and position
AxisBreak()
AxisBreak(2, 2.9, style="zigzag")



52 axTicks.POSIXct

axTicks.POSIXct Compute Axis Tickmark Locations (For POSIXct Axis)

Description

Compute pretty tickmark locations, the same way as R does internally. By default, gives the at
values which axis.POSIXct(side, x) would use.

Usage

axTicks.POSIXct(side, x, at, format, labels = TRUE, ...)

axTicks.Date(side = 1, x, ...)

Arguments

side See axis.

x, at A date-time or date object.

format See strptime.

labels Either a logical value specifying whether annotations are to be made at the tick-
marks, or a vector of character strings to be placed at the tickpoints.

... Further arguments to be passed from or to other methods.

Details

axTicks has no implementation for POSIXct axis. This function fills the gap.

Value

numeric vector of coordinate values at which axis tickmarks can be drawn.

Author(s)

Andri Signorell <andri@signorell.net> simply copying R-Core code

See Also

axTicks, axis.POSIXct

Examples

with(beaver1, {
time <- strptime(paste(1990, day, time %/% 100, time %% 100),

"%Y %j %H %M")
plot(time, temp, type = "l") # axis at 4-hour intervals.
# now label every hour on the time axis
plot(time, temp, type = "l", xaxt = "n")



BarnardTest 53

r <- as.POSIXct(round(range(time), "hours"))
axis.POSIXct(1, at = seq(r[1], r[2], by = "hour"), format = "%H")
# place the grid
abline(v=axTicks.POSIXct(1, at = seq(r[1], r[2], by = "hour"), format = "%H"),

col="grey", lty="dotted")
})

BarnardTest Barnard’s Unconditional Test

Description

Barnard’s unconditional test for superiority applied to 2×2 contingency tables using Score or Wald
statistics for the difference between two binomial proportions.

Usage

BarnardTest(x, y = NULL, alternative = c("two.sided", "less", "greater"),
method = c("csm", "csm approximate", "z-pooled", "z-unpooled",

"boschloo", "santner and snell"),
fixed = 1, useStoredCSM = FALSE, ...)

Arguments

x a numeric vector or a two-dimensional contingency table in matrix form. x and
y can also both be factors.

y a factor object; ignored if x is a matrix.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

method Indicates the method for finding the more extreme tables: must be either "Zpooled",
"Z-unpooled", "Santner and Snell", "Boschloo", "CSM", or "CSM approximate".
CSM tests cannot be calculated for multinomial models.

fixed indicates which margins are fixed. 1 stands for row, 2 for columns, NA for none
of both.

useStoredCSM logical, use a stored ordering matrix for the CSM test to greatly reduce the com-
putation time (default is FALSE).

... the dots are passed on to the Exact::exact.test() function.

Details

There are two fundamentally different exact tests for comparing the equality of two binomial prob-
abilities - Fisher’s exact test (Fisher, 1925), and Barnard’s exact test (Barnard, 1945). Fisher’s exact
test (Fisher, 1925) is the more popular of the two. In fact, Fisher was bitterly critical of Barnard’s
proposal for esoteric reasons that we will not go into here. For 2 x 2 tables, Barnard’s test is more



54 BarnardTest

powerful than Fisher’s, as Barnard noted in his 1945 paper, much to Fisher’s chagrin. Anyway,
perhaps due to its computational difficulty the Barnard’s is not widely used. (Mehta et.al., 2003)

Unconditional exact tests can be performed for binomial or multinomial models. The binomial
model assumes the row or column margins (but not both) are known in advance, while the multino-
mial model assumes only the total sample size is known beforehand. For the binomial model, the
user needs to specify which margin is fixed (default is rows). Conditional tests (e.g., Fisher’s exact
test) have both row and column margins fixed, but this is a very uncommon design. (See Calhoun
(2019) for more details.)

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, both x and y must be vectors of the same length. Incomplete cases
are removed, the vectors are coerced into factor objects, and the contingency table is computed from
these.

For a 2x2 contingency table, such as X = [n1, n2;n3, n4], the normalized difference in proportions
between the two categories, given in each column, can be written with pooled variance (Score
statistic) as

T (X) =
p̂2 − p̂1√

p̂(1− p̂)( 1
c1

+ 1
c2
)
,

where p̂ = (n1+n3)/(n1+n2+n3+n4), p̂2 = n2/(n2+n4), p̂1 = n1/(n1+n3), c1 = n1+n3 and
c2 = n2 + n4. Alternatively, with unpooled variance (Wald statistic), the difference in proportions
can we written as

T (X) =
p̂2 − p̂1√

p̂1(1−p̂1)
c1

+ p̂2(1−p̂2)
c2

.

The probability of observing X is

P (X) =
c1!c2!

n1!n2!n3!n4!
pn1+n2(1− p)n3+n4 ,

where p is the unknown nuisance parameter.

Barnard’s test considers all tables with category sizes c1 and c2 for a given p. The p-value is the
sum of probabilities of the tables having a score in the rejection region, e.g. having significantly
large difference in proportions for a two-sided test. The p-value of the test is the maximum p-value
calculated over all p between 0 and 1.

If useStoredCSM is set to TRUE a companion data package called ExactData must be installed from
GitHub.

The author states: "The CSM test is computationally intensive due to iteratively maximizing the
p-value calculation to order the tables. The CSM ordering matrix has been stored for all possible
sample sizes less than or equal to 100 (i.e., max(n1,n2)<=100). Thus, using the useStoredCSM =
TRUE can greatly improve computation time. However, the stored ordering matrix was computed
with npNumbers=100 and it is possible that the ordering matrix was not optimal for larger npNum-
bers. Increasing npNumbers and setting useStoredCSM = FALSE ensures the p-value is correctly
calculated at the expense of significantly greater computation time. The stored ordering matrix is
not used in the calculation of confidence intervals or non-inferiority tests, so CSM can still be very
computationally intensive."



BarnardTest 55

Value

A list with class "htest" containing the following components:

p.value the p-value of the test.

estimate an estimate of the nuisance parameter where the p-value is maximized.

alternative a character string describing the alternative hypothesis.

method the character string "Barnards Unconditional 2x2-test".

data.name a character string giving the names of the data.
statistic.table

The contingency tables considered in the analysis represented by n1 and n2,
their scores, and whether they are included in the one-sided (1), two-sided (2)
tests, or not included at all (0)

nuisance.matrix

Nuisance parameters, p, and the corresponding p-values for both one- and two-
sided tests

Author(s)

Peter Calhoun <calhoun.peter@gmail.com>, Andri Signorell <andri@signorell.net> (interface)

References

Barnard, G.A. (1945) A new test for 2x2 tables. Nature, 156:177.

Barnard, G.A. (1947) Significance tests for 2x2 tables. Biometrika, 34:123-138.

Suissa, S. and Shuster, J. J. (1985), Exact Unconditional Sample Sizes for the 2x2 Binomial Trial,
Journal of the Royal Statistical Society, Ser. A, 148, 317-327.

Cardillo G. (2009) MyBarnard: a very compact routine for Barnard’s exact test on 2x2 matrix.
https://ch.mathworks.com/matlabcentral/fileexchange/25760-mybarnard

Galili T. (2010) https://www.r-statistics.com/2010/02/barnards-exact-test-a-powerful-alternative-for-fishers-exact-test-implemented-in-r/

Lin C.Y., Yang M.C. (2009) Improved p-value tests for comparing two independent binomial pro-
portions. Communications in Statistics-Simulation and Computation, 38(1):78-91.

Trujillo-Ortiz, A., R. Hernandez-Walls, A. Castro-Perez, L. Rodriguez-Cardozo N.A. Ramos-Delgado
and R. Garcia-Sanchez. (2004). Barnardextest:Barnard’s Exact Probability Test. A MATLAB file.
[WWW document]. https://www.mathworks.com/

Mehta, C.R., Senchaudhuri, P. (2003) Conditional versus unconditional exact tests for compar-
ing two binomials. https://www.researchgate.net/publication/242179503_Conditional_
versus_Unconditional_Exact_Tests_for_Comparing_Two_Binomials

Calhoun, P. (2019) Exact: Unconditional Exact Test. R package version 2.0.
https://CRAN.R-project.org/package=Exact

See Also

fisher.test

https://ch.mathworks.com/matlabcentral/fileexchange/25760-mybarnard
https://www.r-statistics.com/2010/02/barnards-exact-test-a-powerful-alternative-for-fishers-exact-test-implemented-in-r/
https://www.mathworks.com/
https://www.researchgate.net/publication/242179503_Conditional_versus_Unconditional_Exact_Tests_for_Comparing_Two_Binomials
https://www.researchgate.net/publication/242179503_Conditional_versus_Unconditional_Exact_Tests_for_Comparing_Two_Binomials
https://CRAN.R-project.org/package=Exact


56 BartelsRankTest

Examples

tab <- as.table(matrix(c(8, 14, 1, 3), nrow=2,
dimnames=list(treat=c("I","II"), out=c("I","II"))))

BarnardTest(tab)

# Plotting the search for the nuisance parameter for a one-sided test
bt <- BarnardTest(tab)

# Plotting the tables included in the p-value
ttab <- as.table(matrix(c(40, 14, 10, 30), nrow=2,

dimnames=list(treat=c("I","II"), out=c("I","II"))))

bt <- BarnardTest(ttab)
bts <- bt$statistic.table

# Mehta et. al (2003)
tab <- as.table(matrix(c(7, 12, 8, 3), nrow=2,

dimnames=list(treat=c("vaccine","placebo"),
infection=c("yes","no"))))

BarnardTest(tab, alternative="less")

BartelsRankTest Bartels Rank Test of Randomness

Description

Performs the Bartels rank test of randomness, which tests if a sample is sampled randomly from an
underlying population. Data must at least be measured on an ordinal scale.

Usage

BartelsRankTest(x, alternative = c("two.sided", "trend", "oscillation"),
method = c("normal", "beta", "auto"))

Arguments

x a numeric vector containing the observations

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "trend" or "oscillation".

method a character string specifying the method used to compute the p-value. Must be
one of normal (default), beta or auto.



BartelsRankTest 57

Details

The RVN test statistic is

RV N =

∑n−1
i=1 (Ri −Ri+1)

2∑n
i=1 (Ri − (n+ 1)/2)

2

where Ri = rank(Xi), i = 1, . . . , n. It is known that (RV N − 2)/σ is asymptotically standard
normal, where σ2 = 4(n−2)(5n2−2n−9)

5n(n+1)(n−1)2 .

By using the alternative "trend" the null hypothesis of randomness is tested against a trend. By
using the alternative "oscillation" the null hypothesis of randomness is tested against a systematic
oscillation.

Missing values are silently removed.

Bartels test is a rank version of von Neumann’s test.

Value

A list with class "htest" containing the components:

statistic the value of the normalized statistic test.

parameter, n the size of the data, after the remotion of consecutive duplicate values.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method a character string indicating the test performed.

data.name a character string giving the name of the data.

rvn the value of the RVN statistic (not show on screen).

nm the value of the NM statistic, the numerator of RVN (not show on screen).

mu the mean value of the RVN statistic (not show on screen).

var the variance of the RVN statistic (not show on screen).

Author(s)

Frederico Caeiro <fac@fct.unl.pt>

References

Bartels, R. (1982) The Rank Version of von Neumann’s Ratio Test for Randomness, Journal of the
American Statistical Association, 77 (377), 40-46.

Gibbons, J.D. and Chakraborti, S. (2003) Nonparametric Statistical Inference, 4th ed. (pp. 97-98).
URL: http://books.google.pt/books?id=dPhtioXwI9cC&lpg=PA97&ots=ZGaQCmuEUq

von Neumann, J. (1941) Distribution of the ratio of the mean square successive difference to the
variance. Annals of Mathematical Statistics 12, 367-395.

See Also

rank.test, RunsTest

http://books.google.pt/books?id=dPhtioXwI9cC&lpg=PA97&ots=ZGaQCmuEUq


58 BarText

Examples

## Example 5.1 in Gibbons and Chakraborti (2003), p.98.
## Annual data on total number of tourists to the United States for 1970-1982.

years <- 1970:1982
tourists <- c(12362, 12739, 13057, 13955, 14123, 15698, 17523, 18610, 19842,

20310, 22500, 23080, 21916)
plot(years, tourists, pch=20)

BartelsRankTest(tourists, alternative="trend", method="beta")

# Bartels Ratio Test
#
# data: tourists
# statistic = -3.6453, n = 13, p-value = 1.21e-08
# alternative hypothesis: trend

## Example in Bartels (1982).
## Changes in stock levels for 1968-1969 to 1977-1978 (in $A million), deflated by the
## Australian gross domestic product (GDP) price index (base 1966-1967).
x <- c(528, 348, 264, -20, - 167, 575, 410, -4, 430, - 122)

BartelsRankTest(x, method="beta")

BarText Place Value Labels on a Barplot

Description

It can sometimes make sense to display data values directly on the bars in a barplot. There are a
handful of obvious alternatives for placing the labels, either on top of the bars, right below the upper
end, in the middle or at the bottom. Determining the required geometry - although not difficult - is
cumbersome and the code is distractingly long within an analysis code. The present function offers
a short way to solve the task. It can place text either in the middle of the stacked bars, on top or on
the bottom of a barplot (side by side or stacked).

Usage

BarText(height, b, labels = height, beside = FALSE, horiz = FALSE,
cex = par("cex"), adj = NULL,
pos = c("topout", "topin", "mid", "bottomin", "bottomout"),
offset = 0, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the plot
exactly as used for creating the barplot.



BarText 59

b the returned mid points as returned by b <- barplot(...).

labels the labels to be placed on the bars.

beside a logical value. If FALSE, the columns of height are portrayed as stacked bars,
and if TRUE the columns are portrayed as juxtaposed bars.

horiz a logical value. If FALSE, the bars are drawn vertically with the first bar to the
left. If TRUE, the bars are drawn horizontally with the first at the bottom.

cex numeric character expansion factor; multiplied by par("cex") yields the final
character size. NULL and NA are equivalent to 1.0.

adj one or two values in [0, 1] which specify the x (and optionally y) adjustment of
the labels. On most devices values outside that interval will also work.

pos one of "topout", "topin", "mid", "bottomin", "bottomout", defining if the
labels should be placed on top of the bars (inside or outside) or at the bottom of
the bars (inside or outside).

offset a vector indicating how much the bars should be shifted relative to the x axis.

... the dots are passed to the BoxedText.

Details

The x coordinates of the labels can be found by using barplot() result, if they are to be centered
at the top of each bar. BarText() calculates the rest.

Notice that when the labels are placed on top of the bars, they may be clipped. This can be avoided
by setting xpd=TRUE.

Value

returns the geometry of the labels invisibly

Author(s)

Andri Signorell <andri@signorell.net>

See Also

BoxedText



60 Base Conversions

Examples

# simple vector
x <- c(353, 44, 56, 34)
b <- barplot(x)
BarText(x, b, x)

# more complicated
b <- barplot(VADeaths, horiz = FALSE, col=DescTools::hblue, beside = TRUE)
BarText(VADeaths, b=b, horiz = FALSE, beside = TRUE, cex=0.8)
BarText(VADeaths, b=b, horiz = FALSE, beside = TRUE, cex=0.8, pos="bottomin",

col="white", font=2)

b <- barplot(VADeaths, horiz = TRUE, col=DescTools::hblue, beside = TRUE)
BarText(VADeaths, b=b, horiz = TRUE, beside = TRUE, cex=0.8)

b <- barplot(VADeaths)
BarText(VADeaths, b=b)

b <- barplot(VADeaths, horiz = TRUE)
BarText(VADeaths, b=b, horiz = TRUE, col="red", cex=1.5)

# position of the text
old <- par(mfrow=c(3,2), xpd=NA)
off <- c(10, 4, 1, 20, -15)

for(pos in eval(formals(BarText)$pos)) {
b <- barplot(x, offset=off,
main=gettextf("Textposition pos = '%s'", pos), horiz=TRUE)
abline(h=0)
BarText(x, b, x, offset = off, pos=pos, cex=1.5, horiz=TRUE)

}
par(old)

Base Conversions Converts Numbers From Binmode, Octmode or Hexmode to Decimal
and Vice Versa

Description

These functions convert numbers from one base to another. There are several solutions for this
problem out there, but the naming is quite heterogeneous and so consistent function names might
be helpful.

Usage

BinToDec(x)
DecToBin(x)
OctToDec(x)



Benford 61

DecToOct(x)
HexToDec(x)
DecToHex(x)

Arguments

x a vector of numbers, resp. alphanumerical representation of numbers (hex), to
be converted.

Details

BinToDec converts numbers from binary mode into decimal values. DecToBin does it the other
way round.
Oct means octal system and hex hexadecimal.

Value

A numeric or character vector of the same length as x containing the converted values. Binary, octal
and decimal values are numeric, hex-values are returned as class hexmode.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

strtoi

Examples

DecToBin(c(17, 25))
BinToDec(c(101, 11101))

DecToOct(c(17, 25))
OctToDec(c(11, 77))

DecToHex(c(17, 25))
HexToDec(c("FF", "AA", "ABC"))

Benford Benford’s Distribution

Description

Density, distribution function, quantile function, and random generation for Benford’s distribution.



62 Benford

Usage

dBenf(x, ndigits = 1, log = FALSE)
pBenf(q, ndigits = 1, log.p = FALSE)
qBenf(p, ndigits = 1)
rBenf(n, ndigits = 1)

Arguments

x, q Vector of quantiles. See ndigits.
p vector of probabilities.
n number of observations. A single positive integer. Else if length(n) > 1 then

the length is taken to be the number required.
ndigits Number of leading digits, either 1 or 2. If 1 then the support of the distribution

is {1,. . . ,9}, else {10,. . . ,99}.
log, log.p Logical. If log.p = TRUE then all probabilities p are given as log(p).

Details

Benford’s Law (aka the significant-digit law) is the empirical observation that in many naturally
occuring tables of numerical data, the leading significant (nonzero) digit is not uniformly distributed
in {1, 2, . . . , 9}. Instead, the leading significant digit (= D, say) obeys the law

P (D = d) = log10

(
1 +

1

d

)
for d = 1, . . . , 9. This means the probability the first significant digit is 1 is approximately 0.301,
etc.

Benford’s Law was apparently first discovered in 1881 by astronomer/mathematician S. Newcombe.
It started by the observation that the pages of a book of logarithms were dirtiest at the beginning
and progressively cleaner throughout. In 1938, a General Electric physicist called F. Benford re-
discovered the law on this same observation. Over several years he collected data from different
sources as different as atomic weights, baseball statistics, numerical data from Reader’s Digest, and
drainage areas of rivers.

Applications of Benford’s Law has been as diverse as to the area of fraud detection in accounting
and the design computers.

Value

dBenf gives the density, pBenf gives the distribution function, and qBenf gives the quantile func-
tion, and rBenf generates random deviates.

Author(s)

T. W. Yee

Source

These functions were previously published as dbenf() etc. in the VGAM package and have been
integrated here without logical changes.



Between, Outside 63

References

Benford, F. (1938) The Law of Anomalous Numbers. Proceedings of the American Philosophical
Society, 78, 551–572.

Newcomb, S. (1881) Note on the Frequency of Use of the Different Digits in Natural Numbers.
American Journal of Mathematics, 4, 39–40.

Examples

dBenf(x <- c(0:10, NA, NaN, -Inf, Inf))
pBenf(x)

## Not run:
xx <- 1:9
barplot(dBenf(xx), col = "lightblue", las = 1, xlab = "Leading digit",

ylab = "Probability", names.arg = as.character(xx),
main = paste("Benford's distribution", sep = ""))

hist(rBenf(n = 1000), border = "blue", prob = TRUE,
main = "1000 random variates from Benford's distribution",
xlab = "Leading digit", sub="Red is the true probability",
breaks = 0:9 + 0.5, ylim = c(0, 0.35), xlim = c(0, 10.0))

lines(xx, dBenf(xx), col = "red", type = "h")
points(xx, dBenf(xx), col = "red")

## End(Not run)

Between, Outside Operators To Check, If a Value Lies Within Or Outside a Given Range

Description

The between and outside operators are used to check, whether a vector of given values x lie within
a defined range (or outside respectively). The values can be numbers, text or dates. Ordered factors
are supported.

Usage

x %()% rng
x %(]% rng
x %[)% rng
x %[]% rng

x %][% rng
x %](% rng
x %)[% rng
x %)(% rng

x %:% rng
x %::% rng



64 Between, Outside

Arguments

x is a variable with at least ordinal scale, usually a numeric value, but can be an
ordered factor or a text as well. Texts would be treated alphabetically.

rng a vector of two values or a matrix with 2 columns, defining the minimum and
maximum of the range for x.
If rng is a matrix, x or rng will be recycled.

Details

The "BETWEEN" operators basically combine two conditional statements into one and simplify
the query process.
They are merely a wrapper for: x >= rng[1] & x <= rng[2], where the round bracket ( means
strictly greater (>) and the square bracket [ means greater or equal (>=). Numerical values of
x will be handled by C-code, which is significantly faster than two comparisons in R (especially
when x is huge). .
%][% is the negation of %()%, meaning all values lying outside the given range. Elements on the
limits will return TRUE.

Both arguments, x and rng, will be recycled to the highest dimension, which is either the length of
the vector (x) or the number of rows of the matrix (rng).
See also the routines used to check, whether two ranges overlap (Overlap, Interval).

%:% returns all the elements of a vector between the (first found) element rng[1] and rng[2]. If
no match is found it returns NA. If rng[2] occurs before rng[1] in the vector the elements will be
returned in reverse order (which is the same behaviour as the : operator).
%::% does the same in greedy mood. It uses the first match for from and the last match for to.

Value

A logical vector of the same length as x.

Author(s)

Andri Signorell <andri@signorell.net> based on C-code by Kevin Ushey <kevinushey@gmail.com>

See Also

if, ifelse, Comparison, Overlap, Interval

Examples

x <- 1:9
x %[]% c(3,5)

# outside
x <- 1:9
x %][% c(3,5)

c(x,NA) %[]% c(3,5)



Between, Outside 65

x %(]% c(3,5)

# no result when from > to:
x %[]% c(5,3)
x %(]% c(5,5)

# no problem:
ordered(x) %[]% c(3,5)

# not meaningful:
factor(x) %[]% c(3,5)

# characters
letters[letters %(]% c("d","h")]

data(d.pizza)
x <- levels(d.pizza$driver)
x %[]% c("C","G")

# select diamonds with a price between 2400 and 2510
data(d.diamonds)
d.diamonds[d.diamonds$price %[]% c(2400,2510),]

# use it with an ordered factor and select all diamonds with
# symmetry between G (included) and X (excluded).
mean(d.diamonds[d.diamonds$symmetry %[)% c("G","X"),"price"])

# use multiple ranges
2 %[]% cbind(1:4,2:5)

# both arguments are recycled
c(2,3) %[]% cbind(1:4,2:5)

# between operator for vector positions
set.seed(4)
(x <- sample(LETTERS, size=10, replace=TRUE))
# [1] "X" "K" "S" "C" "G" "L" "S" "V" "U" "Z"

# return all elements between "S" and "L"
x %:% c("S","L")
# [1] "S" "C" "G" "L"

x %:% c("S","A")
# [1] "S" "C" "G" "L" "S" "V" "U" "Z"

x %:% c("A","S")
# [1] "X" "K" "S"

# reverted matches return the elements in reverse order
x %:% c("G","X")
# [1] "G" "C" "S" "K" "X"



66 Bg

# no match results in NA
x %:% c("Y","B")

(x <- c("B", "A", "X", "K", "S", "K", "G", "L", "K", "V", "K", "Z"))
# lazy
x %:% c("A", "K")
# greedy
x %::% c("A", "K")

Bg Background of a Plot

Description

Paints the background of the plot, using either the figure region, the plot region or both. It can some-
times be cumbersome to elaborate the coordinates and base R does not provide a simple function
for that.

Usage

Bg(col = "grey", region = c("plot", "figure"), border = NA)

Arguments

col the color of the background, if two colors are provided, the first is used for the
plot region and the second for the figure region.

region either "plot" or "figure"

border color for rectangle border(s). Default is NA for no borders.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

rect

Examples

# use two different colors for the figure region and the plot region
plot(x = rnorm(100), col="blue", cex=1.2, pch=16,

panel.first={Bg(c("red", "lightyellow"))
grid()})



BhapkarTest 67

BhapkarTest Bhapkar Marginal Homogeneity Test

Description

Bhapkar (1966) tested marginal homogeneity by exploiting the asymptotic normality of marginal
proportion, and so this test is also called Bhapkar’s test. The idea of constructing test statistic is
similar to the one of generalized McNemar’s test statistic used in StuartMaxwellTest, and the
major difference lies in the calculation of elements in variance-covariance matrix.

Usage

BhapkarTest(x, y = NULL)

Arguments

x either a 2-way k × k contingency table in matrix form, or a factor.

y a factor with the same levels as x; ignored if x is a matrix.

Details

Although the Bhapkar and Stuart-Maxwell tests are asymptotically equivalent (Keefe, 1982). Gen-
erally, the Bhapkar (1966) test is a more powerful alternative to the Stuart-Maxwell test. With a
large N, both will produce the same Chi-square value. As the Bhapkar test is more powerful, it is
preferred.

Author(s)

Andri Signorell <andri@signorell.net>

References

Bhapkar V.P. (1966) A note on the equivalence of two test criteria for hypotheses in categorical
data. Journal of the American Statistical Association, 61: 228-235.

Ireland C.T., Ku H.H., and Kullback S. (1969) Symmetry and marginal homogeneity of an r x r
contingency table. Journal of the American Statistical Association, 64: 1323-1341.

Keefe T.J. (1982) On the relationship between two tests for homogeneity of the marginal distribu-
tions in a two-way classification. Biometrika, 69: 683-684.

Sun X., Yang Z. (2008) Generalized McNemar’s Test for Homogeneity of the Marginal Distribu-
tions. SAS Global Forum 2008: Statistics and Data Analysis, Paper 382-208.

See Also

StuartMaxwellTest, mcnemar.test, chisq.test, MHChisqTest, BreslowDayTest



68 BinomCI

Examples

# Source: http://www.john-uebersax.com/stat/mcnemar.htm#stuart
mc <- as.table(matrix(c(20,3,0,10,30,5,5,15,40), nrow=3))

BhapkarTest(mc)

BinomCI Confidence Intervals for Binomial Proportions

Description

Compute confidence intervals for binomial proportions according to a number of the most common
proposed methods.

Usage

BinomCI(x, n, conf.level = 0.95, sides = c("two.sided", "left", "right"),
method = c("wilson", "wald", "waldcc", "agresti-coull", "jeffreys",

"modified wilson", "wilsoncc","modified jeffreys",
"clopper-pearson", "arcsine", "logit", "witting", "pratt",
"midp", "lik", "blaker"),

rand = 123, tol = 1e-05, std_est = TRUE)

Arguments

x number of successes.

n number of trials.

conf.level confidence level, defaults to 0.95.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method character string specifing which method to use; this can be one out of: "wald",
"wilson" (default), "wilsoncc", "agresti-coull", "jeffreys", "modified
wilson", "modified jeffreys", "clopper-pearson", "arcsine", "logit",
"witting", "pratt", "midp", "lik" and "blaker". Abbreviation of method
is accepted. See details.

rand seed for random number generator; see details.

tol tolerance for method "blaker".

std_est logical, specifying if the standard point estimator for the proportion value x/n
should be returned (TRUE, default) or the method-specific internally used alter-
native point estimate (FALSE).



BinomCI 69

Details

All arguments are being recycled.

The Wald interval is obtained by inverting the acceptance region of the Wald large-sample normal
test.

The Wald with continuity correction interval is obtained by adding the term 1/(2*n) to the Wald
interval.

The Wilson interval, which here is the default method, was introduced by Wilson (1927) and is the
inversion of the CLT approximation to the family of equal tail tests of p = p0. The Wilson interval
is recommended by Agresti and Coull (1998) as well as by Brown et al (2001). It is also returned
as conf.int from the function prop.test with the correct option set to FALSE.

The Wilson cc interval is a modification of the Wilson interval adding a continuity correction term.
This is returned as conf.int from the function prop.test with the correct option set to TRUE.

The modified Wilson interval is a modification of the Wilson interval for x close to 0 or n as
proposed by Brown et al (2001).

The Agresti-Coull interval was proposed by Agresti and Coull (1998) and is a slight modification
of the Wilson interval. The Agresti-Coull intervals are never shorter than the Wilson intervals; cf.
Brown et al (2001). The internally used point estimator p-tilde is returned as attribute.

The Jeffreys interval is an implementation of the equal-tailed Jeffreys prior interval as given in
Brown et al (2001).

The modified Jeffreys interval is a modification of the Jeffreys interval for x == 0 | x == 1 and x
== n-1 | x == n as proposed by Brown et al (2001).

The Clopper-Pearson interval is based on quantiles of corresponding beta distributions. This is
sometimes also called exact interval.

The arcsine interval is based on the variance stabilizing distribution for the binomial distribution.

The logit interval is obtained by inverting the Wald type interval for the log odds.

The Witting interval (cf. Beispiel 2.106 in Witting (1985)) uses randomization to obtain uniformly
optimal lower and upper confidence bounds (cf. Satz 2.105 in Witting (1985)) for binomial propor-
tions.

The Pratt interval is obtained by extremely accurate normal approximation. (Pratt 1968)

The Mid-p approach is used to reduce the conservatism of the Clopper-Pearson, which is known to
be very pronounced. The method midp accumulates the tail areas. The lower bound pl is found as
the solution to the equation

1

2
f(x;n, pl) + (1− F (x;m, pl)) =

α

2

where f(x;n, p) denotes the probability mass function (pmf) and F (x;n, p) the (cumulative) distri-
bution function of the binomial distribution with size n and proportion p evaluated at x. The upper
bound pu is found as the solution to the equation

1

2
f(x;n, pu) + F (x− 1;m, pu) =

α

2

In case x=0 then the lower bound is zero and in case x=n then the upper bound is 1.



70 BinomCI

The Likelihood-based approach is said to be theoretically appealing. Confidence intervals are
based on profiling the binomial deviance in the neighbourhood of the MLE.

For the Blaker method refer to Blaker (2000).

For more details we refer to Brown et al (2001) as well as Witting (1985).

Some approaches for the confidence intervals are capable of violating the [0, 1] boundaries and
potentially yield negative results or values beyond 1. These would be truncated such as not to
exceed the valid range of [0, 1].

So now, which interval should we use? The Wald interval often has inadequate coverage, particu-
larly for small n and values of p close to 0 or 1. Conversely, the Clopper-Pearson Exact method is
very conservative and tends to produce wider intervals than necessary. Brown et al. recommends
the Wilson or Jeffreys methods for small n and Agresti-Coull, Wilson, or Jeffreys, for larger n as
providing more reliable coverage than the alternatives.

For the methods "wilson", "wilsoncc", "modified wilson", "agresti-coull" and "arcsine"
the internally used alternative point estimator for the proportion value can be returned (by setting
std_est = FALSE). The point estimate typically is slightly shifted towards 0.5 compared to the
standard estimator. See the literature for the more details.

Value

A vector with 3 elements for estimate, lower confidence intervall and upper for the upper one.

For more than one argument each, a 3-column matrix is returned.

Note

The base of this function once was binomCI() from the SLmisc package. In the meantime, the code
has been updated on several occasions and it has undergone numerous extensions and bug fixes.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Rand R. Wilcox (Pratt’s method), Michael Hoehle
<hoehle@math.su.se> (Mid-p), Ralph Scherer <shearer.ra76@gmail.com> (Blaker), Andri Sig-
norell <andri@signorell.net> (interface issues and all the rest)

References

Agresti A. and Coull B.A. (1998) Approximate is better than "exact" for interval estimation of
binomial proportions. American Statistician, 52, pp. 119-126.

Brown L.D., Cai T.T. and Dasgupta A. (2001) Interval estimation for a binomial proportion Statis-
tical Science, 16(2), pp. 101-133.

Witting H. (1985) Mathematische Statistik I. Stuttgart: Teubner.

Pratt J. W. (1968) A normal approximation for binomial, F, Beta, and other common, related tail
probabilities Journal of the American Statistical Association, 63, 1457- 1483.

Wilcox, R. R. (2005) Introduction to robust estimation and hypothesis testing. Elsevier Academic
Press

Newcombe, R. G. (1998) Two-sided confidence intervals for the single proportion: comparison of
seven methods, Statistics in Medicine, 17:857-872 https://pubmed.ncbi.nlm.nih.gov/16206245/



BinomCIn 71

Blaker, H. (2000) Confidence curves and improved exact confidence intervals for discrete distribu-
tions, Canadian Journal of Statistics 28 (4), 783-798

See Also

binom.test, binconf, MultinomCI, BinomDiffCI, BinomRatioCI

Examples

BinomCI(x=37, n=43,
method=eval(formals(BinomCI)$method)) # return all methods

prop.test(x=37, n=43, correct=FALSE) # same as method wilson
prop.test(x=37, n=43, correct=TRUE) # same as method wilsoncc

# the confidence interval computed by binom.test
# corresponds to the Clopper-Pearson interval
BinomCI(x=42, n=43, method="clopper-pearson")
binom.test(x=42, n=43)$conf.int

# all arguments are being recycled:
BinomCI(x=c(42, 35, 23, 22), n=43, method="wilson")
BinomCI(x=c(42, 35, 23, 22), n=c(50, 60, 70, 80), method="jeffreys")

# example Table I in Newcombe (1998)
meths <- c("wald", "waldcc", "wilson", "wilsoncc",

"clopper-pearson","midp", "lik")
round(cbind(

BinomCI(81, 263, m=meths)[, -1],
BinomCI(15, 148, m=meths)[, -1],
BinomCI(0, 20, m=meths)[, -1],
BinomCI(1, 29, m=meths)[, -1]), 4)

# returning p.tilde for agresti-coull ci
BinomCI(x=81, n=263, meth="agresti-coull", std_est = c(TRUE, FALSE))

BinomCIn Sample Size for a Given Width of a Binomial Confidence Interval

Description

Returns the necessary sample size to achieve a given width of a binomial confidence interval, as
calculated by BinomCI(). The function uses uniroot() to find a numeric solution.

Usage

BinomCIn(p = 0.5, width, interval = c(1, 100000),
conf.level = 0.95, sides = "two.sided", method = "wilson")



72 BinomCIn

Arguments

p probability for success, defaults to 0.5.

width the width of the confidence interval

interval a vector containing the end-points of the interval to be searched for the root. The
defaults are set to c(1, 100000).

conf.level confidence level, defaults to 0.95.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method character string specifing which method to use; this can be one out of: "wald",
"wilson", "wilsoncc", "agresti-coull", "jeffreys", "modified wilson",
"modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting"
or "pratt". Defaults to "wilson". Abbreviation of method are accepted. See
details in BinomCI().

Details

The required sample sizes for a specific width of confidence interval depends on the proportion in
the population. This value might be unknown right from the start when a study is planned. In such
cases the sample size needed for a given level of accuracy can be estimated using the worst case
percentage which is p=50%. When a better estimate is available you can you can use it to get a
smaller interval.

Value

a numeric value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

BinomCI()

Examples

BinomCIn(p=0.1, width=0.05, method="pratt")



BinomDiffCI 73

BinomDiffCI Confidence Interval for a Difference of Binomials

Description

Several confidence intervals for the difference between proportions are available, but they can pro-
duce markedly different results. Traditional approaches, such as the Wald interval do not perform
well unless the sample size is large. Better intervals are available. These include the Agresti/Caffo
method (2000), Newcombe Score method (1998) and more computing intensive ones as by Mietti-
nen and Nurminen (1985) or Mee (1984). The latter ones are favoured by Newcombe (when forced
to choose between a rock and a hard place).

Usage

BinomDiffCI(x1, n1, x2, n2, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("ac", "wald", "waldcc", "score", "scorecc", "mn",

"mee", "blj", "ha", "hal", "jp"))

Arguments

x1 number of successes for the first group.

n1 number of trials for the first group.

x2 number of successes for the second group.

n2 number of trials for the second group.

conf.level confidence level, defaults to 0.95.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method one of "wald", "waldcc", "ac", "score", "scorecc", "mn", "mee", "blj",
"ha", "hal", "jp".

Details

All arguments are being recycled.

We estimate the difference between proportions using the sample proportions:

δ̂ = p̂1 − p̂2 =
x1

n1
− x2

n2

The traditional Wald confidence interval for the difference of two proportions δ is based on the
asymptotic normal distribution of δ̂.

The Corrected Wald interval uses a continuity correction included in the test statistic. The conti-
nuity correction is subtracted from the numerator of the test statistic if the numerator is greater than
zero; otherwise, the continuity correction is added to the numerator. The value of the continuity
correction is (1/n1 + 1/n2)/2.



74 BinomDiffCI

The Agresti-Caffo (code "ac") is equal to the Wald interval with the adjustment according to
Agresti, Caffo (2000) for difference in proportions and independent samples. It adds 1 to x1 and x2
and adds 2 to n1 and n2 and performs surpringly well.

Newcombe (code "scorecc") proposed a confidence interval for the difference based on the Wilson
score confidence interval for a single proportion. A variant uses a continuity correction for the
Wilson interval (code "scorecc").

Miettinen and Nurminen showed that the restricted maximum likelihood estimates for p1 and p2
can be obtained by solving a cubic equation and gave unique closed-form expressions for them. The
Miettinen-Nurminen confidence interval is returned with code "mn".

The Mee (code "mee") interval proposed by Mee (1984) and Farrington-Manning (1990) is using
the same maximum likelihood estimators as Miettinen-Nurminen but with another correcting factor.

The Brown, Li’s Jeffreys (code "blj") interval was proposed by Brown, Li’s Jeffreys (2005).

The Hauck-Anderson (code "ha") interval was proposed by Hauck-Anderson (1986).

The Haldane (code "hal") interval is described in Newcombe (1998) and so is the Jeffreys-Perks
(code "jp").

Some approaches for the confidence intervals can potentially yield negative results or values beyond
[-1, 1]. These would be reset such as not to exceed the range of [-1, 1].

Which of the methods to use is currently still the subject of lively discussion and has not yet been
conclusively clarified. See e.g. Fagerland (2011).

The general consensus is that the most widely taught method method="wald" is inappropriate in
many situations and should not be used. Recommendations seem to converge around the Miettinen-
Nurminen based methods (method="mn").

Value

A matrix with 3 columns containing the estimate, the lower and the upper confidence intervall.

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A, Caffo, B (2000) Simple and effective confidence intervals for proportions and difference
of proportions result from adding two successes and two failures. The American Statistician 54 (4),
280-288.

Beal, S L (1987) Asymptotic Confidence Intervals for the Difference Between Two Binomial Pa-
rameters for Use with Small Samples; Biometrics, 43, 941-950.

Brown L, Li X (2005) Confidence intervals for two sample binomial distribution, Journal of Statis-
tical Planning and Inference, 130(1), 359-375.

Hauck WW, Anderson S. (1986) A comparison of large-sample confidence interval methods for the
difference of two binomial probabilities The American Statistician 40(4): 318-322.

Farrington, C. P. and Manning, G. (1990) Test Statistics and Sample Size Formulae for Comparative
Binomial Trials with Null Hypothesis of Non-zero Risk Difference or Non-unity Relative Risk
Statistics in Medicine, 9, 1447-1454.



BinomRatioCI 75

Mee RW (1984) Confidence bounds for the difference between two probabilities, Biometrics 40:1175-
1176 .

Miettinen OS, Nurminen M. (1985) Comparative analysis of two rates. Statistics in Medicine 4,
213-226.

Newcombe, R G (1998). Interval Estimation for the Difference Between Independent Proportions:
Comparison of Eleven Methods. Statistics in Medicine, 17, 873–890.

Fagerland M W, Lydersen S and Laake P (2011) Recommended confidence intervals for two inde-
pendent binomial proportions, Statistical Methods in Medical Research 0(0) 1-31

See Also

BinomCI, MultinomCI, binom.test, prop.test, BinomRatioCI

Examples

x1 <- 56; n1 <- 70; x2 <- 48; n2 <- 80
xci <- BinomDiffCI(x1, n1, x2, n2, method=c("wald", "waldcc", "ac", "score",

"scorecc", "mn", "mee", "blj", "ha"))
Format(xci[,-1], digits=4)

x1 <- 9; n1 <- 10; x2 <- 3; n2 <- 10
yci <- BinomDiffCI(x1, n1, x2, n2, method=c("wald", "waldcc", "ac", "score",

"scorecc", "mn", "mee", "blj", "ha"))
Format(yci[, -1], digits=4)

# https://www.lexjansen.com/wuss/2016/127_Final_Paper_PDF.pdf, page 9
SetNames(round(

BinomDiffCI(56, 70, 48, 80,
method=c("wald", "waldcc", "hal",

"jp", "mee",
"mn", "score", "scorecc",
"ha", "ac", "blj"))[,-1], 4),

rownames=c("1. Wald, no CC", "2. Wald, CC", "3. Haldane", "4. Jeffreys-Perks",
"5. Mee", "6. Miettinen-Nurminen", "10. Score, no CC", "11. Score, CC",
"12. Hauck-Andersen", "13. Agresti-Caffo", "16. Brown-Li"))

BinomRatioCI Confidence Intervals for the Ratio of Binomial Proportions

Description

A number of methods have been develeloped for obtaining confidence intervals for the ratio of
two binomial proportions. These include the Wald/Katz-log method (Katz et al. 1978), adjusted-
log (Walter 1975, Pettigrew et al. 1986), Koopman asymptotic score (Koopman 1984), Inverse
hyperbolic sine transformation (Newman 2001), the Bailey method (Bailey (1987), and the Noether
(1957) procedure. Koopman results are found iteratively for most intervals using root finding.



76 BinomRatioCI

Usage

BinomRatioCI(x1, n1, x2, n2, conf.level = 0.95,
sides = c("two.sided", "left", "right"),
method = c("katz.log", "adj.log", "bailey", "koopman", "noether",

"sinh-1", "boot"),
tol = .Machine$double.eps^0.25, R = 1000)

Arguments

x1 number of successes for the ratio numerator.

n1 number of trials for the ratio numerator.

x2 number of successes for the ratio denominator.

n2 number of successes for the ratio denominator.

conf.level confidence level, defaults to 0.95.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method confidence interval method, one of "katz.log" (default), "adj.log", "bailey",
"boot", "koopman", "noether" or "sinh-1". Can be abbreviated.

tol The desired accuracy (convergence tolerance) for the iterative root finding pro-
cedure when finding Koopman intevals. The default is taken to be the smallest
positive floating-point number of the workstation implementing the function,
raised to the 0.25 power, and will normally be approximately 0.0001.

R If method "boot" is chosen, the number of bootstrap iterations.

Details

All arguments are being recycled.

Let Y1 and Y2 be multinomial random variables with parameters n1, π1i, and n2, π2i, respectively;
where i = {1, 2, 3, . . . , r}. This encompasses the binomial case in which r = 1. We define the true
selection ratio for the ith resource of r total resources to be:

θi =
π1i

π2i

where π1i and π2i represent the proportional use and availability of the ith resource, respectively.
Note that if r = 1 the selection ratio becomes relative risk. The maximum likelihood estimators for
π1i and π2i are the sample proportions:

π̂1i =
y1i
n1

,

and
π̂2i =

y2i
n2

where y1i and y2i are the observed counts for use and availability for the ith resource. The estimator
for θi is:



BinomRatioCI 77

θ̂i =
π̂1i

π̂2i
.

Method Algorithm

Katz-log θ̂i× exp(±z1 − α/2σ̂W ),
where σ̂2

W = (1−π̂1i)
π̂1in1

+ (1−π̂2i)
π̂2in2

.

Adjusted-log θ̂Ai× exp(±z1 − α/2σ̂A),
where θ̂Ai =

y1i+0.5/n1+0.5
y2i+0.5/n2+0.5 ,

σ̂2
A = 1

y1+0.5 − 1
n1+0.5 + 1

y2+0.5 − 1
n2+0.5 .

Bailey θ̂i

[
1±z1−(α/2)(π̂′

1i/y1i+π̂′
2i/y2i−z1−(α/2)2π̂′

1iπ̂
′
2i/9y1iy2i)

1/2
/3

1−z1−(α/2)2 π̂
′
2i/9y2i

]3
,

where π̂1i
′ = 1 - π̂1i, and π̂′

2i = 1 - π̂2i.

Inv. hyperbolic sine ln(θ̂i)±
[
2sinh−1

(
z(1−α/2)

2

√
1
y1i

− 1
n1

+ 1
y2i

− 1
n2

)]
,

Koopman Find X2(θ0) = χ2
1(1− α), where

π̃1i =
θ0(n1+y2i)+y1i+n2−[{θ0(n1+y2i)+y1i+n2}2−4θ0(n1+n2)(y1i+y2i)]

0.5

2(n1+n2)
,

π̃2i =
π̃1i

θ0
, andX2(θ0) =

(y1i−n1π̃1i)
2

n1π̃1i(1−π̃1i)

{
1 + n1(θ0−π̃1i)

n2(1−π̃1i)

}
.

Noether θ̂i ± z1 − α/2σ̂N ,

where σ̂2
N = θ̂2i

(
1
y1i

− 1
n1

+ 1
y2i

− 1
n2

)
.

Exception handling strategies are generally necessary in the cases x1 = 0, n1 = x1, x2 = 0, and n2

= x2 (see Aho and Bowyer, in review).

The bootstrap method currently employs percentile confidence intervals.

Value

A matrix with 3 columns containing the estimate, the lower and the upper confidence intervall.

Author(s)

Ken Aho <kenaho1@gmail.com>, some tweaks Andri Signorell <andri@signorell.net>

References

Agresti, A., Min, Y. (2001) On small-sample confidence intervals for parameters in discrete distri-
butions. Biometrics 57: 963-97.

Aho, K., and Bowyer, T. (In review) Confidence intervals for ratios of multinomial proportions:
implications for selection ratios. Methods in Ecology and Evolution.

Bailey, B.J.R. (1987) Confidence limits to the risk ratio. Biometrics 43(1): 201-205.



78 BinTree

Katz, D., Baptista, J., Azen, S. P., and Pike, M. C. (1978) Obtaining confidence intervals for the risk
ratio in cohort studies. Biometrics 34: 469-474

Koopman, P. A. R. (1984) Confidence intervals for the ratio of two binomial proportions. Biometrics
40:513-517.

Manly, B. F., McDonald, L. L., Thomas, D. L., McDonald, T. L. and Erickson, W.P. (2002) Resource
Selection by Animals: Statistical Design and Analysis for Field Studies. 2nd edn. Kluwer, New
York, NY

Newcombe, R. G. (2001) Logit confidence intervals and the inverse sinh transformation. The Amer-
ican Statistician 55: 200-202.

Pettigrew H. M., Gart, J. J., Thomas, D. G. (1986) The bias and higher cumulants of the logarithm
of a binomial variate. Biometrika 73(2): 425-435.

Walter, S. D. (1975) The distribution of Levins measure of attributable risk. Biometrika 62(2):
371-374.

See Also

BinomCI, BinomDiffCI

Examples

# From Koopman (1984)

BinomRatioCI(x1 = 36, n1 = 40, x2 = 16, n2 = 80, method = "katz")
BinomRatioCI(x1 = 36, n1 = 40, x2 = 16, n2 = 80, method = "koop")

BinTree Binary Tree

Description

Create a binary tree of a given number of nodes n. Can be used to organize a sorted numeric vector
as a binary tree.

Usage

BinTree(n)

PlotBinTree(x, main="Binary tree", horiz=FALSE, cex=1.0, col=1, ...)

Arguments

n integer, size of the tree

x numeric vector to be organized as binary tree.

main main title of the plot.



BinTree 79

horiz logical, should the plot be oriented horizontally or vertically. The latter is de-
fault.

cex character extension factor for the labels.

col color of the linesegments of the plot.

... the dots are sent to Canvas.

Details

If we index the nodes of the tree as 1 for the top, 2–3 for the next horizontal row, 4–7 for the next,
. . . then the parent-child traversal becomes particularly easy. The basic idea is that the rows of the
tree start at indices 1, 2, 4, . . . .

BinTree(13) yields the vector c(8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, 7) meaning that the small-
est element will be in position 8 of the tree, the next smallest in position 4, etc.

Value

an integer vector of length n

Author(s)

Terry Therneau <therneau.terry@mayo.edu>
Andri Signorell <andri@signorell.net> (plot)

Examples

BinTree(12)

x <- sort(sample(100, 24))
z <- PlotBinTree(x, cex=0.8)

# Plot example - Titanic data, for once from a somwhat different perspective
tab <- apply(Titanic, c(2,3,4), sum)
cprob <- c(1, prop.table(apply(tab, 1, sum))

, as.vector(aperm(prop.table(apply(tab, c(1,2), sum), 1), c(2, 1)))
, as.vector(aperm(prop.table(tab, c(1,2)), c(3,2,1)))

)

PlotBinTree(round(cprob[BinTree(length(cprob))],2), horiz=TRUE, cex=0.8,
main="Titanic")

text(c("sex","age","survived"), y=0, x=c(1,2,3)+1)



80 BootCI

BootCI Simple Bootstrap Confidence Intervals

Description

Convenience wrapper for calculating bootstrap confidence intervals for univariate and bivariate
statistics.

Usage

BootCI(x, y = NULL, FUN, ..., bci.method = c("norm", "basic", "stud", "perc", "bca"),
conf.level = 0.95, sides = c("two.sided", "left", "right"), R = 999)

Arguments

x a (non-empty) numeric vector of data values.

y NULL (default) or a vector with compatible dimensions to x, when a bivariate
statistic is used.

FUN the function to be used

bci.method A vector of character strings representing the type of intervals required. The
value should be any subset of the values "norm", "basic", "stud", "perc",
"bca", as it is passed on as method to boot.ci.

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

... further arguments are passed to the function FUN.

R The number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights.

Value

a named numeric vector with 3 elements:

est the specific estimate, as calculated by FUN

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>



BoxCox 81

See Also

MeanCI, MedianCI

Examples

set.seed(1984)
BootCI(d.pizza$temperature, FUN=mean, na.rm=TRUE, bci.method="basic")
BootCI(d.pizza$temperature, FUN=mean, trim=0.1, na.rm=TRUE, bci.method="basic")

BootCI(d.pizza$temperature, FUN=Skew, na.rm=TRUE, bci.method="basic")

BootCI(d.pizza$operator, d.pizza$area, FUN=CramerV)

spearman <- function(x,y) cor(x, y, method="spearman", use="p")
BootCI(d.pizza$temperature, d.pizza$delivery_min, FUN=spearman)

BoxCox Box Cox Transformation

Description

BoxCox() returns a transformation of the input variable using a Box-Cox transformation.
BoxCoxInv() reverses the transformation.

Usage

BoxCox(x, lambda)
BoxCoxInv(x, lambda)

Arguments

x a numeric vector

lambda transformation parameter

Details

The Box-Cox transformation is given by

fλ(x) =

{
xλ−1

λ for λ ̸= 0
log(x) for λ = 0

Value

a numeric vector of the same length as x.

Note

These two functions are borrowed from library(forecast).



82 BoxCoxLambda

Author(s)

Rob J Hyndman <rob.hyndman@monash.edu>

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246.

See Also

Use BoxCoxLambda or boxcox in library(MASS) to find optimal lambda values.

Examples

# example by Greg Snow
x <- rlnorm(500, 3, 2)

par(mfrow=c(2,2))
qqnorm(x, main="Lognormal")
qqnorm(BoxCox(x, 1/2), main="BoxCox(lambda=0.5)")
qqnorm(BoxCox(x, 0), main="BoxCox(lambda=0)")

PlotFdist(BoxCox(x, 0))

bx <- BoxCox(x, lambda = BoxCoxLambda(x) )

BoxCoxLambda Automatic Selection of Box Cox Transformation Parameter

Description

An automatic selection of the Box Cox transformation parameter is estimated with two methods.
Guerrero’s (1993) method yields a lambda which minimizes the coefficient of variation for subseries
of x. For method "loglik", the value of lambda is chosen to maximize the profile log likelihood
of a linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal
data, a linear time trend with seasonal dummy variables is used.

Usage

BoxCoxLambda(x, method = c("guerrero", "loglik"), lower = -1, upper = 2)

Arguments

x a numeric vector or time series

method method to be used in calculating lambda. Can be either "guerrero" (default) or
"loglik".

lower lower limit for possible lambda values, default is -1.

upper upper limit for possible lambda values, default is 2.



BoxedText 83

Value

a number indicating the Box-Cox transformation parameter.

Note

This function was previously published as BoxCox.lambda() in the forecast package and has been
integrated here without logical changes.

Author(s)

Leanne Chhay and Rob J Hyndman

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246.

Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of Fore-
casting, 12, 37–48.

See Also

BoxCox

Examples

lambda <- BoxCoxLambda(AirPassengers, lower=0)

BoxedText Add Text in a Box to a Plot

Description

BoxedText draws the strings given in the vector labels at the coordinates given by x and y, sur-
rounded by a rectangle.

Usage

BoxedText(x, ...)

## Default S3 method:
BoxedText(x, y = NULL, labels = seq_along(x), adj = NULL, pos = NULL, offset = 0.5,

vfont = NULL, cex = 1, col = NULL, font = NULL, srt = 0,
xpad = 0.2, ypad = 0.2, density = NULL, angle = 45, bg = NA,
border = par("fg"), lty = par("lty"), lwd = par("lwd"), ...)



84 BoxedText

Arguments

x, y numeric vectors of coordinates where the text labels should be written. If the
length of x and y differs, the shorter one is recycled.

labels a character vector or expression specifying the text to be written. An attempt
is made to coerce other language objects (names and calls) to expressions, and
vectors and other classed objects to character vectors by as.character. If labels
is longer than x and y, the coordinates are recycled to the length of labels.

adj The value of adj determines the way in which text strings are justified. A value of
0 produces left-justified text, 0.5 (the default) centered text and 1 right-justified
text. (Any value in [0, 1] is allowed, and on most devices values outside that
interval will also work.) Note that the adj argument of text also allows adj = c(x,
y) for different adjustment in x- and y- directions.

pos a position specifier for the text. If specified this overrides any adj value given.
Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above
and to the right of the specified coordinates.

offset when pos is specified, this value gives the offset of the label from the specified
coordinate in fractions of a character width.

vfont NULL for the current font family, or a character vector of length 2 for Hershey
vector fonts. The first element of the vector selects a typeface and the second
element selects a style. Ignored if labels is an expression.

cex numeric character expansion factor; multiplied by par("cex") yields the final
character size. NULL and NA are equivalent to 1.0.

col, font the color and (if vfont = NULL) font to be used, possibly vectors. These default
to the values of the global graphical parameters in par().

srt The string rotation in degrees.

xpad, ypad The proportion of the rectangles to the extent of the text within.

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. A zero value of density means no shading lines
whereas negative values (and NA) suppress shading (and so allow color filling).

angle angle (in degrees) of the shading lines.

bg color(s) to fill or shade the rectangle(s) with. The default NA (or also NULL)
means do not fill, i.e., draw transparent rectangles, unless density is specified.

border color for rectangle border(s). The default is par("fg"). Use border = NA to
omit borders (this is the default). If there are shading lines, border = TRUE
means use the same colour for the border as for the shading lines.

lty line type for borders and shading; defaults to "solid".

lwd line width for borders and shading. Note that the use of lwd = 0 (as in the exam-
ples) is device-dependent.

... additional arguments are passed to the text function.

Author(s)

Andri Signorell <andri@signorell.net>



BreslowDayTest 85

See Also

SpreadOut, similar function in package plotrix boxed.labels (lacking rotation option)

Examples

Canvas(xpd=TRUE)

BoxedText(0, 0, adj=0, label="This is boxed text", srt=seq(0,360,20), xpad=.3, ypad=.3)
points(0,0, pch=15)

BreslowDayTest Breslow-Day Test for Homogeneity of the Odds Ratios

Description

Calculates the Breslow-Day test of homogeneity for a 2 × 2 × k table, in order to investigate if all
k strata have the same OR. If OR is not given, the Mantel-Haenszel estimate is used.

Usage

BreslowDayTest(x, OR = NA, correct = FALSE)

Arguments

x a 2× 2× k table.

OR the odds ratio to be tested against. If left undefined (default) the Mantel-Haenszel
estimate will be used.

correct If TRUE, the Breslow-Day test with Tarone’s adjustment is computed, which
subtracts an adjustment factor to make the resulting statistic asymptotically chi-
square.

Details

For the Breslow-Day test to be valid, the sample size should be relatively large in each stratum,
and at least 80% of the expected cell counts should be greater than 5. Note that this is a stricter
sample size requirement than the requirement for the Cochran-Mantel-Haenszel test for tables, in
that each stratum sample size (not just the overall sample size) must be relatively large. Even when
the Breslow-Day test is valid, it might not be very powerful against certain alternatives, as discussed
in Breslow and Day (1980).

Alternatively, it might be better to cast the entire inference problem into the setting of a logistic
regression model. Here, the underlying question of the Breslow-Day test can be answered by in-
vestigating whether an interaction term with the strata variable is necessary (e.g. using a likelihood
ratio test using the anova function).

Author(s)

Michael Hoehle <hoehle@math.su.se>



86 BreslowDayTest

References

Breslow, N. E., N. E. Day (1980) The Analysis of Case-Control Studies Statistical Methods in
Cancer Research: Vol. 1. Lyon, France, IARC Scientific Publications.

Tarone, R.E. (1985) On heterogeneity tests based on efficient scores, Biometrika, 72, pp. 91-95.

Jones, M. P., O’Gorman, T. W., Lemka, J. H., and Woolson, R. F. (1989) A Monte Carlo Investiga-
tion of Homogeneity Tests of the Odds Ratio Under Various Sample Size Configurations Biometrics,
45, 171-181

Breslow, N. E. (1996) Statistics in Epidemiology: The Case-Control Study Journal of the American
Statistical Association, 91, 14-26.

See Also

WoolfTest

Examples

migraine <- xtabs(freq ~ .,
cbind(expand.grid(treatment=c("active", "placebo"),

response =c("better", "same"),
gender =c("female", "male")),

freq=c(16, 5, 11, 20, 12, 7, 16, 19))
)

# get rid of gender
tab <- xtabs(Freq ~ treatment + response, migraine)
Desc(tab)

# only the women
female <- migraine[,, 1]
Desc(female)

# .. and the men
male <- migraine[,, 2]
Desc(male)

BreslowDayTest(migraine)
BreslowDayTest(migraine, correct = TRUE)

salary <- array(
c(38, 12, 102, 141, 12, 9, 136, 383),
dim=c(2, 2, 2),
dimnames=list(exposure=c("exposed", "not"),

disease =c("case", "control"),
salary =c("<1000", ">=1000"))
)

# common odds ratio = 4.028269
BreslowDayTest(salary, OR = 4.02)



BreuschGodfreyTest 87

BreuschGodfreyTest Breusch-Godfrey Test

Description

BreuschGodfreyTest performs the Breusch-Godfrey test for higher-order serial correlation.

Usage

BreuschGodfreyTest(
formula,
order = 1,
order.by = NULL,
type = c("Chisq", "F"),
data = list(),
fill = 0

)

Arguments

formula a symbolic description for the model to be tested (or a fitted "lm" object).

order integer. maximal order of serial correlation to be tested.

order.by Either a vector z or a formula with a single explanatory variable like ~ z. The
observations in the model are ordered by the size of z. If set to NULL (the default)
the observations are assumed to be ordered (e.g., a time series).

type the type of test statistic to be returned. Either "Chisq" for the Chi-squared test
statistic or "F" for the F test statistic.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which BreuschGodfreyTest is called
from.

fill starting values for the lagged residuals in the auxiliary regression. By default 0
but can also be set to NA.

Details

Under H0 the test statistic is asymptotically Chi-squared with degrees of freedom as given in
parameter. If type is set to "F" the function returns a finite sample version of the test statistic,
employing an F distribution with degrees of freedom as given in parameter.

By default, the starting values for the lagged residuals in the auxiliary regression are chosen to be 0
(as in Godfrey 1978) but could also be set to NA to omit them.

BreuschGodfreyTest also returns the coefficients and estimated covariance matrix from the auxil-
iary regression that includes the lagged residuals. Hence, CoefTest (package: RegClassTools) can
be used to inspect the results. (Note, however, that standard theory does not always apply to the
standard errors and t-statistics in this regression.)



88 BreuschGodfreyTest

Value

A list with class "BreuschGodfreyTest" inheriting from "htest" containing the following com-
ponents:

statistic the value of the test statistic.

p.value the p-value of the test.

parameter degrees of freedom.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

coefficients coefficient estimates from the auxiliary regression.

vcov corresponding covariance matrix estimate.

Note

This function was previously published as bgtest in the lmtest package and has been integrated
here without logical changes.

Author(s)

David Mitchell david.mitchell@dotars.gov.au, Achim Zeileis

References

Johnston, J. (1984): Econometric Methods, Third Edition, McGraw Hill Inc.

Godfrey, L.G. (1978): ‘Testing Against General Autoregressive and Moving Average Error Models
when the Regressors Include Lagged Dependent Variables’, Econometrica, 46, 1293-1302.

Breusch, T.S. (1979): ‘Testing for Autocorrelation in Dynamic Linear Models’, Australian Eco-
nomic Papers, 17, 334-355.

See Also

DurbinWatsonTest

Examples

## Generate a stationary and an AR(1) series
x <- rep(c(1, -1), 50)

y1 <- 1 + x + rnorm(100)

## Perform Breusch-Godfrey test for first-order serial correlation:
BreuschGodfreyTest(y1 ~ x)

## or for fourth-order serial correlation
BreuschGodfreyTest(y1 ~ x, order = 4)

## Compare with Durbin-Watson test results:
DurbinWatsonTest(y1 ~ x)

mailto:david.mitchell@dotars.gov.au


BrierScore 89

y2 <- stats::filter(y1, 0.5, method = "recursive")
BreuschGodfreyTest(y2 ~ x)

BrierScore Brier Score for Assessing Prediction Accuracy

Description

Calculate Brier score for assessing the quality of the probabilistic predictions of binary events.

Usage

BrierScore(x, pred = NULL, scaled = FALSE, ...)

Arguments

x either a model object if pred is not supplied or the response variable if it is.

pred the predicted values

scaled logical, defining if scaled or not. Default is FALSE.

... further arguments to be passed to other functions.

Details

The Brier score is a proper score function that measures the accuracy of probabilistic predictions.
It is applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive
discrete outcomes. The set of possible outcomes can be either binary or categorical in nature, and
the probabilities assigned to this set of outcomes must sum to one (where each individual probability
is in the range of 0 to 1).

It’s calculated as

1

n
·

n∑
i=1

(pi − oi)
2 where pipredictedprobability and oiobservedvalueoutof(0, 1)

The lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note
that the Brier score, in its most common formulation, takes on a value between zero and one, since
this is the largest possible difference between a predicted probability (which must be between zero
and one) and the actual outcome (which can take on values of only 0 and 1). (In the original (1950)
formulation of the Brier score, the range is double, from zero to two.)

Value

a numeric value

Author(s)

Andri Signorell <andri@signorell.net>



90 BrierScoreCI

References

Brier, G. W. (1950) Verification of forecasts expressed in terms of probability. Monthly Weather
Review, 78, 1-3.

See Also

Conf

Examples

r.glm <- glm(Survived ~ ., data=Untable(Titanic), family=binomial)

BrierScore(r.glm)

BrierScoreCI Confidence Intervals for the BrierScore

Description

Calculate bootstrap intervals for the Brier score, based on a glm.

Usage

BrierScoreCI(
object,
conf.level = 0.95,
sides = c("two.sided", "left", "right"),
...

)

Arguments

object the model object as returned by glm.

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one of
"two.sided" (default), "left" or "right". "left" would be analogue to a
hypothesis of "greater" in a t.test. You can specify just the initial letter.

... further arguments are passed to the boot function. Supported arguments are
type ("norm", "basic", "stud", "perc", "bca"), parallel and the number
of bootstrap replicates R. If not defined those will be set to their defaults, being
"basic" for type, option "boot.parallel" (and if that is not set, "no") for
parallel and 999 for R.



BubbleLegend 91

Value

a numeric vector with 3 elements:

mean mean

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell andri@signorell.net

See Also

BrierScore

Examples

utils::data(Pima.te, package = "MASS")
r.logit <- glm(type ~ ., data=Pima.te, family="binomial")

# calculate Brier score with confidence intervals
BrierScore(r.logit)
BrierScoreCI(r.logit, R=99) # use higher R in real life!

BubbleLegend Add a Legend to a Bubble Plot

Description

Add a legend for bubbles to a bubble plot.

Usage

BubbleLegend(x, y = NULL, area, cols, labels = NULL, cols.lbl = "black",
width = NULL, xjust = 0, yjust = 1, inset = 0, border = "black",
frame = TRUE, adj = c(0.5, 0.5), cex = 1, cex.names = 1,
bg = NULL, ...)

Arguments

x the left x-coordinate to be used to position the legend. See ’Details’.

y the top y-coordinate to be used to position the legend. See ’Details’.

area the area(s) for the bubbles in bubble legend.

cols the color appearing in the legend.

labels a vector of labels to be placed at the right side of the legend.

cols.lbl the textcolor for the labels of the bubbles.

mailto:andri@signorell.net


92 BubbleLegend

width the width of the legend.

xjust how the legend is to be justified relative to the legend x location. A value of 0
means left justified, 0.5 means centered and 1 means right justified.

yjust the same as xjust for the legend y location.

inset inset distance(s) from the margins as a fraction of the plot region when legend
is placed by keyword.

border defines the bordor color of each rectangle. Default is none (NA).

frame defines the bordor color of the frame around the whole legend. Default is none
(NA).

adj text alignment, horizontal and vertical.

cex extension factor for the area, default 1.0.

cex.names character extension for the labels, default 1.0.

bg the background color for the bubble legend.

... further arguments are passed to the function text.

Details

The labels are placed in the middle of the legend.

The location of the legend may be specified by setting x to a single keyword from the list "bottomright",
"bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This
places the legend on the inside of the plot frame at the given location. Partial argument matching
is used. The optional inset argument specifies how far the legend is inset from the plot margins. If
a single value is given, it is used for both margins; if two values are given, the first is used for x-
distance, the second for y-distance. This is the same behaviour as it’s implemented in legend.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

legend, FindColor, legend

Examples

PlotBubble(x=d.pizza$delivery_min, y=d.pizza$temperature, area=d.pizza$price,
xlab="delivery time", ylab="temperature",
col=SetAlpha(as.numeric(d.pizza$area)+2, .5), border="darkgrey",
na.rm=TRUE, main="Price-Bubbles", panel.first=grid())

BubbleLegend("bottomleft", area=c(1500, 1000, 500), frame=TRUE,
cols=SetAlpha("steelblue",0.5), bg="green",
labels=c(1500, 1000, 500), cex=0.8,
cols.lbl=c("yellow", "red","blue"))



Canvas 93

Canvas Canvas for Geometric Plotting

Description

This is just a wrapper for creating an empty plot with suitable defaults for plotting geometric shapes.

Usage

Canvas(xlim = NULL, ylim = xlim, main = NULL, xpd = par("xpd"),
mar=c(5.1,5.1,5.1,5.1), asp = 1, bg = par("bg"), usrbg = "white", ...)

Arguments

xlim, ylim the xlims and ylims for the plot. Default is c(-1, 1).

xpd expand drawing area, defaults to par("xpd").

main the main title on top of the plot.

mar set margins. Defaults to c(5.1,5.1,5.1,5.1).

asp numeric, giving the aspect ratio y/x. (See plot.window for details. Default is 1.

bg the background color of the plot, defaults to par("bg"), which usually will be
"white".

usrbg the color of the user space of the plot, defaults to "white".

... additional arguments are passed to the plot() command.

Details

The plot is created with these settings:
asp = 1, xaxt = "n", yaxt = "n", xlab = "", ylab = "", frame.plot = FALSE.

Value

a list of all the previous values of the parameters changed (returned invisibly)

Author(s)

Andri Signorell <andri@signorell.net>

Examples

Canvas(7)
text(0, 0, "Hello world!", cex=5)



94 CartToPol

CartToPol Transform Cartesian to Polar/Spherical Coordinates and Vice Versa

Description

Transform cartesian into polar coordinates, resp. to spherical coordinates and vice versa.

Usage

CartToPol(x, y)
PolToCart(r, theta)

CartToSph(x, y, z, up = TRUE)
SphToCart(r, theta, phi, up = TRUE)

Arguments

x, y, z vectors with the xy-coordianates to be transformed.

r a vector with the radius of the points.

theta a vector with the angle(s) of the points.

phi a vector with the angle(s) of the points.

up logical. If set to TRUE (default) theta is measured from x-y plane, else theta is
measured from the z-axis.

Details

Angles are in radians, not degrees (i.e., a right angle is pi/2). Use DegToRad to convert, if you don’t
wanna do it by yourself.
All parameters are recycled if necessary.

Value

PolToCart returns a list of x and y coordinates of the points.
CartToPol returns a list of r for the radius and theta for the angles of the given points.

Author(s)

Andri Signorell <andri@signorell.net>, Christian W. Hoffmann <christian@echoffmann.ch>

Examples

CartToPol(x=1, y=1)
CartToPol(x=c(1,2,3), y=c(1,1,1))
CartToPol(x=c(1,2,3), y=1)

PolToCart(r=1, theta=pi/2)



CatTable 95

PolToCart(r=c(1,2,3), theta=pi/2)

CartToSph(x=1, y=2, z=3) # r=3.741657, theta=0.930274, phi=1.107149

CatTable Function to write a table

Description

CatTable helps printing a table, if is has to be broken into multiple rows. Rowlabels will be repeated
after every new break.

Usage

CatTable(tab, wcol, nrepchars, width = getOption("width"))

Arguments

tab the rows of a table to be printed, pasted together in one string with constant
columnwidth.

wcol integer, the width of the columns. All columns must have the same width.
nrepchars integer, the number of characters to be repeated with every break. This is typi-

cally the maximum width of the rowlabels.
width integer, the width of the whole table. Default is the width of the current com-

mand window (getOption("width")).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

table, paste

Examples

options(scipen=8)

# used in bivariate description functions
Desc(temperature ~ cut(delivery_min, breaks=40), data=d.pizza)

txt <- c(
paste(sample(letters, 500, replace=TRUE), collapse="")

, paste(sample(letters, 500, replace=TRUE), collapse="")
, paste(sample(letters, 500, replace=TRUE), collapse="")

)
txt <- paste(c("aaa","bbb","ccc"), txt, sep="")

CatTable(txt, nrepchars=3, wcol=5)



96 CCC

CCC Concordance Correlation Coefficient

Description

Calculates Lin’s concordance correlation coefficient for agreement on a continuous measure.

Usage

CCC(x, y, ci = "z-transform", conf.level = 0.95, na.rm = FALSE)

Arguments

x a vector, representing the first set of measurements.
y a vector, representing the second set of measurements.
ci a character string, indicating the method to be used. Options are z-transform

or asymptotic.
conf.level magnitude of the returned confidence interval. Must be a single number between

0 and 1.
na.rm logical, indicating whether NA values should be stripped before the computation

proceeds. If set to TRUE only the complete cases of the ratings will be used.
Defaults to FALSE.

Details

Computes Lin’s (1989, 2000) concordance correlation coefficient for agreement on a continuous
measure obtained by two methods. The concordance correlation coefficient combines measures of
both precision and accuracy to determine how far the observed data deviate from the line of perfect
concordance (that is, the line at 45 degrees on a square scatter plot). Lin’s coefficient increases in
value as a function of the nearness of the data’s reduced major axis to the line of perfect concordance
(the accuracy of the data) and of the tightness of the data about its reduced major axis (the precision
of the data).

Both x and y values need to be present for a measurement pair to be included in the analysis. If either
or both values are missing (i.e. coded NA) then the measurement pair is deleted before analysis.

Value

A list containing the following:

rho.c the concordance correlation coefficient.
s.shift the scale shift.
l.shift the location shift.
C.b a bias correction factor that measures how far the best-fit line deviates from a

line at 45 degrees. No deviation from the 45 degree line occurs when C.b = 1.
See Lin (1989, page 258).

blalt a data frame with two columns: mean the mean of each pair of measurements,
delta vector y minus vector x.



CCC 97

Author(s)

Mark Stevenson <mark.stevenson1@unimelb.edu.au>

References

Bland J, Altman D (1986). Statistical methods for assessing agreement between two methods of
clinical measurement. The Lancet 327: 307 - 310.

Bradley E, Blackwood L (1989). Comparing paired data: a simultaneous test for means and vari-
ances. American Statistician 43: 234 - 235.

Dunn G (2004). Statistical Evaluation of Measurement Errors: Design and Analysis of Reliability
Studies. London: Arnold.

Hsu C (1940). On samples from a normal bivariate population. Annals of Mathematical Statistics
11: 410 - 426.

Krippendorff K (1970). Bivariate agreement coefficients for reliability of data. In: Borgatta E,
Bohrnstedt G (eds) Sociological Methodology. San Francisco: Jossey-Bass, pp. 139 - 150.

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255
- 268.

Lin L (2000). A note on the concordance correlation coefficient. Biometrics 56: 324 - 325.

Pitman E (1939). A note on normal correlation. Biometrika 31: 9 - 12.

Reynolds M, Gregoire T (1991). Comment on Bradley and Blackwood. American Statistician 45:
163 - 164.

Snedecor G, Cochran W (1989). Statistical Methods. Ames: Iowa State University Press.

See Also

ICC, KendallW

Examples

## Concordance correlation plot:
set.seed(seed = 1234)
method1 <- rnorm(n = 100, mean = 0, sd = 1)
method2 <- method1 + runif(n = 100, min = 0, max = 1)

## Introduce some missing values:
method1[50] <- NA
method2[75] <- NA

tmp.ccc <- CCC(method1, method2, ci = "z-transform",
conf.level = 0.95)

lab <- paste("CCC: ", round(tmp.ccc$rho.c[,1], digits = 2), " (95% CI ",
round(tmp.ccc$rho.c[,2], digits = 2), " - ",
round(tmp.ccc$rho.c[,3], digits = 2), ")", sep = "")

z <- lm(method2 ~ method1)

par(pty = "s")



98 Clockwise

plot(method1, method2, xlim = c(0, 5), ylim = c(0,5), xlab = "Method 1",
ylab = "Method 2", pch = 16)

abline(a = 0, b = 1, lty = 2)
abline(z, lty = 1)
legend(x = "topleft", legend = c("Line of perfect concordance",

"Reduced major axis"), lty = c(2,1), lwd = c(1,1), bty = "n")
text(x = 1.55, y = 3.8, labels = lab)

## Bland and Altman plot (Figure 2 from Bland and Altman 1986):
x <- c(494,395,516,434,476,557,413,442,650,433,417,656,267,

478,178,423,427)

y <- c(512,430,520,428,500,600,364,380,658,445,432,626,260,
477,259,350,451)

tmp.ccc <- CCC(x, y, ci = "z-transform", conf.level = 0.95)
tmp.mean <- mean(tmp.ccc$blalt$delta)
tmp.sd <- sqrt(var(tmp.ccc$blalt$delta))

plot(tmp.ccc$blalt$mean, tmp.ccc$blalt$delta, pch = 16,
xlab = "Average PEFR by two meters (L/min)",
ylab = "Difference in PEFR (L/min)", xlim = c(0,800),
ylim = c(-140,140))

abline(h = tmp.mean, lty = 1, col = "gray")
abline(h = tmp.mean - (2 * tmp.sd), lty = 2, col = "gray")
abline(h = tmp.mean + (2 * tmp.sd), lty = 2, col = "gray")
legend(x = "topleft", legend = c("Mean difference",

"Mean difference +/ 2SD"), lty = c(1,2), bty = "n")
legend(x = 0, y = 125, legend = c("Difference"), pch = 16,

bty = "n")

Clockwise Calculates Begin and End Angle From a List of Given Angles in Clock-
wise Mode

Description

Transforms given angles in counter clock mode into clockwise angles.

Usage

Clockwise(x, start = 0)

Arguments

x a vector of angles
start the starting angle for the transformation. Defaults to 0.

Details

Sometimes there’s need for angles being defined the other way round.



Closest 99

Value

a data.frame with two columns, containing the start and end angles.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotPolar

Examples

Clockwise( c(0, pi/4, pi/2, pi))

Closest Find the Closest Value

Description

Find the closest value(s) of a number in a vector x. Multiple values will be reported, if the differ-
ences are the same or if there are duplicates of the same value.

Usage

Closest(x, a, which = FALSE, na.rm = FALSE)

Arguments

x the vector to be searched in

a the reference value

which a logical value defining if the index position or the value should be returned. By
default will the value be returned.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Value

the value or index in x which is closest to a

Author(s)

Andri Signorell <andri@signorell.net>

See Also

which



100 Coalesce

Examples

# basic
set.seed(8)
x <- runif(10) * 10
Closest(x, 3.1)
sort(x)

y <- sample(10, size=10, replace=TRUE)
# multiple observations of the same closest value
Closest(y, a=6)
# get the relevant positions
Closest(y, a=6, which=TRUE)

# two different values having the same distance
Closest(c(2, 3, 4, 5), a=3.5)

# vectorize "a"
Closest(c(2, 3, 4, 5), a=c(3.1, 3.9))

# vectorize "which"
Closest(c(2, 3, 4, 5), a=3.1, which=c(FALSE, TRUE))

# vectorize both
Closest(c(2, 3, 4, 5), a=c(3.1, 3.9), which=c(FALSE, TRUE))

Coalesce Return the First Element Not Being NA

Description

Return the first element of a vector, not being NA.

Usage

Coalesce(..., method = c("is.na", "is.null", "is.finite"), flatten = TRUE)

Arguments

... the elements to be evaluated. This can either be a single vector, several vectors
of same length, a matrix, a data.frame or a list of vectors (of same length). See
examples.

method one out of "is.na" (default), "is.null" or "is.finite". The "is.na" option
allows Inf values to be in the result, the second one eliminates them.

flatten logical, defines whether lists are going to be flattened (default TRUE).



Coalesce 101

Details

If several vectors are supplied, the evaluation will be elementwise, resp. rowwise if x is a data.frame
or a matrix. The first element of the result is the first non NA element of the first elements of all the
arguments, the second element of the result is the one of the second elements of all the arguments
and so on.
Shorter inputs (of non-zero length) are NOT recycled. The function will bark, if multiple vectors
do not all have the same dimension.
The idea is borrowed from SQL. Might sometimes be useful when preparing data in R instead of in
SQL.

Value

return a single vector of the first non NA element(s) of the given data structure.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

is.na, is.finite

Examples

Coalesce(c(NA, NA, NA, 5, 3))
Coalesce(c(NA, NULL, "a"))
Coalesce(NULL, 5, 3)

d.frm <- data.frame(matrix(c(
1, 2, NA, 4,
NA, NA, 3, 1,
NaN, 2, 3, 1,
NA, Inf, 1, 1), nrow=4, byrow=TRUE)

)

Coalesce(d.frm)
Coalesce(as.matrix(d.frm))
Coalesce(d.frm$X1, d.frm$X2, d.frm$X3, d.frm$X4)
Coalesce(d.frm$X1, d.frm$X2, d.frm$X3, d.frm$X4, method="is.finite")
Coalesce(list(d.frm[,1], d.frm[,2]))

# returns the first finite element
Coalesce(d.frm, method="is.finite")

# with characters (take care, factors won't work!)
# is.finite does not make sense here...
d.frm <- data.frame(matrix(c(

"a", "b", NA, "4",
NA, NA, "g", "m",
NA_character_,"hfdg", "rr", "m",
NA, Inf, 1, 1), nrow=4, byrow=TRUE)



102 CochranArmitageTest

, stringsAsFactors = FALSE)

Coalesce(d.frm$X1, d.frm$X2, d.frm$X3, d.frm$X4)
Coalesce(d.frm)
Coalesce(as.list(d.frm))

CochranArmitageTest Cochran-Armitage Test for Trend

Description

Perform a Cochran Armitage test for trend in binomial proportions across the levels of a single
variable. This test is appropriate only when one variable has two levels and the other variable is
ordinal. The two-level variable represents the response, and the other represents an explanatory
variable with ordered levels. The null hypothesis is the hypothesis of no trend, which means that
the binomial proportion is the same for all levels of the explanatory variable.

Usage

CochranArmitageTest(x, alternative = c("two.sided", "one.sided"))

Arguments

x a frequency table or a matrix.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "one.sided". You can specify just the initial letter.

Value

A list of class htest, containing the following components:

statistic the z-statistic of the test.

parameter the dimension of the table.

p.value the p-value for the test.

alternative a character string describing the alternative hypothesis.

method the character string “Cochran-Armitage test for trend”.

data.name a character string giving the names of the data.

Author(s)

Andri Signorell <andri@signorell.net> strongly based on code from Eric Lecoutre <lecoutre@stat.ucl.ac.be>
https://stat.ethz.ch/pipermail/r-help/2005-July/076371.html

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons

https://stat.ethz.ch/pipermail/r-help/2005-July/076371.html


CochranQTest 103

See Also

prop.trend.test

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/procstat/procstat_freq_details76.
htm

Examples

# http://www.lexjansen.com/pharmasug/2007/sp/sp05.pdf, pp. 4
dose <- matrix(c(10,9,10,7, 0,1,0,3), byrow=TRUE, nrow=2, dimnames=list(resp=0:1, dose=0:3))
Desc(dose)

CochranArmitageTest(dose)
CochranArmitageTest(dose, alternative="one.sided")

# not exactly the same as in package coin:
# independence_test(tumor ~ dose, data = lungtumor, teststat = "quad")
lungtumor <- data.frame(dose = rep(c(0, 1, 2), c(40, 50, 48)),

tumor = c(rep(c(0, 1), c(38, 2)),
rep(c(0, 1), c(43, 7)),
rep(c(0, 1), c(33, 15))))

tab <- table(lungtumor$dose, lungtumor$tumor)
CochranArmitageTest(tab)

# but similar to
prop.trend.test(tab[,1], apply(tab,1, sum))

CochranQTest Cochran’s Q test

Description

Perform the Cochran’s Q test for unreplicated randomized block design experiments with a binary
response variable and paired data.

Usage

CochranQTest(y, ...)

## Default S3 method:
CochranQTest(y, groups, blocks, ...)

## S3 method for class 'formula'
CochranQTest(formula, data, subset, na.action, ...)

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/procstat/procstat_freq_details76.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/procstat/procstat_freq_details76.htm


104 CochranQTest

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

formula a formula of the form y ~ groups | blocks.

data an optional matrix or data frame (or similar: see model.frame) containing the
variables in the formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

CochranQTest() can be used for analyzing unreplicated complete block designs (i.e., there is ex-
actly one binary observation in y for each combination of levels of groups and blocks) where the
normality assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same in
each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively. NA’s
are not allowed in groups or blocks; if y contains NA’s, corresponding blocks are removed.

Note that Cochran’s Q Test is analogue to the Friedman test with 0, 1 coded response. This is used
here for a simple implementation.

Value

A list with class htest containing the following components:

statistic the value of Cochran’s chi-squared statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "Cochran’s Q-Test".

data.name a character string giving the names of the data.

Author(s)

Andri Signorell <andri@signorell.net>

References

Cochran, W.G. (1950) The Comparison of Percentages in Matched Samples. Biometrika. 37 (3/4):
256-266. doi:10.1093/biomet/37.3-4.256. JSTOR 2332378.



CoefVar 105

Examples

# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1824

# use expand.grid, xtabs and Untable to create the dataset
d.frm <- Untable(xtabs(c(6,2,2,6,16,4,4,6) ~ .,

expand.grid(rep(list(c("F","U")), times=3))),
colnames = LETTERS[1:3])

# rearrange to long shape
d.long <- reshape(d.frm, varying=1:3, times=names(d.frm)[c(1:3)],

v.names="resp", direction="long")

# after having done the hard work of data organisation, performing the test is a piece of cake....
CochranQTest(resp ~ time | id, data=d.long)

# and let's perform a post hoc analysis using mcnemar's test
z <- split(d.long, f=d.long$time)
pairwise.table(function(i, j) {

mcnemar.test(z[[i]]$resp, z[[j]]$resp, correct=FALSE)$p.value
},
level.names = names(z),
p.adjust.method = "fdr"

)

CoefVar Coefficient of Variation

Description

Calculates the coefficient of variation and its confidence limits using various methods.

Usage

CoefVar(x, ...)

## S3 method for class 'lm'
CoefVar(x, unbiased = FALSE, na.rm = FALSE, ...)

## S3 method for class 'aov'
CoefVar(x, unbiased = FALSE, na.rm = FALSE, ...)

## Default S3 method:
CoefVar(x, weights = NULL, unbiased = FALSE,

na.rm = FALSE, ...)



106 CoefVar

CoefVarCI(K, n, conf.level = 0.95,
sides = c("two.sided", "left", "right"),
method = c("nct","vangel","mckay","verrill","naive"))

Arguments

x a (non-empty) numeric vector of data values.

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

unbiased logical value determining, if a bias correction should be used (see. details).
Default is FALSE.

K the coefficient of variation as calculated by CoefVar().

n the number of observations used for calculating the coefficient of variation.

conf.level confidence level of the interval. Defaults to 0.95.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method character string specifing the method to use for calculating the confidence inter-
vals, can be one out of: "nct" (default), "vangel", "mckay", "verrill" (cur-
rently not yet implemented) and "naive". Abbreviation of method is accepted.
See details.

na.rm logical. Should missing values be removed? Defaults to FALSE.

... further arguments (not used here).

Details

In order for the coefficient of variation to be an unbiased estimate of the true population value, the
coefficient of variation is corrected as:

CVkorr = CV ·
(
1− 1

4 · (n− 1)
+

1

n
· CV 2 +

1

2 · (n− 1)2

)
For determining the confidence intervals for the coefficient of variation a number of methods
have been proposed. CoefVarCI() currently supports five different methods. The details for the
methods are given in the specific references.

The "naive" method is based on dividing the standard confidence limit for the standard
deviation by the sample mean.

McKay’s approximation is asymptotically exact as n goes to infinity. McKay recommends
this approximation only if the coefficient of variation is less than 0.33. Note that if the coefficient
of variation is greater than 0.33, either the normality of the data is suspect or the probability of
negative values in the data is non-neglible. In this case, McKay’s approximation may not be valid.
Also, it is generally recommended that the sample size should be at least 10 before using McKay’s
approximation.

Vangel’s modified McKay method is more accurate than the McKay in most cases, particilarly
for small samples.. According to Vangel, the unmodified McKay is only more accurate when both



CoefVar 107

the coefficient of variation and alpha are large. However, if the coefficient of variation is large,
then this implies either that the data contains negative values or the data does not follow a normal
distribution. In this case, neither the McKay or the modified McKay should be used. In general, the
Vangel’s modified McKay method is recommended over the McKay method. It generally provides
good approximations as long as the data is approximately normal and the coefficient of variation is
less than 0.33. This is the default method.

See also: https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/coefvacl.htm

nct uses the noncentral t-distribution to calculate the confidence intervals. See Smithson
(2003).

Value

if no confidence intervals are requested: the estimate as numeric value (without any name)

else a named numeric vector with 3 elements

est estimate

lwr.ci lower confidence interval

upr.ci upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net>,
Michael Smithson <michael.smithson@anu.edu.au> (noncentral-t)

References

McKay, A. T. (1932). Distribution of the coefficient of variation and the extended t distribution,
Journal of the Royal Statistical Society, 95, 695–698.

Johnson, B. L., Welch, B. L. (1940). Applications of the non-central t-distribution. Biometrika, 31,
362–389.

Mark Vangel (1996) Confidence Intervals for a Normal Coefficient of Variation, American Statisti-
cian, Vol. 15, No. 1, pp. 21-26.

Kelley, K. (2007). Sample size planning for the coefcient of variation from the accuracy in param-
eter estimation approach. Behavior Research Methods, 39 (4), 755-766

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20 (8), 1-24

Smithson, M.J. (2003) Confidence Intervals, Quantitative Applications in the Social Sciences Se-
ries, No. 140. Thousand Oaks, CA: Sage. pp. 39-41

Steve Verrill (2003) Confidence Bounds for Normal and Lognormal Distribution Coefficients of
Variation, Research Paper 609, USDA Forest Products Laboratory, Madison, Wisconsin.

Verrill, S. and Johnson, R.A. (2007) Confidence Bounds and Hypothesis Tests for Normal Distribu-
tion Coefficients of Variation, Communications in Statistics Theory and Methods, Volume 36, No.
12, pp 2187-2206.



108 CohenD

See Also

Mean, SD, (both supporting weights)

Examples

set.seed(15)
x <- runif(100)
CoefVar(x, conf.level=0.95)

# est low.ci upr.ci
# 0.5092566 0.4351644 0.6151409

# Coefficient of variation for a linear model
r.lm <- lm(Fertility ~ ., swiss)
CoefVar(r.lm)

# the function is vectorized, so arguments are recyled...
# https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/coefvacl.htm
CoefVarCI(K = 0.00246, n = 195, method="vangel",

sides="two.sided", conf.level = c(.5,.8,.9,.95,.99,.999))

CohenD Cohen’s Effect Size

Description

Computes the Cohen’s d and Hedges’g effect size statistics.

Usage

CohenD(x, y = NULL, pooled = TRUE, correct = FALSE, conf.level = NA, na.rm = FALSE)

Arguments

x a (non-empty) numeric vector of data values.

y a (non-empty) numeric vector of data values.

pooled logical, indicating whether compute pooled standard deviation or the whole
sample standard deviation. Default is TRUE.

correct logical, indicating whether to apply the Hedges correction. (Default: FALSE)

conf.level confidence level of the interval. Set this to NA, if no confidence intervals should
be calculated. (This is the default)

na.rm logical. Should missing values be removed? Defaults to FALSE.



CohenKappa 109

Value

a numeric vector with 3 elements:

d the effect size d

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>, William Revelle <revelle@northwestern.edu> (CI)

References

Cohen, J. (1988) Statistical power analysis for the behavioral sciences (2nd ed.) Academic Press,
New York.

Hedges, L. V. & Olkin, I. (1985) Statistical methods for meta-analysis Academic Press, Orlando,
FL

Smithson, M.J. (2003) Confidence Intervals, Quantitative Applications in the Social Sciences Se-
ries, No. 140. Thousand Oaks, CA: Sage. pp. 39-41

See Also

mean, var

Examples

x <- d.pizza$price[d.pizza$driver=="Carter"]
y <- d.pizza$price[d.pizza$driver=="Miller"]

CohenD(x, y, conf.level=0.95, na.rm=TRUE)

CohenKappa Cohen’s Kappa and Weighted Kappa

Description

Computes the agreement rates Cohen’s kappa and weighted kappa and their confidence intervals.

Usage

CohenKappa(x, y = NULL, weights = c("Unweighted", "Equal-Spacing", "Fleiss-Cohen"),
conf.level = NA, ...)



110 CohenKappa

Arguments

x can either be a numeric vector or a confusion matrix. In the latter case x must
be a square matrix.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated. In order to get a square matrix, x and y are
coerced to factors with synchronized levels. (Note, that the vector interface can
not be used together with weights.)

weights either one out of "Unweighted" (default), "Equal-Spacing", "Fleiss-Cohen",
which will calculate the weights accordingly, or a user-specified matrix having
the same dimensions as x containing the weights for each cell.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
intervals will be calculated.

... further arguments are passed to the function table, allowing i.e. to set useNA.
This refers only to the vector interface.

Details

Cohen’s kappa is the diagonal sum of the (possibly weighted) relative frequencies, corrected for
expected values and standardized by its maximum value.
The equal-spacing weights (see Cicchetti and Allison 1971) are defined by

1− |i− j|
r − 1

r being the number of columns/rows, and the Fleiss-Cohen weights by

1− (i− j)2

(r − 1)2

The latter attaches greater importance to closer disagreements.

Data can be passed to the function either as matrix or data.frame in x, or as two numeric vec-
tors x and y. In the latter case table(x, y, ...) is calculated. Thus NAs are handled the same
way as table does. Note that tables are by default calculated without NAs. The specific argument
useNA can be passed via the ... argument.
The vector interface (x, y) is only supported for the calculation of unweighted kappa. This is be-
cause we cannot ensure a safe construction of a confusion table for two factors with different levels,
which is independent of the order of the levels in x and y. So weights might lead to inconsistent
results. The function will raise an error in this case.

Value

if no confidence intervals are requested: the estimate as numeric value

else a named numeric vector with 3 elements

kappa estimate

lwr.ci lower confidence interval

upr.ci upper confidence interval



CohenKappa 111

Author(s)

David Meyer <david.meyer@r-project.org>, some changes and tweaks Andri Signorell <andri@signorell.net>

References

Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20, 37-46.

Everitt, B.S. (1968), Moments of statistics kappa and weighted kappa. The British Journal of Math-
ematical and Statistical Psychology, 21, 97-103.

Fleiss, J.L., Cohen, J., and Everitt, B.S. (1969), Large sample standard errors of kappa and weighted
kappa. Psychological Bulletin, 72, 332-327.

Cicchetti, D.V., Allison, T. (1971) A New Procedure for Assessing Reliability of Scoring EEG Sleep
Recordings American Journal of EEG Technology, 11, 101-109.

See Also

CronbachAlpha, KappaM, KrippAlpha

Examples

# from Bortz et. al (1990) Verteilungsfreie Methoden in der Biostatistik, Springer, pp. 459
m <- matrix(c(53, 5, 2,

11, 14, 5,
1, 6, 3), nrow=3, byrow=TRUE,

dimnames = list(rater1 = c("V","N","P"), rater2 = c("V","N","P")) )

# confusion matrix interface
CohenKappa(m, weight="Unweighted")

# vector interface
x <- Untable(m)
CohenKappa(x$rater1, x$rater2, weight="Unweighted")

# pairwise Kappa
rating <- data.frame(

rtr1 = c(4,2,2,5,2, 1,3,1,1,5, 1,1,2,1,2, 3,1,1,2,1, 5,2,2,1,1, 2,1,2,1,5),
rtr2 = c(4,2,3,5,2, 1,3,1,1,5, 4,2,2,4,2, 3,1,1,2,3, 5,4,2,1,4, 2,1,2,3,5),
rtr3 = c(4,2,3,5,2, 3,3,3,4,5, 4,4,2,4,4, 3,1,1,4,3, 5,4,4,4,4, 2,1,4,3,5),
rtr4 = c(4,5,3,5,4, 3,3,3,4,5, 4,4,3,4,4, 3,4,1,4,5, 5,4,5,4,4, 2,1,4,3,5),
rtr5 = c(4,5,3,5,4, 3,5,3,4,5, 4,4,3,4,4, 3,5,1,4,5, 5,4,5,4,4, 2,5,4,3,5),
rtr6 = c(4,5,5,5,4, 3,5,4,4,5, 4,4,3,4,5, 5,5,2,4,5, 5,4,5,4,5, 4,5,4,3,5)

)

PairApply(rating, FUN=CohenKappa, symmetric=TRUE)

# Weighted Kappa
cats <- c("<10%", "11-20%", "21-30%", "31-40%", "41-50%", ">50%")
m <- matrix(c(5,8,1,2,4,2, 3,5,3,5,5,0, 1,2,6,11,2,1,

0,1,5,4,3,3, 0,0,1,2,5,2, 0,0,1,2,1,4), nrow=6, byrow=TRUE,
dimnames = list(rater1 = cats, rater2 = cats) )



112 CollapseTable

CohenKappa(m, weight="Equal-Spacing")

# supply an explicit weight matrix
ncol(m)
(wm <- outer(1:ncol(m), 1:ncol(m), function(x, y) {

1 - ((abs(x-y)) / (ncol(m)-1)) } ))
CohenKappa(m, weight=wm, conf.level=0.95)

# however, Fleiss, Cohen and Everitt weight similarities
fleiss <- matrix(c(

106, 10, 4,
22, 28, 10,
2, 12, 6
), ncol=3, byrow=TRUE)

#Fleiss weights the similarities
weights <- matrix(c(
1.0000, 0.0000, 0.4444,
0.0000, 1.0000, 0.6666,
0.4444, 0.6666, 1.0000
), ncol=3)

CohenKappa(fleiss, weights)

CollapseTable Collapse Levels of a Table

Description

Collapse (or re-label) variables in a a contingency table or ftable object by re-assigning levels of
the table variables.

Usage

CollapseTable(x, ...)

Arguments

x A table or ftable object

... A collection of one or more assignments of factors of the table to a list of levels

Details

Each of the ... arguments must be of the form variable = levels, where variable is the name
of one of the table dimensions, and levels is a character or numeric vector of length equal to the
corresponding dimension of the table. Missing argument names are allowed and will be interpreted
in the order of the dimensions of the table.



CollapseTable 113

Value

A table object (even if the input was an ftable), representing the original table with one or more of
its factors collapsed or rearranged into other levels.

Author(s)

Michael Friendly <friendly@yorku.ca>, Andri Signorell <andri@signorell.net>

See Also

Untable

margin.table "collapses" a table in a different way, by summing over table dimensions.

Examples

# create some sample data in table form
sex <- c("Male", "Female")
age <- letters[1:6]
education <- c("low", 'med', 'high')
data <- expand.grid(sex=sex, age=age, education=education)
counts <- rpois(36, 100)
data <- cbind(data, counts)
t1 <- xtabs(counts ~ sex + age + education, data=data)

Desc(t1)

## age a b c d e f
## sex education
## Male low 119 101 109 85 99 93
## med 94 98 103 108 84 84
## high 81 88 96 110 100 92
## Female low 107 104 95 86 103 96
## med 104 98 94 95 110 106
## high 93 85 90 109 99 86

# collapse age to 3 levels
t2 <- CollapseTable(t1, age=c("A", "A", "B", "B", "C", "C"))
Desc(t2)

## age A B C
## sex education
## Male low 220 194 192
## med 192 211 168
## high 169 206 192
## Female low 211 181 199
## med 202 189 216
## high 178 199 185

# collapse age to 3 levels and pool education: "low" and "med" to "low"



114 ColorLegend

t3 <- CollapseTable(t1, age=c("A", "A", "B", "B", "C", "C"),
education=c("low", "low", "high"))

Desc(t3)

## age A B C
## sex education
## Male low 412 405 360
## high 169 206 192
## Female low 413 370 415
## high 178 199 185

# change labels for levels of education to 1:3
t4 <- CollapseTable(t1, education=1:3)
Desc(t4)

## age a b c d e f
## sex education
## Male 1 119 101 109 85 99 93
## 2 94 98 103 108 84 84
## 3 81 88 96 110 100 92
## Female 1 107 104 95 86 103 96
## 2 104 98 94 95 110 106
## 3 93 85 90 109 99 86

ColorLegend Add a ColorLegend to a Plot

Description

Add a color legend, an image of a sequence of colors, to a plot.

Usage

ColorLegend(x, y = NULL, cols = rev(heat.colors(100)), labels = NULL,
width = NULL, height = NULL, horiz = FALSE, xjust = 0, yjust = 1,
inset = 0, border = NA, frame = NA, cntrlbl = FALSE,
adj = ifelse(horiz, c(0.5, 1), c(1, 0.5)), cex = 1,
title = NULL, title.adj = 0.5, ...)

Arguments

x the left x-coordinate to be used to position the colorlegend. See ’Details’.

y the top y-coordinate to be used to position the colorlegend. See ’Details’.

cols the color appearing in the colorlegend.

labels a vector of labels to be placed at the right side of the colorlegend.

width the width of the colorlegend.



ColorLegend 115

height the height of the colorlegend.

horiz logical indicating if the colorlegend should be horizontal; default FALSE means
vertical alignment.

xjust how the colorlegend is to be justified relative to the colorlegend x location. A
value of 0 means left justified, 0.5 means centered and 1 means right justified.

yjust the same as xjust for the legend y location.

inset inset distance(s) from the margins as a fraction of the plot region when color-
legend is placed by keyword.

border defines the bordor color of each rectangle. Default is none (NA).

frame defines the bordor color of the frame around the whole colorlegend. Default is
none (NA).

cntrlbl defines, whether the labels should be printed in the middle of the color blocks
or start at the edges of the colorlegend. Default is FALSE, which will print the
extreme labels centered on the edges.

adj text alignment, horizontal and vertical.

cex character extension for the labels, default 1.0.

title a character string or length-one expression giving a title to be placed at the top
of the legend.

title.adj horizontal adjustment for title: see the help for par("adj").

... further arguments are passed to the function text.

Details

The labels are placed at the right side of the colorlegend and are reparted uniformly between y and
y - height.

The location may also be specified by setting x to a single keyword from the list "bottomright",
"bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This
places the colorlegend on the inside of the plot frame at the given location. Partial argument match-
ing is used. The optional inset argument specifies how far the colorlegend is inset from the plot
margins. If a single value is given, it is used for both margins; if two values are given, the first is
used for x- distance, the second for y-distance.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

legend, FindColor, BubbleLegend



116 ColToGrey

Examples

plot(1:15,, xlim=c(0,10), type="n", xlab="", ylab="", main="Colorstrips")

# A
ColorLegend(x="right", inset=0.1, labels=c(1:10))

# B: Center the labels
ColorLegend(x=1, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),

space = "rgb")(5), labels=1:5, cntrlbl = TRUE)

# C: Outer frame
ColorLegend(x=3, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),

space = "rgb")(5), labels=1:4, frame="grey")

# D
ColorLegend(x=5, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),

space = "rgb")(10), labels=sprintf("%.1f",seq(0,1,0.1)), cex=0.8)

# E: horizontal shape
ColorLegend(x=1, y=2, width=6, height=0.2, col=rainbow(500), labels=1:5,horiz=TRUE)

# F
ColorLegend(x=1, y=14, width=6, height=0.5, col=colorRampPalette(

c("black","blue","green","yellow","red"), space = "rgb")(100), horiz=TRUE)

# G
ColorLegend(x=1, y=12, width=6, height=1, col=colorRampPalette(c("black","blue",

"green","yellow","red"), space = "rgb")(10), horiz=TRUE,
border="black", title="From black to red", title.adj=0)

text(x = c(8,0.5,2.5,4.5,0.5,0.5,0.5)+.2, y=c(14,9,9,9,2,14,12), LETTERS[1:7], cex=2)

ColToGrey Convert Colors to Grey/Grayscale

Description

Convert colors to grey/grayscale so that you can see how your plot will look after photocopying or
printing to a non-color printer.

Usage

ColToGrey(col)
ColToGray(col)



ColToHex 117

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element
of colors()), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa" (see rgb),
or an integer i meaning palette()[i]. Non-string values are coerced to integer.

Details

Converts colors to greyscale using the formula grey = 0.3*red + 0.59*green + 0.11*blue. This
allows you to see how your color plot will approximately look when printed on a non-color printer
or photocopied.

Value

A vector of colors (greys) corresponding to the input colors.

Note

These function was previously published as Col2Grey() in the TeachingDemos package and has
been integrated here without logical changes.

Author(s)

Greg Snow <greg.snow@imail.org>

See Also

grey, ColToRgb, dichromat package

Examples

par(mfcol=c(2,2))
tmp <- 1:3
names(tmp) <- c('red','green','blue')

barplot(tmp, col=c('red','green','blue'))
barplot(tmp, col=ColToGrey(c('red','green','blue')))

barplot(tmp, col=c('red','#008100','#3636ff'))
barplot(tmp, col=ColToGrey(c('red','#008100','#3636ff')))

ColToHex Convert a Color or a RGB-color Into Hex String

Description

Convert a color given by name, by its palette index or by rgb-values into a string of the form
"#rrggbb" or "#rrggbbaa".



118 ColToHsv

Usage

ColToHex(col, alpha = 1)

Arguments

col vector of any of either a color name (an element of colors()), or an integer i
meaning palette()[i]. Non-string values are coerced to integer.

alpha the alpha value to be used. This can be any value from 0 (fully transparent) to 1
(opaque). Default is 1.

Value

Returns the colorvalue in #rrggbb" or #rrggbbaa" format. (character)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

HexToCol, ColToRgb, colors

Examples

ColToHex(c("lightblue", "salmon"))

x <- ColToRgb("darkmagenta")
x[2,] <- x[2,] + 155
RgbToCol(x)

RgbToHex(c(255,0,0))

ColToHsv R Color to HSV Conversion

Description

ColToHsv transforms colors from R color into HSV space (hue/saturation/value).

Usage

ColToHsv(col, alpha = FALSE)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element
of colors()), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa", or an
integer i meaning palette()[i]. Non-string values are coerced to integer.

alpha logical value indicating whether alpha channel (opacity) values should be re-
turned.



ColToOpaque 119

Details

Converts a color first into RGB an from there into HSV space by means of the functions rgb2hsv
and col2rgb.

Value (brightness) gives the amount of light in the color. Hue describes the dominant wavelength.
Saturation is the amount of Hue mixed into the color.

An HSV colorspace is relative to an RGB colorspace, which in R is sRGB, which has an implicit
gamma correction.

Value

A matrix with a column for each color. The three rows of the matrix indicate hue, saturation and
value and are named "h", "s", and "v" accordingly.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

rgb2hsv, ColToRgb

Examples

ColToHsv("peachpuff")
ColToHsv(c(blu = "royalblue", reddish = "tomato")) # names kept

ColToHsv(1:8)

ColToOpaque Equivalent Opaque Color for Transparent Color

Description

Determine the equivalent opaque RGB color for a given partially transparent RGB color against a
background of any color.

Usage

ColToOpaque(col, alpha = NULL, bg = NULL)

Arguments

col the color as hex value (use converters below if it’s not available). col and alpha
are recycled.

alpha the alpha channel, if left to NULL the alpha channels of the colors are used

bg the background color to be used to calculate against (default is "white")



120 ColToRgb

Details

Reducing the opacity against a white background is a good way to find usable lighter and less
saturated tints of a base color. For doing so, we sometimes need to get the equivalent opaque color
for the transparent color.

Value

An named vector with the hexcodes of the opaque colors.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ColToHex, DecToHex, RgbToHex

Examples

cols <- c(SetAlpha("limegreen", 0.4), ColToOpaque(ColToHex("limegreen"), 0.4), "limegreen")
barplot(c(1, 1.2, 1.3), col=cols, panel.first=abline(h=0.4, lwd=10, col="grey35"))

ColToRgb Color to RGB Conversion

Description

R color to RGB (red/green/blue) conversion.

Usage

ColToRgb(col, alpha = FALSE)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element
of colors()), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa", or an
integer i meaning palette()[i]. Non-string values are coerced to integer.

alpha logical value indicating whether alpha channel (opacity) values should be re-
turned.

Details

This is merely a wrapper to col2rgb, defined in order to follow this package’s naming conventions.



ColumnWrap 121

Value

A matrix with a column for each color. The three rows of the matrix indicate red, green and blue
value and are named "red", "green", and "blue" accordingly. The matrix might have a 4th row if an
alpha channel is requested.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

col2rgb, RgbToCol

Examples

ColToRgb("peachpuff")
ColToRgb(c(blu = "royalblue", reddish = "tomato")) # names kept

ColToRgb(1:8)

ColumnWrap Column Wrap

Description

Wraps text in a character matrix so, that it’s displayed over more than one line.

Usage

ColumnWrap(x, width = NULL)

Arguments

x the matrix with one row

width integer, the width of the columns in characters

Details

A data.frame containing character columns with long texts is often wrapped by columns. This can
lead to a loss of overview. ColumnWrap() wraps the lines within the columns.

Value

a character matrix

Author(s)

Andri Signorell andri@signorell.net

mailto:andri@signorell.net


122 CombPairs

See Also

strwrap()

Examples

Abstract(d.pizza)

CombPairs Get All Pairs Out of One or Two Sets of Elements

Description

Returns all combinations of 2 out of the elements in x or x and y (if defined). Combinations of the
same elements will be dropped (no replacing).

Usage

CombPairs(x, y = NULL)

Arguments

x a vector of elements
y a vector of elements, need not be same dimension as x. If y is not NULL then all

combination x and y are returned.

Details

If y = NULL then all combination of 2 out of x are returned.
If y is defined then all combinations of x and y are calculated.

Value

CombPairs returns a data.frame with 2 columns X1 and X2.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

combn, expand.grid, outer, lower.tri

Examples

CombPairs(letters[1:4])
CombPairs(x = letters[1:4], y = LETTERS[1:2])

# get all pairs of combinations between factors and numerics out of a data.frame
CombPairs(which(sapply(d.pizza, IsNumeric)), which(sapply(d.pizza, is.factor)))



CompleteColumns 123

CompleteColumns Find Complete Columns

Description

Return either the columnnames or a logical vector indicating which columns are complete, i.e., have
no missing values.

Usage

CompleteColumns(x, which = TRUE)

Arguments

x a data.frame containing the data

which logical, determining if the names of the variables should be returned or a if a
logical vector indicating which columns are complete should be returned.

Value

A logical vector specifying which columns have no missing values across the entire sequence.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

is.na, na.omit, complete.cases

Examples

CompleteColumns(d.pizza)
CompleteColumns(d.pizza, which=FALSE)

ConDisPairs Concordant and Discordant Pairs

Description

This function counts concordant and discordant pairs for two variables x, y with at least ordinal
scale, aggregated in a 2way table. This is the base for many association measures like Goodman
Kruskal’s gamma, but also all tau measures.

Usage

ConDisPairs(x)



124 Conf

Arguments

x a 2-dimensional table. The column and the row order must be the logical one.

Details

The code is so far implemented in R (O(n^2)) and therefore slow for large sample sizes (>5000).

An O(n log(n)) implementation is available as (so far) undocumented function DescTools:::.DoCount(x,
y, wts) returning only concorant and discordant pairs (not including standard errors to be used for
calculating confidence intervals).

Value

a list with the number of concordant pairs, the number of discordant pairs and the matrix

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57-59.

Goodman, L. A., & Kruskal, W. H. (1954) Measures of association for cross classifications. Journal
of the American Statistical Association, 49, 732-764.

Goodman, L. A., & Kruskal, W. H. (1963) Measures of association for cross classifications III:
Approximate sampling theory. Journal of the American Statistical Association, 58, 310-364.

See Also

Association measures:
KendallTauA (tau-a), cor (method="kendall") for tau-b, StuartTauC (tau-c), SomersDelta
Lambda, GoodmanKruskalTau (tau), UncertCoef, MutInf

Examples

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))
ConDisPairs(tab)

Conf Confusion Matrix And Associated Statistics

Description

Calculates a cross-tabulation of observed and predicted classes with associated statistics.



Conf 125

Usage

Conf(x, ...)

## S3 method for class 'table'
Conf(x, pos = NULL, ...)
## S3 method for class 'matrix'
Conf(x, pos = NULL, ...)
## Default S3 method:
Conf(x, ref, pos = NULL, na.rm = TRUE, ...)

## S3 method for class 'rpart'
Conf(x, ...)
## S3 method for class 'multinom'
Conf(x, ...)
## S3 method for class 'glm'
Conf(x, cutoff = 0.5, pos = NULL, ...)
## S3 method for class 'randomForest'
Conf(x, ...)
## S3 method for class 'svm'
Conf(x, ...)
## S3 method for class 'regr'
Conf(x, ...)

## S3 method for class 'Conf'
plot(x, main = "Confusion Matrix", ...)

## S3 method for class 'Conf'
print(x, digits = max(3, getOption("digits") - 3), ...)

Sens(x, ...)
Spec(x, ...)

Arguments

x a vector, normally a factor, of predicted classes or an object of following classes
rpart, randomForest, svm, C50, glm, multinom, regr, lda, qda or table, resp.
matrix. When a model is given, the predicted classes will be determined. A
table or a matrix will be interpreted as a confusion matrix.

ref a vector, normally a factor, of classes to be used as the reference. This is ignored
if x is a table or matrix.

pos a character string that defines the factor level corresponding to the "positive"
results. Will be ignored for a n× n table n > 2.

cutoff used in logit models. The cutoff for changing classes.

main overall title for the plot.

digits controls the number of digits to print.



126 Conf

na.rm a logical value indicating whether or not missing values should be removed.
Defaults to FALSE.

... further arguments to be passed to or from methods.

Details

The functions require the factors to have the same levels.

For two class problems, the sensitivity, specificity, positive predictive value and negative predictive
value is calculated using the positive argument. Also, the prevalence of the "event" is computed
from the data (unless passed in as an argument), the detection rate (the rate of true events also
predicted to be events) and the detection prevalence (the prevalence of predicted events).

Suppose a 2× 2 table with notation

Reference
Predicted Event No Event

Event A B
No Event C D

The formulas used here are:
Sensitivity = A/(A+ C)

Specificity = D/(B +D)

Prevalence = (A+ C)/(A+B + C +D)

PPV = (sensitivity∗Prevalence)/((sensitivity∗Prevalence)+((1−specificity)∗(1−Prevalence)))

NPV = (specificity∗(1−Prevalence))/(((1−sensitivity)∗Prevalence)+((specificity)∗(1−Prevalence)))

DetectionRate = A/(A+B + C +D)

DetectionPrevalence = (A+B)/(A+B + C +D)

F − valAccuracy = 2/(1/PPV + 1/Sensitivity)

MatthewsCor.− Coef = (A ∗D −B ∗ C)/sqrt((A+B) ∗ (A+ C) ∗ (D +B) ∗ (D + C))

See the references for discusions of the first five formulas.

For more than two classes, these results are calculated comparing each factor level to the remaining
levels (i.e. a "one versus all" approach).

The overall accuracy and unweighted Kappa statistic are calculated. A p-value from McNemar’s
test is also computed using mcnemar.test (which can produce NA values with sparse tables).

The overall accuracy rate is computed along with a 95 percent confidence interval for this rate (using
BinomCI) and a one-sided test to see if the accuracy is better than the "no information rate," which
is taken to be the largest class percentage in the data.

The sensitivity is defined as the proportion of positive results out of the number of samples which
were actually positive. When there are no positive results, sensitivity is not defined and a value of
NA is returned. Similarly, when there are no negative results, specificity is not defined and a value
of NA is returned. Similar statements are true for predictive values.

Confidence intervals for sensitivity, specificity etc. could be calculated as binomial confidence
intervals (see BinomCI). BinomCI(A, A+C) yields the ci for sensitivity.



Conf 127

Value

a list with elements

table the results of table on data and reference

positive the positive result level

overall a numeric vector with overall accuracy and Kappa statistic values

byClass the sensitivity, specificity, positive predictive value, negative predictive value,
prevalence, dection rate and detection prevalence for each class. For two class
systems, this is calculated once using the positive argument

Author(s)

Andri Signorell <andri@signorell.net>
rewritten based on the ideas of confusionMatrix by Max Kuhn <Max.Kuhn@pfizer.com>

References

Kuhn, M. (2008) Building predictive models in R using the caret package Journal of Statistical
Software, (https://www.jstatsoft.org/v28/i05/).

Powers, David M W (2011) Evaluation: From Precision, Recall and F-Measure to ROC, Informed-
ness, Markedness & Correlation (PDF). Journal of Machine Learning Technologies 2 (1): 37-63.

Collett D (1999) Modelling Binary Data. Chapman & Hall/CRC, Boca Raton Florida, pp. 24.

Matthews, B. W. (1975) Comparison of the predicted and observed secondary structure of T4
phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405 (2): 442-451.
doi:10.1016/0005-2795(75)90109-9. PMID 1180967.

See Also

OddsRatio, RelRisk

Examples

# let tab be a confusion table
tab <- TextToTable("

lo hi
lo 23 13
hi 10 18 ", dimnames=c("pred", "obs"))

Conf(tab, pos="hi")

pred <- Untable(tab)[,"pred"]
obs <- Untable(tab)[,"obs"]

Conf(x = pred, ref = obs)
Conf(x = pred, ref = obs, pos="hi")

Sens(tab) # Sensitivity

https://www.jstatsoft.org/v28/i05/


128 ConnLines

Spec(tab) # Specificity

tab <- TextToTable("
terrible poor marginal clear

terrible 10 4 1 0
poor 5 10 12 2
marginal 2 4 12 5
clear 0 2 6 13
", dimnames=c("pred", "obs"))

Conf(tab)

ConnLines Add Connection Lines to a Barplot

Description

Add connection lines to a stacked barplot (beside = TRUE is not supported). The function expects
exactly the same arguments, that were used to create the barplot.

Usage

ConnLines(..., col = 1, lwd = 1, lty = "solid", xalign = c("mar","mid"))

Arguments

... the arguments used to create the barplot. (The dots are sent directly to barplot).

col the line color of the connection lines. Defaults to black.

lwd the line width for the connection lines. Default is 1.

lty the line type for the connection lines. Line types can either be specified as an in-
teger (0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash, 5=longdash,
6=twodash) or as one of the character strings "blank", "solid", "dashed",
"dotted", "dotdash", "longdash", or "twodash". Default is "solid".

xalign defines where the lines should be aligned to on the x-axis. Can be set either to
the margins of the bars ("mar" which is the default) or to "mid". The latter will
lead the connecting lines to the middle of the bars.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

barplot



ConoverTest 129

Examples

tab <- with(
subset(d.pizza, driver %in% c("Carpenter","Miller","Farmer","Butcher")),
table(factor(driver), Weekday(date, "dd", stringsAsFactor=TRUE))

)
tab

barplot(tab, beside=FALSE, space=1.2)
ConnLines(tab, beside=FALSE, space=1.2, lcol="grey50", lwd=1, lty=2)

barplot(tab, beside=FALSE, space=1.2, horiz=TRUE)
ConnLines(tab, beside=FALSE, space=1.2, horiz=TRUE, lcol="grey50", lwd=1, lty=2)

cols <- Pal("Helsana")[1:4]
b <- barplot(tab, beside=FALSE, horiz=FALSE, col=cols)
ConnLines(tab, beside=FALSE, horiz=FALSE, lcol="grey50", lwd=1, lty=2)

# set some labels
txt <- tab
txt[] <- gsub(pattern="^0", "", t(tab)) # do not print 0s
text(x=b, y=t(apply(apply(rbind(0,tab), 2, Midx), 2, cumsum)), labels=txt,

col=(matrix(rep(TextContrastColor(cols), each=ncol(tab)),
nrow=nrow(tab), byrow=FALSE )))

# align to the middle of the bars
barplot(tab, beside=FALSE, space=1.2)
ConnLines(tab, beside=FALSE, space=1.2, lcol="grey50", lwd=1, lty=2, method="mid")

ConoverTest Conover’s Test of Multiple Comparisons

Description

Perform Conover’s test of multiple comparisons using rank sums as post hoc test following a sig-
nificant kruskal.test.

Usage

ConoverTest(x, ...)

## Default S3 method:
ConoverTest(x, g,

method = c("holm", "hochberg", "hommel", "bonferroni", "BH",
"BY", "fdr", "none"),

alternative = c("two.sided", "less", "greater"),
out.list = TRUE, ...)

## S3 method for class 'formula'



130 ConoverTest

ConoverTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

method the method for adjusting p-values for multiple comparisons. The function is
calling p.adjust and this parameter is directly passed through.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

out.list logical, indicating if the results should be printed in list mode or as a square
matrix. Default is list (TRUE).

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

ConoverTest performs the post hoc pairwise multiple comparisons procedure appropriate to follow
the rejection of a Kruskal-Wallis test. Conover’s test is more powerful than Dunn’s post hoc multiple
comparisons test (DunnTest). The interpretation of stochastic dominance requires an assumption
that the CDF of one group does not cross the CDF of the other.
ConoverTest makes m = k(k-1)/2 multiple pairwise comparisons based on the Conover-Iman t-test-
statistic for the rank-sum differences:

∣∣R̄i − R̄j

∣∣ > t1−α/2,n−k ·

√√√√s2 ·

[
n− 1− Ĥ∗

n− k

]
·
[
1

ni
+

1

nj

]

with the (tie corrected) statistic of the Kruskal Wallis test

Ĥ∗ =

12
n·(n+1) ·

∑k
i=1

R2
i

ni
− 3 · (n+ 1)

1−
∑r

i=1(t3i−ti)
n3−n

and the s2 being

s2 =
1

n− 1
·
[∑

R2
i − n · (n+ 1)2

4

]



ConoverTest 131

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric
data vectors. In this case, g is ignored, and one can simply use ConoverTest(x) to perform the test.
If the samples are not yet contained in a list, use ConoverTest(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Value

A list with class "DunnTest" containing the following components:

res an array containing the mean rank differencens and the according p-values

Author(s)

Andri Signorell <andri@signorell.net>, the interface is based on R-Core code

References

Conover W. J., Iman R. L. (1979) On multiple-comparisons procedures, Tech. Rep. LA-7677-MS,
Los Alamos Scientific Laboratory.

Conover, W. J. (1999) Practical Nonparametric Statistics Wiley, Hoboken, NJ. 3rd edition.

See Also

DunnTest, NemenyiTest, kruskal.test, wilcox.test, p.adjust

Examples

## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
ConoverTest(list(x, y, z))

## Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

# do the kruskal.test first
kruskal.test(x, g)

# ...and the pairwise test afterwards
ConoverTest(x, g)

## Formula interface.



132 Contrasts

boxplot(Ozone ~ Month, data = airquality)
ConoverTest(Ozone ~ Month, data = airquality)

Contrasts Pairwise Contrasts

Description

Generate all pairwise contrasts for using in a post-hoc test, e.g. ScheffeTest.

Usage

Contrasts(levs)

Arguments

levs the levels to be used

Value

A matrix with all possible pairwise contrasts, that can be built with the given levels.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ScheffeTest

Examples

Contrasts(LETTERS[1:5])

# B-A C-A D-A E-A C-B D-B E-B D-C E-C E-D
# A -1 -1 -1 -1 0 0 0 0 0 0
# B 1 0 0 0 -1 -1 -1 0 0 0
# C 0 1 0 0 1 0 0 -1 -1 0
# D 0 0 1 0 0 1 0 1 0 -1
# E 0 0 0 1 0 0 1 0 1 1



ConvUnit 133

ConvUnit Unit Conversion and Metrix Prefixes

Description

Converts a numerical vector from one measurement system to another. Metric prefixes (as unit
prefixes that precede a basic unit of measure to indicate a multiple or fraction of the unit) are
respected.

Usage

CmToPts(x)
PtsToCm(x)

ConvUnit(x, from, to)

data(d.units)
data(d.prefix)

Arguments

x the numeric to be converted.

from a character defining the original unit.

to a character defining the target unit.

Details

The two functions CmToPts() and PtsToCm() convert centimeters to points and vice versa. 1 cm
corresponds to 28.35 points.

The units as defined by the International System of Units (SI) (m, g, s, A, K, mol, cd, Hz, rad, sr,
N, Pa, J, W, C, V, F, Ohm, S, Wb, T, H, lm, lx, Bq, Gy, Sv, kat, l) can be used to convert between
different prefixes. The following non SI-units can be chosen for conversion between different sys-
tems. NA will be returned if a conversion can’t be found.
The function is using the conversion factors stored in the dataset d.units.

Weight and mass
Gram g metric
Pound mass (avoirdupois) lb
Ounce mass (avoirdupois) oz
Metric ton ton (or tn)

Distance
Meter m metric



134 ConvUnit

Statute mile mi
Nautical mile nmi
Inch in
Foot ft
Yard yd
Angstrom AA (accepted) metric
Astronomical unit au

Time
Year a
Day d
Hour h
Minute min
Second s

Pressure
Pascal Pa
Atmosphere atm
mm of Mercury mmHg
bar bar
Pound-force per quare inch psi

Energy
Joule J metric
IT calorie cal (accepted) metric
Electron volt eV (or ev)

Power
Horsepower (mechanical) hp
Horsepower (metric) HP
Watt W (or w) metric

Temperature
Degree Celsius C
Degree Fahrenheit F
Kelvin K metric

Liquid measure
Fluid ounce fl oz
Gallon gal
Liter l (or lt) (accepted) metric

Additional details can be found in the d.units data.frame.



Cor 135

Author(s)

Andri Signorell <andri@signorell.net>

Examples

ConvUnit(c(1.2, 5.4, 6.7), "in", "m")

# from kilometers to pico meters
ConvUnit(1, from="km", to="pm")

# from miles to kilometers
ConvUnit(1, from="mi", to="km")
# nautical miles
ConvUnit(1, from="nmi", to="km")
# from kilo Kelvin to Fahrenheit
ConvUnit(10, from="kK", to="F")
# from metric to more quirky units
ConvUnit(c(10, 1), from="hl", to="gal")
ConvUnit(500, from="ml", to="fl oz")

# conversion between non-SI units
ConvUnit(1000, "yd", "mi")
# ... must be the same as
ConvUnit(ConvUnit(1000, "yd", "m"), "m", "mi")

Cor Covariance and Correlation (Matrices)

Description

Cov and Cor compute the covariance or correlation of x and y if these are vectors. If x and y are
matrices then the covariances (or correlations) between the columns of x and the columns of y are
computed.

Usage

Cov(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))

Cor(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))

Arguments

x a numeric vector, matrix or data frame.

y NULL (default) or a vector, matrix or data frame with compatible dimensions to
x. The default is equivalent to y = x (but more efficient).



136 Cor

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be (an abbreviation of) one of the strings
"everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman": can be
abbreviated.

Details

For Cov and Cor one must either give a matrix or data frame for x or give both x and y.

The inputs must be numeric (as determined by is.numeric: logical values are also allowed for
historical compatibility): the "kendall" and "spearman" methods make sense for ordered inputs
but xtfrm can be used to find a suitable prior transformation to numbers.

If use is "everything", NAs will propagate conceptually, i.e., a resulting value will be NA whenever
one of its contributing observations is NA.
If use is "all.obs", then the presence of missing observations will produce an error. If use is
"complete.obs" then missing values are handled by casewise deletion (and if there are no complete
cases, that gives an error).
"na.or.complete" is the same unless there are no complete cases, that gives NA. Finally, if use
has the value "pairwise.complete.obs" then the correlation or covariance between each pair of
variables is computed using all complete pairs of observations on those variables. This can result in
covariance or correlation matrices which are not positive semi-definite, as well as NA entries if there
are no complete pairs for that pair of variables. For Cov and Var, "pairwise.complete.obs" only
works with the "pearson" method. Note that (the equivalent of) Var(double(0), use = *) gives
NA for use = "everything" and "na.or.complete", and gives an error in the other cases.

The denominator n − 1 is used which gives an unbiased estimator of the (co)variance for i.i.d.
observations. These functions return NA when there is only one observation (whereas S-PLUS has
been returning NaN), and fail if x has length zero.

For Cor(), if method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is used to
estimate a rank-based measure of association. These are more robust and have been recommended
if the data do not necessarily come from a bivariate normal distribution.
For Cov(), a non-Pearson method is unusual but available for the sake of completeness. Note
that "spearman" basically computes Cor(R(x), R(y)) (or Cov(., .)) where R(u) := rank(u,
na.last = "keep"). In the case of missing values, the ranks are calculated depending on the value
of use, either based on complete observations, or based on pairwise completeness with reranking
for each pair.

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathematically
most appealing by multiplication with a diagonal matrix from left and right, or more efficiently by
using sweep(.., FUN = "/") twice.

Value

For r <- Cor(*, use = "all.obs"), it is now guaranteed that all(abs(r) <= 1).

Note

Some people have noted that the code for Kendall’s tau is slow for very large datasets (many more
than 1000 cases). It rarely makes sense to do such a computation, but see function cor.fk in



Cor 137

package pcaPP.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

cor.test for confidence intervals (and tests).

cov.wt for weighted covariance computation.

Var, SD for variance and standard deviation (vectors).

Examples

## Two simple vectors
Cor(1:10, 2:11) # == 1

## Correlation Matrix of Multivariate sample:
(Cl <- Cor(longley))
## Graphical Correlation Matrix:
symnum(Cl) # highly correlated

## Spearman's rho and Kendall's tau
symnum(clS <- Cor(longley, method = "spearman"))
symnum(clK <- Cor(longley, method = "kendall"))
## How much do they differ?
i <- lower.tri(Cl)
Cor(cbind(P = Cl[i], S = clS[i], K = clK[i]))

##--- Missing value treatment:
C1 <- Cov(swiss)
range(eigen(C1, only.values = TRUE)$values) # 6.19 1921

## swM := "swiss" with 3 "missing"s :
swM <- swiss
colnames(swM) <- abbreviate(colnames(swiss), min=6)
swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"

## Consider all 5 "use" cases :
(C. <- Cov(swM)) # use="everything" quite a few NA's in cov.matrix
try(Cov(swM, use = "all")) # Error: missing obs...
C2 <- Cov(swM, use = "complete")
stopifnot(identical(C2, Cov(swM, use = "na.or.complete")))
range(eigen(C2, only.values = TRUE)$values) # 6.46 1930
C3 <- Cov(swM, use = "pairwise")
range(eigen(C3, only.values = TRUE)$values) # 6.19 1938

## Kendall's tau doesn't change much:
symnum(Rc <- Cor(swM, method = "kendall", use = "complete"))
symnum(Rp <- Cor(swM, method = "kendall", use = "pairwise"))

https://CRAN.R-project.org/package=pcaPP


138 CorPart

symnum(R. <- Cor(swiss, method = "kendall"))

## "pairwise" is closer componentwise,
summary(abs(c(1 - Rp/R.)))
summary(abs(c(1 - Rc/R.)))

## but "complete" is closer in Eigen space:
EV <- function(m) eigen(m, only.values=TRUE)$values
summary(abs(1 - EV(Rp)/EV(R.)) / abs(1 - EV(Rc)/EV(R.)))

CorPart Find the Correlations for a Set x of Variables With Set y Removed

Description

A straightforward application of matrix algebra to remove the effect of the variables in the y set
from the x set. Input may be either a data matrix or a correlation matrix. Variables in x and y are
specified by location.

Usage

CorPart(m, x, y)

Arguments

m a data or correlation matrix.

x the variable numbers associated with the X set.

y the variable numbers associated with the Y set.

Details

It is sometimes convenient to partial the effect of a number of variables (e.g., sex, age, education)
out of the correlations of another set of variables. This could be done laboriously by finding the
residuals of various multiple correlations, and then correlating these residuals. The matrix algebra
alternative is to do it directly.

Value

The matrix of partial correlations.

Author(s)

William Revelle

References

Revelle, W. An introduction to psychometric theory with applications in R Springer.
(working draft available at http://personality-project.org/r/book/

http://personality-project.org/r/book/


CorPolychor 139

See Also

cor

Examples

# example from Bortz, J. (1993) Statistik fuer Sozialwissenschaftler, Springer, pp. 413

abstr <- c(9,11,13,13,14,9,10,11,10,8,13,7,9,13,14)
coord <- c(8,12,14,13,14,8,9,12,8,9,14,7,10,12,12)
age <- c(6,8,9,9,10,7,8,9,8,7,10,6,10,10,9)

# calculate the correlation of abstr and coord, after without the effect of the age
CorPart(cbind(abstr, coord, age), 1:2, 3)

# by correlation matrix m
m <- cor(cbind(abstr, coord, age))
CorPart(m, 1:2, 3)

# ... which would be the same as:
lm1 <- lm(abstr ~ age)
lm2 <- lm(coord ~ age)

cor(resid(lm1), resid(lm2))

CorPolychor Polychoric Correlation

Description

Computes the polychoric correlation (and its standard error) between two ordinal variables or from
their contingency table, under the assumption that the ordinal variables dissect continuous latent
variables that are bivariate normal. Either the maximum-likelihood estimator or a (possibly much)
quicker “two-step” approximation is available. For the ML estimator, the estimates of the thresholds
and the covariance matrix of the estimates are also available.

Usage

CorPolychor(x, y, ML = FALSE, control = list(), std.err = FALSE, maxcor=.9999)

## S3 method for class 'CorPolychor'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x a contingency table of counts or an ordered categorical variable; the latter can be
numeric, logical, a factor, or an ordered factor, but if a factor, its levels should
be in proper order.



140 CorPolychor

y if x is a variable, a second ordered categorical variable.

ML if TRUE, compute the maximum-likelihood estimate; if FALSE, the default, com-
pute a quicker “two-step” approximation.

control optional arguments to be passed to the optim function.

std.err if TRUE, return the estimated variance of the correlation (for the two-step estima-
tor) or the estimated covariance matrix (for the ML estimator) of the correlation
and thresholds; the default is FALSE.

maxcor maximum absolute correlation (to insure numerical stability).

digits integer, determining the number of digits used to format the printed result

... not used

Value

If std.err is TRUE, returns an object of class "polycor" with the following components:

type set to "polychoric".

rho the CorPolychoric correlation.

var the estimated variance of the correlation, or, for the ML estimate, the estimated
covariance matrix of the correlation and thresholds.

n the number of observations on which the correlation is based.

chisq chi-square test for bivariate normality.

df degrees of freedom for the test of bivariate normality.

ML TRUE for the ML estimate, FALSE for the two-step estimate.

Othewise, returns the polychoric correlation.

Note

This is a verbatim copy from polchor function in the package polycor.

Author(s)

John Fox <jfox@mcmaster.ca>

References

Drasgow, F. (1986) CorPolychoric and polyserial correlations. Pp. 68–74 in S. Kotz and N. Johnson,
eds., The Encyclopedia of Statistics, Volume 7. Wiley.

Olsson, U. (1979) Maximum likelihood estimation of the CorPolychoric correlation coefficient.
Psychometrika 44, 443-460.

See Also

hetcor, polyserial, print.CorPolychor, optim



CountCompCases 141

Examples

set.seed(12345)
z <- RndPairs(1000, 0.6)
x <- z[,1]
y <- z[,2]

cor(x, y) # sample correlation
x <- cut(x, c(-Inf, .75, Inf))
y <- cut(y, c(-Inf, -1, .5, 1.5, Inf))

CorPolychor(x, y) # 2-step estimate
CorPolychor(x, y, ML=TRUE, std.err=TRUE) # ML estimate

CountCompCases Count Complete Cases

Description

Return for each variable of a data frame the number of missing values and the complete cases to be
expected if this variable would be omitted.

Usage

CountCompCases(x)

## S3 method for class 'CountCompCases'
print(x, digits=1, ...)

Arguments

x a data.frame containg the data.

digits the number of digits to be used when printing the results.

... the dots are not further used.

Value

A list with three elements. The first gives the number of rows, the second the number of complete
cases for the whole data frame. The third element tab contains the data for the single variables.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotMiss, CompleteColumns, complete.cases, is.na, na.omit



142 CountWorkDays

Examples

CountCompCases(d.pizza)

CountWorkDays Count Work Days Between Two Dates

Description

Returns the number of work days between two dates taking into account the provided holiday dates.

Usage

CountWorkDays(from, to, holiday = NULL, nonworkdays = c("Sat", "Sun"))

Arguments

from the initial dates

to the final dates

holiday a vector with dates to be excluded.

nonworkdays a character vector containing the abbreviations of the weekdays (as in day.abb)
to be considered non work days. Default is c("Sat","Sun").

Details

The function is vectorised so that multiple initial and final dates can be supplied. The dates are
recycled, if their number are different

Value

an integer vector

Author(s)

Andri Signorell <andri@signorell.net>

See Also

weekdays, Date Functions



CourseData 143

Examples

from <- as.Date("2019-01-01") + rep(0, 10)
to <- as.Date("2020-01-15") + seq(0, 9)

CountWorkDays(from, to)

x <- seq(from[1], from[1]+11, "days")
data.frame(

date = x,
day = Format(x, fmt="ddd"))

CountWorkDays(from = min(x), to = max(x), holiday = c("2019-01-06", "2019-01-07"))

CourseData Get HWZ Datasets

Description

Wrapper for didactical datasets used in statistic courses.

Usage

CourseData(name, url = NULL, header = TRUE, sep = ";", ...)

Arguments

name the name of the file, usually without extension.

url a url where the data reside, should have the form "http://www.mysite.net/data/".
Defaults to the data folder on my site.

header a logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format: header is
set to TRUE if and only if the first row contains one fewer field than the number
of columns.

sep the field separator character. Values on each line of the file are separated by this
character. Default is - unlike in read.table - ";" instead of ’white space’.

... the dots are sent to read.table.

Value

A data.frame containing a representation of the data in the file.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

read.table



144 CramerVonMisesTest

Examples

## Not run:
d.farm <- CourseData("farmer")

## End(Not run)

CramerVonMisesTest Cramer-von Mises Test for Normality

Description

Performs the Cramer-von Mises test for the composite hypothesis of normality, see e.g. Thode
(2002, Sec. 5.1.3).

Usage

CramerVonMisesTest(x)

Arguments

x a numeric vector of data values, the number of which must be greater than 7.
Missing values are allowed.

Details

The Cramer-von Mises test is an EDF omnibus test for the composite hypothesis of normality. The
test statistic is

W =
1

12n
+

n∑
i=1

(
p(i) −

2i− 1

2n

)
,

where p(i) = Φ([x(i) − x]/s). Here, Φ is the cumulative distribution function of the standard
normal distribution, and x and s are mean and standard deviation of the data values. The p-value
is computed from the modified statistic Z = W (1.0 + 0.5/n) according to Table 4.9 in Stephens
(1986).

Value

A list of class htest, containing the following components:

statistic the value of the Cramer-von Mises statistic.

p.value the p-value for the test.

method the character string “Cramer-von Mises normality test”.

data.name a character string giving the name(s) of the data.

Author(s)

Juergen Gross <gross@statistik.uni-dortmund.de>



CronbachAlpha 145

References

Stephens, M.A. (1986) Tests based on EDF statistics In: D’Agostino, R.B. and Stephens, M.A.,
eds.: Goodness-of-Fit Techniques. Marcel Dekker, New York.

Thode Jr., H.C. (2002) Testing for Normality Marcel Dekker, New York.

See Also

shapiro.test for performing the Shapiro-Wilk test for normality. AndersonDarlingTest, LillieTest,
PearsonTest, ShapiroFranciaTest for performing further tests for normality. qqnorm for produc-
ing a normal quantile-quantile plot.

Examples

CramerVonMisesTest(rnorm(100, mean = 5, sd = 3))
CramerVonMisesTest(runif(100, min = 2, max = 4))

CronbachAlpha Cronbach’s Coefficient Alpha

Description

Cronbach’s alpha is a measure of internal consistency and often used for validating psychometric
tests. It determines the internal consistency or average correlation of items in a survey instrument
to gauge its reliability. This reduces to Kuder-Richardson formula 20 (KR-20) when the columns
of the data matrix are dichotomous.

Usage

CronbachAlpha(x, conf.level = NA, cond = FALSE, na.rm = FALSE)

Arguments

x n×m matrix or dataframe with item responses, k subjects (in rows) m items (in
columns).

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

cond logical. If set to TRUE, alpha is additionally calculated for the dataset with each
item left out.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. If set to TRUE only the complete cases of the ratings will be used.
Defaults to FALSE.



146 CronbachAlpha

Value

Either a numeric value or
a named vector of 3 columns if confidence levels are required (estimate, lower and upper ci) or

a list containing the following components, if the argument cond is set to TRUE:

unconditional Cronbach’s Alpha, either the single value only or with confidence intervals
condCronbachAlpha

The alpha that would be realized if the item were excluded

Author(s)

Andri Signorell <andri@signorell.net>, based on code of Harold C. Doran

References

Cohen, J. (1960), A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20, 37-46.

See Also

CohenKappa, KappaM

Examples

set.seed(1234)
tmp <- data.frame(

item1=sample(c(0,1), 20, replace=TRUE),
item2=sample(c(0,1), 20, replace=TRUE),
item3=sample(c(0,1), 20, replace=TRUE),
item4=sample(c(0,1), 20, replace=TRUE),
item5=sample(c(0,1), 20, replace=TRUE)
)

CronbachAlpha(tmp[,1:4], cond=FALSE, conf.level=0.95)
CronbachAlpha(tmp[,1:4], cond=TRUE, conf.level=0.95)

CronbachAlpha(tmp[,1:4], cond=FALSE)
CronbachAlpha(tmp[,1:2], cond=TRUE, conf.level=0.95)

## Not run:
# Calculate bootstrap confidence intervals for CronbachAlpha
library(boot)
cronbach.boot <- function(data,x) {CronbachAlpha(data[x,])[[3]]}
res <- boot(datafile, cronbach.boot, 1000)
quantile(res$t, c(0.025,0.975)) # two-sided bootstrapped confidence interval of Cronbach's alpha
boot.ci(res, type="bca") # adjusted bootstrap percentile (BCa) confidence interval (better)

## End(Not run)



Cross 147

Cross Vector Cross Product

Description

Vector or cross product

Usage

Cross(x, y)

Arguments

x numeric vector or matrix

y numeric vector or matrix

Details

Computes the cross (or: vector) product of vectors in 3 dimensions. In case of matrices it takes
the first dimension of length 3 and computes the cross product between corresponding columns or
rows.

The more general cross product of n-1 vectors in n-dimensional space is realized as CrossN.

Value

3-dim. vector if x and < are vectors, a matrix of 3-dim. vectors if x and y are matrices themselves.

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>

See Also

Dot, CrossN

Examples

Cross(c(1, 2, 3), c(4, 5, 6)) # -3 6 -3

# Triple product can be calculated as:
va <- c(1, 2, 3)
vb <- c(4, 3, 0)
vc <- c(5, 1, 1)

Dot(va, Cross(vb, vc))



148 CrossN

CrossN n-dimensional Vector Cross Product

Description

Vector cross product of n-1 vectors in n-dimensional space

Usage

CrossN(A)

Arguments

A matrix of size (n-1) x n where n >= 2.

Details

The rows of the matrix A are taken as(n-1) vectors in n-dimensional space. The cross product
generates a vector in this space that is orthogonal to all these rows in A and its length is the volume
of the geometric hypercube spanned by the vectors.

Value

a vector of length n

Note

The ‘scalar triple product’ in R3 can be defined as

spatproduct <- function(a, b, c) Dot(a, CrossN(b, c))

It represents the volume of the parallelepiped spanned by the three vectors.

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>

See Also

Cross, Dot

Examples

A <- matrix(c(1,0,0, 0,1,0), nrow=2, ncol=3, byrow=TRUE)
CrossN(A) #=> 0 0 1

x <- c(1.0, 0.0, 0.0)
y <- c(1.0, 0.5, 0.0)
z <- c(0.0, 0.0, 1.0)
identical(Dot(x, CrossN(rbind(y, z))), det(rbind(x, y, z)))



Cstat 149

Cstat C Statistic (Area Under the ROC Curve)

Description

Calculate the C statistic, a measure of goodness of fit for binary outcomes in a logistic regression
or any other classification model. The C statistic is equivalent to the area under the ROC-curve
(Receiver Operating Characteristic).

Usage

Cstat(x, ...)

## S3 method for class 'glm'
Cstat(x, ...)

## Default S3 method:
Cstat(x, resp, ...)

Arguments

x the logistic model for the glm interface or the predicted probabilities of the
model for the default.

resp the response variable (coded as c(0, 1))
... further arguments to be passed to other functions.

Details

Values for this measure range from 0.5 to 1.0, with higher values indicating better predictive mod-
els. A value of 0.5 indicates that the model is no better than chance at making a prediction of
membership in a group and a value of 1.0 indicates that the model perfectly identifies those within a
group and those not. Models are typically considered reasonable when the C-statistic is higher than
0.7 and strong when C exceeds 0.8.

Confidence intervals for this measure can be calculated by bootstrap.

Value

numeric value

Author(s)

Andri Signorell <andri@signorell.net>

References

Hosmer D.W., Lemeshow S. (2000) Applied Logistic Regression (2nd Edition). New York, NY:
John Wiley & Sons



150 CstatCI

See Also

BrierScore

Examples

d.titanic = Untable(Titanic)
r.glm <- glm(Survived ~ ., data=d.titanic, family=binomial)
Cstat(r.glm)

# default interface
Cstat(x = predict(r.glm, method="response"),

resp = model.response(model.frame(r.glm)))

# calculating bootstrap confidence intervals
FUN <- function(d.set, i) {

r.glm <- glm(Survived ~ ., data=d.set[i,], family=binomial)
Cstat(r.glm)
}

## Not run:
library(boot)
boot.res <- boot(d.titanic, FUN, R=999)

# the percentile confidence intervals
boot.ci(boot.res, type="perc")

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 999 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = res, type = "perc")
##
## Intervals :
## Level Percentile
## 95% ( 0.7308, 0.7808 )
## Calculations and Intervals on Original Scale

## End(Not run)

CstatCI Confidence Intervals for the C Statistic (AUC)

Description

Calculate bootstrap intervals for the C statistic (Area under the curve AUC), based on a glm.



CstatCI 151

Usage

CstatCI(
object,
conf.level = 0.95,
sides = c("two.sided", "left", "right"),
...

)

Arguments

object the model object as returned by glm.

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one of
"two.sided" (default), "left" or "right". "left" would be analogue to a
hypothesis of "greater" in a t.test. You can specify just the initial letter.

... further arguments are passed to the boot function. Supported arguments are
type ("norm", "basic", "stud", "perc", "bca"), parallel and the number
of bootstrap replicates R. If not defined those will be set to their defaults, being
"basic" for type, option "boot.parallel" (and if that is not set, "no") for
parallel and 999 for R.

Value

a numeric vector with 3 elements:

mean mean

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell andri@signorell.net

See Also

BrierScore

Examples

utils::data(Pima.te, package = "MASS")
r.logit <- glm(type ~ ., data=Pima.te, family="binomial")

# calculate Brier score with confidence intervals
Cstat(r.logit)
CstatCI(r.logit, R=99) # use higher R in real life!

mailto:andri@signorell.net


152 CutAge

CutAge Create a Factor Variable by Cutting an Age Variable

Description

Dividing the range of an age variable x into intervals is a frequent task. The commonly used
function cut has unfavourable default values for this. CutAge() is a convenient wrapper for cutting
age variables in groups of e.g. 10 years with more suitable defaults.

Usage

CutAge(x, from = 0, to = 90, by = 10, right = FALSE, ordered_result = TRUE, ...)

Arguments

x continuous variable.

from, to the starting and (maximal) end values of the sequence.

by number: increment of the sequence. Default is 10, alternatives could be 5 or 20.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa. Default is FALSE - unlike in cut!

ordered_result logical: should the result be an ordered factor? Default is TRUE - unlike in cut!

... the dots are passed on to the underlying function cut(). Use these for e.g.
change the labels.

Value

A factor is returned, unless labels = FALSE which results in an integer vector of level codes.

Values which fall outside the range of breaks are coded as NA, as are NaN and NA values.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

cut, seq

Examples

Desc(CutAge(sample(100, 100)))



CutQ 153

CutQ Create a Factor Variable Using the Quantiles of a Continuous Variable

Description

Create a factor variable using the quantiles of a continous variable.

Usage

CutQ(x, breaks = quantile(x, seq(0, 1, by = 0.25), na.rm = TRUE),
labels = NULL, na.rm = FALSE, ...)

Arguments

x continous variable.

breaks the breaks for creating groups. By default the quartiles will be used, say quantile
seq(0, 1, by = 0.25) quantiles. See quantile for details. If breaks is given as
a single integer it is interpreted as the intended number of groups, e.g. breaks=10
will return x cut in deciles.

labels labels for the levels of the resulting category. By default, labels are defined as
Q1, Q2 to the length of breaks - 1. The parameter ist passed to cut, so if labels
are set to FALSE, simple integer codes are returned instead of a factor.

na.rm Boolean indicating whether missing values should be removed when computing
quantiles. Defaults to TRUE.

... Optional arguments passed to cut.

Details

This function uses quantile to obtain the specified quantiles of x, then calls cut to create a factor
variable using the intervals specified by these quantiles.

It properly handles cases where more than one quantile obtains the same value, as in the second
example below. Note that in this case, there will be fewer generated factor levels than the specified
number of quantile intervals.

Value

Factor variable with one level for each quantile interval given by q.

Author(s)

Gregory R. Warnes <greg@warnes.net>, some slight modifications Andri Signorell <andri@signorell.net>

See Also

cut, quantile



154 d.countries

Examples

# create example data

x <- rnorm(1000)

# cut into quartiles
quartiles <- CutQ(x)
table(quartiles)

# cut into deciles
deciles <- CutQ(x, breaks=10, labels=NULL)
table(deciles)

# show handling of 'tied' quantiles.
x <- round(x) # discretize to create ties
stem(x) # display the ties
deciles <- CutQ(x, breaks=10)

table(deciles) # note that there are only 5 groups (not 10)
# due to duplicates

d.countries ISO 3166-1 Country Codes

Description

Country codes published by the International Organization for Standardization (ISO) define codes
for the names of countries, dependent territories, and special areas of geographical interest.

Usage

data("d.countries")

Format

A data frame with 249 observations on the following 4 variables.

name a character vector, the name of the country.

a2 a character vector, two-letter country codes (aka alpha-2) which are the most widely used of
the three, and used most prominently for the Internet’s country code top-level domains (with
a few exceptions).

a3 a character vector, three-letter country codes (aka alpha-3) which allow a better visual associa-
tion between the codes and the country names than the alpha-2 codes.

code a numeric vector, three-digit country codes which are identical to those developed and main-
tained by the United Nations Statistics Division, with the advantage of script (writing system)
independence, and hence useful for people or systems using non-Latin scripts.



d.diamonds 155

region the region of the country. One of "East Asia & Pacific" (35), "Europe & Central Asia" (52),
"Latin America & Caribbean" (41), "Middle East & North Africa" (20), "North America" (3),
"South Asia" (8), "Sub-Saharan Africa" (47)

pop2012 the population in 2012

gcpi2012 the gross national income (per capita) in dollars per country in 2012.

latitude geographic coordinate that specifies the north–south position of a point on the Earth’s
surface. Latitude is an angle (defined below) which ranges from 0° at the Equator to 90°
(North or South) at the poles.

longitude geographic coordinate that specifies the east–west position of a point on the Earth’s
surface, or the surface of a celestial body

References

https://en.wikipedia.org/wiki/ISO_3166-1
https://datacatalog.worldbank.org/search/dataset/0037652

Examples

head(d.countries)

d.diamonds Data diamonds

Description

As I suppose, an artificial dataset

Usage

data(d.diamonds)

Format

A data frame with 440 observations on the following 10 variables.

index a numeric vector

carat a numeric vector

colour a factor with levels D E F G H I J K L

clarity an ordered factor with levels I2 < I1 < SI3 < SI2 < SI1 < VS2 < VS1 < VVS2 < VVS1

cut an ordered factor with levels F < G < V < X < I

certification a factor with levels AGS DOW EGL GIA IGI

polish an ordered factor with levels F < G < V < X < I

symmetry an ordered factor with levels F < G < V < X < I

price a numeric vector

wholesaler a factor with levels A B C

https://en.wikipedia.org/wiki/ISO_3166-1
https://datacatalog.worldbank.org/search/dataset/0037652


156 d.periodic

Details

P Poor F Fair G Good V Very good X Excellent I Ideal

Source

somewhere from the net...

Examples

data(d.diamonds)
str(d.diamonds)

d.periodic Periodic Table of Elements

Description

This data.frame contains the most important properties of the periodic table of the elements.

Usage

data(d.periodic)

Format

A data frame with 110 observations on the following 24 variables.

symbol symbol of an element.

nr atomic number of an atomic symbol.

name name of an element.

group group of an element. Possible results are: Alkali Earth, Alkali Met., Halogen, Metal, Noble
Gas, Non-Metal, Rare Earth and Trans. Met.

weight atomic weight of an element. The values are based upon carbon-12. () indicates the most
stable or best known isotope.

meltpt melting point of an element in [K].

boilpt boiling point of an element in Kelvin [K].

dens density of an element in [g/cm3] at 300K and 1 atm.

elconf electron configuration of an element.

oxstat oxidation states of an element. The most stable is indicated by a "!".

struct crystal structure of an element. Possible results are: Cubic, Cubic body centered, Cubic
face centered, Hexagonal, Monoclinic, Orthorhombic, Rhombohedral, Tetragonal

covrad covalent radius of an element in Angstroem [A].

arad atomic radius of an element in Angstroem.

avol atomic volume of an element in [cm3/mol].



d.pizza 157

spheat specific heat of an element in [J/(g K)].

eneg electronegativity (Pauling’s) of an element.

fusheat heat of fusion of an element in [kJ/mol].

vapheat heat of vaporization of an element in [kJ/mol].

elcond electrical conductivity of an element in [1/(Ohm cm].

thermcond thermal conductivity of an element in [W/(cm K)].

ionpot1 first ionization potential of an element in [V].

ionpot2 second ionization potential of an element in [V].

ionpot3 third ionization potential of an element in [V].

discyear year of discovery of the element

References

https://en.wikipedia.org/wiki/Periodic_table

d.pizza Data pizza

Description

An artificial dataset inspired by a similar dataset pizza.sav in Arbeitsbuch zur deskriptiven und
induktiven Statistik by Toutenburg et.al.
The dataset contains data of a pizza delivery service in London, delivering pizzas to three areas.
Every record defines one order/delivery and the according properties. A pizza is supposed to taste
good, if its temperature is high enough, say 45 Celsius. So it might be interesting for the pizza
delivery service to minimize the delivery time.
The dataset is designed to be as evil as possible. As far as the description is concerned, it should
pose the same difficulties that we have to deal with in everyday life. It contains the most used
datatypes as numerics, factors, ordered factors, integers, logicals and a date. NAs are scattered
everywhere partly systematically, partly randomly (except in the index).

Usage

data(d.pizza)

Format

A data frame with 1209 observations on the following 17 variables.

index a numeric vector, indexing the records (no missings here).

date Date, the delivery date

week integer, the weeknumber

weekday integer, the weekday

area factor, the three London districts: Brent, Camden, Westminster

https://en.wikipedia.org/wiki/Periodic_table


158 d.whisky

count integer, the number of pizzas delivered

rabate logical, TRUE if a rabate has been given

price numeric, the total price of delivered pizza(s)

operator a factor with levels Allanah Maria Rhonda

driver a factor with levels Carpenter Carter Taylor Butcher Hunter Miller Farmer

delivery_min numeric, the delivery time in minutes (decimal)

temperature numeric, the temperature of the pizza in degrees Celsius when delivered to the cus-
tomer

wine_ordered integer, 1 if wine was ordered, 0 if not

wine_delivered integer, 1 if wine was delivered, 0 if not

wrongpizza logical, TRUE if a wrong pizza was delivered

quality ordered factor with levels low < medium < high, defining the quality of the pizza when
delivered

Details

The dataset contains NAs randomly scattered.

References

Toutenburg H, Schomaker M, Wissmann M, Heumann C (2009): Arbeitsbuch zur deskriptiven und
induktiven Statistik Springer, Berlin Heidelberg

Examples

str(d.pizza)
head(d.pizza)

Desc(d.pizza)

d.whisky Classification of Scotch Single Malts

Description

86 malt whiskies are scored between 0-4 for 12 different taste categories including sweetness,
smoky, nutty etc. Additionally, coordinates of distilleries allow us to obtain pairwise distance in-
formation. Using a combination of these variables it is possible to look for correlations between
particular attributes of taste and physical location, for example does a shared local resource have a
significant effect on nearby whiskies.
By using correlation analysis it may be possible to provide whisky recommendations based upon an
individual’s particular preferences. By computing the Pearson correlation coefficient and specifying
a threshold value between 0 and 1, we can establish an adjacency matrix where each node is a malt
whisky and an edge represents a level of similarity above the threshold.



d.whisky 159

Usage

data("d.whisky")

Format

A data frame with 86 observations on the following 16 variables.

distillery a character Aberfeldy, Aberlour, AnCnoc, Ardbeg, ...

brand a grouping factor to separate the better known distilleries (A) from the lesser known ones
(B).

region a factor with levels campbeltown, highland, islands, islay, lowland, speyside.

body a numeric vector

sweetness a numeric vector

smoky a numeric vector

medicinal a numeric vector

tobacco a numeric vector

honey a numeric vector

spicy a numeric vector

winey a numeric vector

nutty a numeric vector

malty a numeric vector

fruity a numeric vector

floral a numeric vector

postcode a character AB30 1YE, AB35 5TB, ...

latitude a numeric vector, coordinate pairs of distilleries.

longitude a numeric vector, coordinate pairs of distilleries.

Source

http://www.mathstat.strath.ac.uk/outreach/nessie/nessie_whisky.html

References

http://www.mathstat.strath.ac.uk/outreach/nessie/index.html

Examples

head(d.whisky)

opar <- par(mfrow=c(3,3), cex.main=1.8)
for(i in 1:9)

PlotPolar(d.whisky[i, 4:15], rlim=4, type="l", col=DescTools::hecru,
lwd=2, fill=SetAlpha(DescTools::hecru, 0.4),
panel.first=PolarGrid(

ntheta=ncol(d.whisky[i, 2:13]), nr = NA, col="grey",



160 Datasets for Simulation

lty="dotted", las=1, cex=1.4, alabels=StrCap(colnames(d.whisky[i, 3:14])),
lblradians=TRUE),

main=d.whisky[i, "distillery"])

par(mfrow=c(3,3), cex.main=1.8, xpd=NA)
id <- d.whisky$distillery %in% c("Ardbeg","Caol Ila","Cragganmore","Lagavulin","Laphroig",

"Macallan","Mortlach","Talisker","Tobermory")
PlotFaces(d.whisky[id, 4:15], nr=3, nc=3, col=hecru, scale=TRUE, fill=TRUE,

labels=d.whisky$distillery[id])

par(opar)

Datasets for Simulation

Datasets for Probabilistic Simulation

Description

For performing elementary probability calculations in introductory statistic courses, we might want
to simulate random games. The dataset roulette contains the standard sample space for one spin
on a roulette wheel. cards contains the standard set of 52 playing cards in four colours (without
Jokers). tarot does the same with a classic tarot deck.

Usage

cards
tarot
roulette

Value

cards is a data.frame with three columns named card, rank and suit

tarot is a data.frame with four columns named card, rank, suit and desc

roulette is a data.frame with seven columns named num and col, parity, highlow, dozens,
column, pocketrange

See Also

Sample, sample()

Examples

head(cards)
head(tarot)
head(roulette)

# drawing 5 cards



Date Functions 161

sample(cards$card, 5)

# drawing 5 cards with jokers
sample(c(cards$card, rep("Joker", 3)), 5)

# spin the wheel by using the DescTools::Sample() for sampling
# rows from a data frame
Sample(roulette, size=1)

# simulate the evening in Las Vegas with 10 games
Sample(roulette, 10, replace=TRUE)

Date Functions Basic Date Functions

Description

Some more date functions for making daily life a bit easier. The first ones extract a specific part of
a given date, others check some conditions.

Usage

Year(x)
Quarter(x)
Month(x, fmt = c("m", "mm", "mmm"), lang = DescToolsOptions("lang"),

stringsAsFactors = TRUE)
Week(x, method = c("iso", "us"))
Day(x)
Weekday(x, fmt = c("d", "dd", "ddd"), lang = DescToolsOptions("lang"),

stringsAsFactors = TRUE)
YearDay(x)
YearMonth(x)

Day(x) <- value

IsWeekend(x)
IsLeapYear(x)

Hour(x)
Minute(x)
Second(x)
Timezone(x)
HmsToMinute(x)

Now()
Today()

DiffDays360(start_d, end_d, method = c("eu", "us"))



162 Date Functions

LastDayOfMonth(x)
YearDays(x)
MonthDays(x)

Arguments

x the date to be evaluated.

fmt format string, defines how the month or the weekday are to be formatted. De-
faults to "m", resp. "d". Is ignored for other functions.

value new value

lang optional value setting the language for the months and daynames. Can be either
"local" for current locale or "engl" for english. If left to NULL, the option
"lang" will be searched for and if not found "local" will be taken as default.

stringsAsFactors

logical. Defines if the result should be coerced to a factor, using the local defi-
nitions as levels. The result would be an ordered factor. Default is TRUE.

start_d, end_d the start, resp. end date for DiffDays360.

method one out of "eu", "us", setting either European or US-Method calculation mode.
Default is "eu".

Details

These functions are mainly convenience wrappers for the painful format() and its strange codes...
Based on the requested time component, the output is as follows:

Year returns the year of the input date in yyyy format or a yearmonth yyyymm.
Quarter returns the quarter of the year (1 to 4) for the input date.
Month returns the month of the year (1 to 12) for the input date or for a yearmonth yyyymm.
Week returns the week of the year for the input date (0 to 53), as defined in ISO8601.
Weekday returns the week day of the input date. (1 - Monday, 2 - Tuesday, ... 7 - Sunday). (Names
and abbreviations are either english or in the current locale!)
YearDay returns the day of the year numbering (1 to 366).
Day returns the day of the month (1 to 31).
YearMonth returns the yearmonth representation (yyyymm) of a date as long integer.
Hour, Minute, Second, Timezone return the hour, minute, second or timezone from a POSIXlt ob-
ject.
HmsToMinute converts the time parts of a POSIXlt object to minutes.
Today, Now return the current date, resp. the current date and time.

IsWeekend returns TRUE, if the date x falls on a weekend.
IsLeapYear returns TRUE, if the year of the date x is a leap year.

The day can not only be extracted, but as well be defined. See examples.

DiffDays360 calculates the difference between 2 dates using the 360-days convention.
LastDayOfMonth returns the last day of the month of the given date(s). YearDays returns the total
number of days of the given date(s). MonthDays returns the numer of days of the month of the given
date(s).



Date Functions 163

The language in Weekday and Moth can be set with an option as well. The functions will check for
an existing option named "lang" and take this value if it exists. So simply set option(lang="engl")
if the results should always be reported in English.

Value

a vector of the same dimension as x, consisting of either numeric values or characters depending on
the function used.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

strptime, DateTimeClasses, as.POSIXlt

Examples

x <- Today() # the same as Sys.Date() but maybe easier to remember..

Year(x)
Quarter(x)

Month(x)
Month(x, fmt = "mm", lang="engl")
Month(x, fmt = "mm", lang="local")
Month(x, fmt = "mmm", lang="engl")
Month(x, fmt = "mmm", lang="local")

Week(x)

Day(x)
Day(x) <- 20
x

Weekday(x)
Weekday(x, fmt = "dd", lang="engl")
Weekday(x, fmt = "dd", lang="local")
Weekday(x, fmt = "ddd", lang="engl")
Weekday(x, fmt = "ddd", lang="local")

YearDay(x)

IsWeekend(x)

IsLeapYear(x)

# let's generate a time sequence by weeks
Month(seq(from=as.Date(Sys.Date()), to=Sys.Date()+150, by="weeks"), fmt="mm")

LastDayOfMonth(as.Date(c("2014-10-12","2013-01-31","2011-12-05")))



164 DegToRad

day.name Build-in Constants Extension

Description

There’s a small number of built-in constants in R. We have month.name and month.abb but nothing
similar for weekdays. Here it is.

Usage

day.name
day.abb

Details

The following constants are available in DescTools:

• day.name: the English names for the day of the week (Monday, Tuesday, Wednesday, Thurs-
day, Friday, Saturday, Sunday);

• day.abb: the three-letter abbreviations for the English day names (Mon, Tue, Wed, Thu, Fri,
Sat, Sun);

See Also

month.name, month.abb

DegToRad Convert Degrees to Radians and Vice Versa

Description

Convert degrees to radians (and back again).

Usage

DegToRad(deg)
RadToDeg(rad)

Arguments

deg a vector of angles in degrees.

rad a vector of angles in radians.



Depreciation 165

Value

DegToRad returns a vector of the same length as deg with the angles in radians.
RadToDeg returns a vector of the same length as rad with the angles in degrees.

Author(s)

Andri Signorell <andri@signorell.net>

Examples

DegToRad(c(90,180,270))
RadToDeg( c(0.5,1,2) * pi)

Depreciation Several Methods of Depreciation of an Asset

Description

Return the depreciation of an asset for a specified period using different methods. SLN returns the
straight-line depreciation DB uses the fixed-declining balance method and SYD returns the sum-of-
years’ digits depreciation.

Usage

SLN(cost, salvage, life)
DB(cost, salvage, life, period = 1:life)
SYD(cost, salvage, life, period = 1:life)

Arguments

cost initial cost of the asset.

salvage value at the end of the depreciation (sometimes called the salvage value of the
asset).

life number of periods over which the asset is depreciated (sometimes called the
useful life of the asset).

period period for which you want to calculate the depreciation. Period must use the
same units as life.

Value

val

Author(s)

Andri Signorell <andri@signorell.net>



166 Desc

See Also

NPV()

Examples

# depreciation allowance for each year
SLN(cost = 50000, salvage = 10000, life = 5)
DB(cost = 50000, salvage = 10000, life = 5)

50000 - c(0, cumsum(SYD(cost = 50000, salvage = 10000, life = 5)))

Desc Describe Data

Description

Produce summaries of various types of variables. Calculate descriptive statistics for x and use Word
as reporting tool for the numeric results and for descriptive plots. The appropriate statistics are
chosen depending on the class of x. The general intention is to simplify the description process for
lazy typers and return a quick, but rich summary.

Usage

Desc(x, ..., main = NULL, plotit = NULL, wrd = NULL)

## S3 method for class 'numeric'
Desc(
x,
main = NULL,
maxrows = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## S3 method for class 'integer'
Desc(
x,
main = NULL,
maxrows = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...



Desc 167

)

## S3 method for class 'factor'
Desc(
x,
main = NULL,
maxrows = NULL,
ord = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## S3 method for class 'labelled'
Desc(
x,
main = NULL,
maxrows = NULL,
ord = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## S3 method for class 'ordered'
Desc(
x,
main = NULL,
maxrows = NULL,
ord = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## S3 method for class 'character'
Desc(
x,
main = NULL,
maxrows = NULL,
ord = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...



168 Desc

)

## S3 method for class 'ts'
Desc(x, main = NULL, plotit = NULL, sep = NULL, digits = NULL, ...)

## S3 method for class 'logical'
Desc(
x,
main = NULL,
ord = NULL,
conf.level = 0.95,
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## S3 method for class 'Date'
Desc(
x,
main = NULL,
dprobs = NULL,
mprobs = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## S3 method for class 'table'
Desc(
x,
main = NULL,
conf.level = 0.95,
verbose = 2,
rfrq = "111",
margins = c(1, 2),
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## Default S3 method:
Desc(
x,
main = NULL,
maxrows = NULL,



Desc 169

ord = NULL,
conf.level = 0.95,
verbose = 2,
rfrq = "111",
margins = c(1, 2),
dprobs = NULL,
mprobs = NULL,
plotit = NULL,
sep = NULL,
digits = NULL,
...

)

## S3 method for class 'data.frame'
Desc(x, main = NULL, plotit = NULL, enum = TRUE, sep = NULL, ...)

## S3 method for class 'list'
Desc(x, main = NULL, plotit = NULL, enum = TRUE, sep = NULL, ...)

## S3 method for class 'formula'
Desc(
formula,
data = parent.frame(),
subset,
main = NULL,
plotit = NULL,
digits = NULL,
...

)

## S3 method for class 'Desc'
print(
x,
digits = NULL,
plotit = NULL,
nolabel = FALSE,
sep = NULL,
nomain = FALSE,
...

)

## S3 method for class 'Desc'
plot(x, main = NULL, ...)

## S3 method for class 'palette'
Desc(x, ...)



170 Desc

Arguments

x the object to be described. This can be a data.frame, a list, a table or a vector of
the classes: numeric, integer, factor, ordered factor, logical.

... further arguments to be passed to or from other methods. For the internal default
method these can include:

p a vector of probabilities of the same length of x. An error is given if any entry
of p is negative. This argument will be passed on to chisq.test(). Default is
rep(1/length(x), length(x)).

add_ni logical. Indicates if the group length should be displayed in the boxplot.
smooth character, either "loess" or "smooth.spline" defining the type of smoother

to be used in num ~ num plots. Default is "loess" for n < 500 and "smooth.spline"
otherwise.

main (character|NULL|NA), the main title(s).

• If NULL, the title will be composed as:
– variable name (class(es)),
– resp. number - variable name (class(es)) if the enum option is set to
TRUE.

• Use NA if no caption should be printed at all.

plotit logical. Should a plot be created? The plot type will be chosen according to the
classes of variables (roughly following a numeric-numeric, numeric-categorical,
categorical-categorical logic). Default can be defined by option plotit, if it
does not exist then it’s set to FALSE.

wrd the pointer to a running MS Word instance, as created by GetNewWrd() (for
a new one) or by GetCurrWrd() for an existing one. All output will then be
redirected there. Default is NULL, which will report all results to the console.

maxrows numeric; defines the maximum number of rows in a frequency table to be re-
ported. For factors with many levels it is often not interesting to see all of them.
Default is set to 12 most frequent ones (resp. the first ones if ord is set to
"levels" or "names").
For a numeric argument x maxrows is the minimum number of unique values
needed for a numeric variable to be treated as continuous. If left to its default
NULL, x will be regarded as continuous if it has more than 12 single values. In
this case the list of extreme values will be displayed and the frequency table else.
If maxrows is < 1 it will be interpreted as percentage. In this case just as many
rows, as the maxrows most frequent levels will be shown. Say, if maxrows is set
to 0.8, then the number of rows is fixed so, that the highest cumulative relative
frequency is the first one going beyond 0.8.
Setting maxrows to Inf will unconditionally report all values and also produce
a plot with type "h" instead of a histogram.

sep character. The separator for the title. By default a line of "-" for the current
width of the screen (options("width")) will be used.

digits integer. With how many digits should the relative frequencies be formatted?
Default can be set by DescToolsOptions(digits=x).



Desc 171

ord character out of "name" (alphabetical order), "level", "asc" (by frequencies
ascending), "desc" (by frequencies descending) defining the order for a fre-
quency table as used for factors, numerics with few unique values and logicals.
Factors (and character vectors) are by default ordered by their descending fre-
quencies, ordered factors by their natural order.

conf.level confidence level of the interval. If set to NA no confidence interval will be calcu-
lated. Default is 0.95.

dprobs, mprobs a vector with the probabilities for the Chi-Square test for days, resp. months,
when describing a Date variable. If this is left to NULL (default) then a uniform
distribution will be used for days and a monthdays distribution in a non leap
year (p = c(31/365, 28/365, 31/365, ...)) for the months.
Applies only to Dates and is ignored else.

verbose integer out of c(2, 1, 3) defining the verbosity of the reported results. 2 (de-
fault) means medium, 1 less and 3 extensive results.
Applies only to tables and is ignored else.

rfrq a string with 3 characters, each of them being 1 or 0, defining which percentages
should be reported. The first position is interpreted as total percentages, the
second as row percentages and the third as column percentages. "011" hence
produces a table output with row and column percentages. If set to NULL rfrq
is defined in dependency of verbose (verbose = 1 sets rfrq to "000" and else
to "111", latter meaning all percentages will be reported.)
Applies only to tables and is ignored else.

margins a vector, consisting out of 1 and/or 2. Defines the margin sums to be included.
Row margins are reported if margins is set to 1. Set it to 2 for column margins
and c(1,2) for both.
Default is NULL (none).
Applies only to tables and is ignored else.

enum logical, determining if in data.frames and lists a sequential number should be
included in the main title. Default is TRUE. The reason for this option is, that if
a Word report with enumerated headings is created, the numbers may be redun-
dant or inconsistent.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame containing the variables in the formula formula.
By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

nolabel logical, defining if labels (defined as attribute with the name label, as done by
Label) should be plotted.

nomain logical, determines if the main title of the output is printed or not, default is
TRUE.

Details

A 2-dimensional table will be described with it’s relative frequencies, a short summary containing
the total cases, the dimensions of the table, chi-square tests and some association measures as phi-
coefficient, contingency coefficient and Cramer’s V.



172 Desc

Tables with higher dimensions will simply be printed as flat table, with marginal sums for the first
and for the last dimension.

Desc is a generic function. It dispatches to one of the methods above depending on the class of its
first argument. Typing ?Desc + TAB at the prompt should present a choice of links: the help pages
for each of these Desc methods (at least if you’re using RStudio, which anyway is recommended).
You don’t need to use the full name of the method although you may if you wish; i.e., Desc(x) is
idiomatic R but you can bypass method dispatch by going direct if you wish: Desc.numeric(x).

This function produces a rich description of a factor, containing length, number of NAs, number of
levels and detailed frequencies of all levels. The order of the frequency table can be chosen between
descending/ascending frequency, labels or levels. For ordered factors the order default is "level".
Character vectors are treated as unordered factors Desc.char converts x to a factor an processes x as
factor.
Desc.ordered does nothing more than changing the standard order for the frequencies to it’s intrinsic
order, which means order "level" instead of "desc" in the factor case.

Description interface for dates. We do here what seems reasonable for describing dates. We start
with a short summary about length, number of NAs and extreme values, before we describe the
frequencies of the weekdays and months, rounded up by a chi-square test.

A 2-dimensional table will be described with it’s relative frequencies, a short summary containing
the total cases, the dimensions of the table, chi-square tests and some association measures as phi-
coefficient, contingency coefficient and Cramer’s V.
Tables with higher dimensions will simply be printed as flat table, with marginal sums for the first
and for the last dimension.

Note that NAs cannot be handled by this interface, as tables in general come in "as.is", say basically
as a matrix without any further information about potentially previously cleared NAs.

Description of a dichotomous variable. This can either be a logical vector, a factor with two levels
or a numeric variable with only two unique values. The confidence levels for the relative frequencies
are calculated by BinomCI(), method "Wilson" on a confidence level defined by conf.level.
Dichotomous variables can easily be condensed in one graphical representation. Desc for a set
of flags (=dichotomous variables) calculates the frequencies, a binomial confidence interval and
produces a kind of dotplot with error bars. Motivation for this function is, that dichotomous variable
in general do not contain intense information. Therefore it makes sense to condense the description
of sets of dichotomous variables.

The formula interface accepts the formula operators +, :, *, I(), 1 and evaluates any function.
The left hand side and right hand side of the formula are evaluated the same way. The variable pairs
are processed in dependency of their classes.

Word This function is not thought of being directly run by the end user. It will normally be called
automatically, when a pointer to a Word instance is passed to the function Desc().
However DescWrd takes some more specific arguments concerning the Word output (like font or
fontsize), which can make it necessary to call the function directly.

Value

A list containing the following components:

length the length of the vector (n + NAs).

n the valid entries (NAs are excluded)



Desc 173

NAs number of NAs

unique number of unique values.

0s number of zeros

mean arithmetic mean

MeanSE standard error of the mean, as calculated by MeanSE().

quant a table of quantiles, as calculated by quantile(x, probs = c(.05,.10,.25,.5,.75,.9,.95),
na.rm = TRUE).

sd standard deviation

vcoef coefficient of variation: mean(x) / sd(x).

mad median absolute deviation (stats::mad()).

IQR interquartile range

skew skewness, as calculated by Skew().

kurt kurtosis, as calculated by Kurt().

highlow the lowest and the highest values, reported with their frequencies in brackets, if
> 1.

frq a data.frame of absolute and relative frequencies given by Freq() if maxlevels
> unique values in the vector.

Author(s)

Andri Signorell andri@signorell.net

See Also

base::summary(), base::plot()

Other Statistical summary functions: Abstract()

Examples

opt <- DescToolsOptions()

# implemented classes:
Desc(d.pizza$wrongpizza) # logical
Desc(d.pizza$driver) # factor
Desc(d.pizza$quality) # ordered factor
Desc(as.character(d.pizza$driver)) # character
Desc(d.pizza$week) # integer
Desc(d.pizza$delivery_min) # numeric
Desc(d.pizza$date) # Date

Desc(d.pizza)

Desc(d.pizza$wrongpizza, main="The wrong pizza delivered", digits=5)

Desc(table(d.pizza$area)) # 1-dim table
Desc(table(d.pizza$area, d.pizza$operator)) # 2-dim table

mailto:andri@signorell.net


174 Desc

Desc(table(d.pizza$area, d.pizza$operator, d.pizza$driver)) # n-dim table

# expressions
Desc(log(d.pizza$temperature))
Desc(d.pizza$temperature > 45)

# supported labels
Label(d.pizza$temperature) <- "This is the temperature in degrees Celsius
measured at the time when the pizza is delivered to the client."
Desc(d.pizza$temperature)
# try as well: Desc(d.pizza$temperature, wrd=GetNewWrd())

z <- Desc(d.pizza$temperature)
print(z, digits=1, plotit=FALSE)
# plot (additional arguments are passed on to the underlying plot function)
plot(z, main="The pizza's temperature in Celsius", args.hist=list(breaks=50))

# formula interface for single variables
Desc(~ uptake + Type, data = CO2, plotit = FALSE)

# bivariate
Desc(price ~ operator, data=d.pizza) # numeric ~ factor
Desc(driver ~ operator, data=d.pizza) # factor ~ factor
Desc(driver ~ area + operator, data=d.pizza) # factor ~ several factors
Desc(driver + area ~ operator, data=d.pizza) # several factors ~ factor
Desc(driver ~ week, data=d.pizza) # factor ~ integer

Desc(driver ~ operator, data=d.pizza, rfrq="111") # alle rel. frequencies
Desc(driver ~ operator, data=d.pizza, rfrq="000",

verbose=3) # no rel. frequencies

Desc(price ~ delivery_min, data=d.pizza) # numeric ~ numeric
Desc(price + delivery_min ~ operator + driver + wrongpizza,

data=d.pizza, digits=c(2,2,2,2,0,3,0,0) )

Desc(week ~ driver, data=d.pizza, digits=c(2,2,2,2,0,3,0,0)) # define digits

Desc(delivery_min + weekday ~ driver, data=d.pizza)

# without defining data-parameter
Desc(d.pizza$delivery_min ~ d.pizza$driver)

# with functions and interactions
Desc(sqrt(price) ~ operator : factor(wrongpizza), data=d.pizza)
Desc(log(price+1) ~ cut(delivery_min, breaks=seq(10,90,10)),

data=d.pizza, digits=c(2,2,2,2,0,3,0,0))

# response versus all the rest
Desc(driver ~ ., data=d.pizza[, c("temperature","wine_delivered","area","driver")])



Desc 175

# all the rest versus response
Desc(. ~ driver, data=d.pizza[, c("temperature","wine_delivered","area","driver")])

# pairwise Descriptions
p <- CombPairs(c("area","count","operator","driver","temperature","wrongpizza","quality"), )
for(i in 1:nrow(p))

print(Desc(formula(gettextf("%s ~ %s", p$X1[i], p$X2[i])), data=d.pizza))

# get more flexibility, create the table first
tab <- as.table(apply(HairEyeColor, c(1,2), sum))
tab <- tab[,c("Brown","Hazel","Green","Blue")]

# display only absolute values, row and columnwise percentages
Desc(tab, row.vars=c(3, 1), rfrq="011", plotit=FALSE)

# do the plot by hand, while setting the colours for the mosaics
cols1 <- SetAlpha(c("sienna4", "burlywood", "chartreuse3", "slategray1"), 0.6)
cols2 <- SetAlpha(c("moccasin", "salmon1", "wheat3", "gray32"), 0.8)
plot(Desc(tab), col1=cols1, col2=cols2)

# choose alternative flavours for graphing numeric ~ factor using pipe
# (colors are recyled)
Desc(temperature ~ driver, data = d.pizza) |> plot(type="dens", col=Pal("Tibco"))

# use global format options for presentation
Fmt(abs=as.fmt(digits=0, big.mark=""))
Fmt(per=as.fmt(digits=2, fmt="%"))
Desc(area ~ driver, d.pizza, plotit=FALSE)

Fmt(abs=as.fmt(digits=0, big.mark="'"))
Fmt(per=as.fmt(digits=3, ldigits=0))
Desc(area ~ driver, d.pizza, plotit=FALSE)

# plot arguments can be fixed in detail
z <- Desc(BoxCox(d.pizza$temperature, lambda = 1.5))
plot(z, mar=c(0, 2.1, 4.1, 2.1), args.rug=TRUE, args.hist=list(breaks=50),

args.dens=list(from=0))

# The default description for count variables can be inappropriate,
# the density curve does not represent the variable well.
set.seed(1972)
x <- rpois(n = 500, lambda = 5)
Desc(x)
# but setting maxrows to Inf gives a better plot
Desc(x, maxrows = Inf)

# Output into word document (Windows-specific example) -----------------------
# by simply setting wrd=GetNewWrd()
## Not run:



176 DescTools Aliases

# create a new word instance and insert title and contents
wrd <- GetNewWrd(header=TRUE)

# let's have a subset
d.sub <- d.pizza[,c("driver", "date", "operator", "price", "wrongpizza")]

# do just the univariate analysis
Desc(d.sub, wrd=wrd)

## End(Not run)

DescToolsOptions(opt)

DescTools Aliases Some Aliases Set for Convenience

Description

Some aliases are defined either for having shorter names or for following the Google naming con-
vention.

Usage

N()

Details

N() is the same as as.numeric().
D() is the same as as.Date()

Author(s)

Andri Signorell <andri@signorell.net>

Examples

head(N(d.pizza$driver))



DescTools Palettes 177

DescTools Palettes Some Custom Palettes

Description

Some more custom palettes.

Usage

Pal(pal, n = 100, alpha = 1)

## S3 method for class 'palette'
plot(x, cex = 3, ...)

hred
horange
hyellow
hecru
hblue
hgreen

Arguments

pal name or number of the palette. One of RedToBlack (1), RedBlackGreen (2),
SteeblueWhite (3), RedWhiteGreen (4), RedWhiteBlue0 (5), RedWhiteBlue1
(6), RedWhiteBlue2 (7), RedWhiteBlue3 (8), Helsana (9), Tibco (10), RedGreen1
(11), Spring (12), Soap (13), Maiden (14), Dark (15), Accent (16), Pastel
(17), Fragile (18), Big (19), Long (20), Night (21), Dawn (22), Noon (23),
Light (24)

n integer, number of colors for the palette.

alpha the alpha value to be added. This can be any value from 0 (fully transparent) to
1 (opaque). NA is interpreted so as to delete a potential alpha channel. Default is
0.5.

x a palette to be plotted.

cex extension for the color squares. Defaults to 3.

... further arguments passed to the function.

Details

hred, horange, hyellow, hecru, hblue and hgreen are constants, pointing to the according color from
the palette Pal("Helsana").

Value

a vector of colors



178 DescToolsOptions

Author(s)

Andri Signorell <andri@signorell.net>

See Also

colorRampPalette

Examples

Canvas(c(0,1))
ColorLegend(x=0, y=1, width=0.1, col=Pal(1, n=50))
ColorLegend(x=0.15, y=1, width=0.1, col=Pal(2, n=50))
ColorLegend(x=0.3, y=1, width=0.1, col=Pal(3, n=50))
ColorLegend(x=0.45, y=1, width=0.1, col=Pal(4, n=50))
ColorLegend(x=0.6, y=1, width=0.1, col=Pal(5, n=50))
ColorLegend(x=0.75, y=1, width=0.1, col=Pal(6, n=50))
ColorLegend(x=0.9, y=1, width=0.1, col=Pal(7))
ColorLegend(x=1.05, y=1, width=0.1, col=Pal(8))

text(1:8, y=1.05, x=seq(0,1.05,.15)+.05)
title(main="DescTools palettes")

par(mfrow=c(4,2), mar=c(1,1,2,1))
barplot(1:9, col=Pal("Tibco"), axes=FALSE, main="Palette 'Tibco'" )

barplot(1:7, col=Pal("Helsana"), axes=FALSE, main="Palette 'Helsana'" )
barplot(1:7, col=SetAlpha(Pal("Helsana")[c("ecru","hellgruen","hellblau")], 0.6),

axes=FALSE, main="Palette 'Helsana' (Alpha)" )

barplot(1:10, col=Pal("RedToBlack", 10), axes=FALSE, main="Palette 'RedToBlack'" )
barplot(1:10, col=Pal("RedBlackGreen", 10), axes=FALSE, main="Palette 'RedGreenGreen'" )
barplot(1:10, col=Pal("SteeblueWhite", 10), axes=FALSE, main="Palette 'SteeblueWhite'" )
barplot(1:10, col=Pal("RedWhiteGreen", 10), axes=FALSE, main="Palette 'RedWhiteGreen'" )

DescToolsOptions DescTools Options

Description

Get and set a variety of options which affect the way in which DescTools functions display results.

Usage

DescToolsOptions(..., default = NULL, reset = FALSE)



DescToolsOptions 179

Arguments

... any options can be defined, using name = value. However, only the ones below
are used by DescTools functions.

default if the specified option is not set in the options list, this value is returned. This
facilitates retrieving an option and checking whether it is set and setting it sepa-
rately if not.

reset logical. If this is set to TRUE, the options will be overwritten with their default
values. Other arguments will be ignored in this case. Default is FALSE.

Details

Invoking DescToolsOptions() with no arguments returns a list with the current values of the op-
tions. Note that not all options listed below are set initially. To access the value of a single option,
one can simply use DescToolsOptions("plotit").
To set a new value use the same rationale as with the R options: DescToolsOptions(plotit=FALSE)

Options used by DescTools

col: a vector of colours, defined as names or as RGB-longs ("#RRGGBB"). By now three colors are
used in several plots as defaults. By default they’re set to hblue, hred and horange. Change
the values by defining DescToolsOptions(col=c("pink", "blue", "yellow")). Any color
definition can be used here.

digits: the number of FIXED digits, used throughout the print functions.

fixedfont: this font will be used by default, when Desc writes to a Word document. Must be
defined as a font object, say enumerating name, face and size of the font and setting the class
font, e.g. structure(list(name="Courier New", size=7), class="font").

fmt: Three number format definitions are currently used in the Desc routines. The format used for
integer values is named "abs", for percentages "perc" and for floating point numeric values
"num". The format definitions must be of class "fmt" and may contain any argument used in
the function Format.
Use Fmt to access and update formats (as they are organised in a nested list).

footnote: a character vector, containing characters to be used as footnote signs. Any character
can be defined here. This is currently used by TOne.

lang: either "engl" or "local", defining the language to be used for the names of weekdays and
months when using Format.

plotit: logical, defining whether the Desc-procedures should produce plots by default. This is
usually a good thing, but it may clutter up your desktop, if you’re not using RStudio. Therefore
it can be turned off.

stamp: text or expression to be placed in the right bottom corner of the DescTools plots. This can
be useful, if some author or date information should automatically be inserted by default. Any
text can be set as option, but also dynamic expressions can be used. The default would use
an expression as <username>/<date>, which will use the username from the system and the
current date. See defaults below.

Calling DescToolsOptions(reset=TRUE) will reset the options to these defaults:



180 DescToolsOptions

options(DescTools = list(
col = c(hblue="#8296C4", hred="#9A0941", horange="#F08100"),
digits = 3,
fixedfont = structure(list(name = "Consolas", size = 7), class = "font"),
fmt = list(abs = structure(list(digits = 0, big.mark = "'"),

name = "abs", label = "Number format for counts", default = TRUE,
class = "fmt"),

per = structure(list(digits = 1, fmt = "%"),
name = "per", label = "Percentage number format", default = TRUE,

class = "fmt"),
num = structure(list(digits = 3, big.mark = "'"),

name = "num", label = "Number format for floats", default = TRUE,
class = "fmt")

),
footnote = c("'", "\"", "\"\""),
lang = "engl",
plotit = TRUE,
stamp = expression(gettextf("%s/%s", Sys.getenv("USERNAME"),

Format(Today(), fmt = "yyyy-mm-dd")))
))

This code can as well be copied and pasted to the users’ RProfile file, in order to have the options
permanently available.

Value

For a given vector of strings the current value set for option x, or NULL if the option is unset.

If called with no arguments, returns all option settings in a list. Otherwise, it changes the named
settings and invisibly returns their previous values.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Format, Pal

Examples

DescToolsOptions("plotit")

## Not run:

# Get all options, defaults are attributed as such
DescToolsOptions()

# get some options
DescToolsOptions("plotit", "lang")



DigitSum 181

# get some potentially undefined option, while taking a user default and
# overriding system defaults
DescToolsOptions("stamp", default="Condor, 2016")

# get an undefined option, should return default
DescToolsOptions("stampede", default="Condor, 2016")

# set options, while getting the old values
opt <- DescToolsOptions(plotit=789, lang="portugues")
DescToolsOptions()
# output the old values
opt

# just a single argument
DescToolsOptions(digits=2)

# reset the old values
DescToolsOptions(opt)
DescToolsOptions()

# reset factory defaults
DescToolsOptions(reset=TRUE)

## End(Not run)

DigitSum Calculate Digit Sum

Description

Calculate digit sum of a number x.

Usage

DigitSum(x)

Arguments

x an integer number

Value

the digit sum

Author(s)

Andri Signorell <andri@signorell.net> based on code by Julius benchmarked by Uwe



182 DivCoef

References

URL: https://stackoverflow.com/questions/18675285/digit-sum-function-in-r

See Also

IsPrime

Examples

DigitSum(c(124, 45, 268))
# [1] 7 9 16

DivCoef Rao’s Diversity Coefficient

Description

Calculates Rao’s diversity coefficient (also known as "Quadratic Entropy") within samples.

Usage

DivCoef(df, dis, scale)

Arguments

df a data frame with elements as rows, samples as columns, and abundance, presence-
absence or frequencies as entries

dis an object of class dist containing distances or dissimilarities among elements.
If dis is NULL, Gini-Simpson index is performed.

scale a logical value indicating whether or not the diversity coefficient should be
scaled by its maximal value over all frequency distributions.

Value

Returns a data frame with samples as rows and the diversity coefficient within samples as columns

Note

This function was previously published as divc() in the ade4 package and has been integrated here
without logical changes.

Author(s)

Sandrine Pavoine <pavoine@biomserv.univ-lyon1.fr>

https://stackoverflow.com/questions/18675285/digit-sum-function-in-r


DivCoefMax 183

References

Rao, C.R. (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Popula-
tion Biology, 21, 24–43.

Gini, C. (1912) Variabilita e mutabilita. Universite di Cagliari III, Parte II.

Simpson, E.H. (1949) Measurement of diversity. Nature, 163, 688.

Champely, S. and Chessel, D. (2002) Measuring biological diversity using Euclidean metrics. En-
vironmental and Ecological Statistics, 9, 167–177.

Examples

# data(ecomor)
# dtaxo <- dist.taxo(ecomor$taxo)
# DivCoef(ecomor$habitat, dtaxo)

# data(humDNAm)
# DivCoef(humDNAm$samples, sqrt(humDNAm$distances))

DivCoefMax Maximal value of Rao’s diversity coefficient also called quadratic en-
tropy

Description

For a given dissimilarity matrix, this function calculates the maximal value of Rao’s diversity coeffi-
cient over all frequency distribution. It uses an optimization technique based on Rosen’s projection
gradient algorithm and is verified using the Kuhn-Tucker conditions.

Usage

DivCoefMax(dis, epsilon, comment)

Arguments

dis an object of class dist containing distances or dissimilarities among elements.
epsilon a tolerance threshold : a frequency is non null if it is higher than epsilon.
comment a logical value indicating whether or not comments on the optimization tech-

nique should be printed.

Value

Returns a list

value the maximal value of Rao’s diversity coefficient.
vectors a data frame containing four frequency distributions : sim is a simple distribu-

tion which is equal to D1
1tD1 , pro is equal to z

1tz1 , where z is the nonnegative
eigenvector of the matrix containing the squared dissimilarities among the ele-
ments, met is equal to z2, num is a frequency vector maximizing Rao’s diversity
coefficient.



184 DivCoefMax

Author(s)

Stéphane Champely <Stephane.Champely@univ-lyon1.fr>
Sandrine Pavoine <pavoine@biomserv.univ-lyon1.fr>

References

Rao, C.R. (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Popula-
tion Biology, 21, 24–43.

Gini, C. (1912) Variabilita e mutabilita. Universite di Cagliari III, Parte II.

Simpson, E.H. (1949) Measurement of diversity. Nature, 163, 688.

Champely, S. and Chessel, D. (2002) Measuring biological diversity using Euclidean metrics. En-
vironmental and Ecological Statistics, 9, 167–177.

Pavoine, S., Ollier, S. and Pontier, D. (2005) Measuring diversity from dissimilarities with Rao’s
quadratic entropy: are any dissimilarities suitable? Theoretical Population Biology, 67, 231–239.

Examples

## Not run:
par.safe <- par()$mar
data(elec88)
par(mar = c(0.1, 0.1, 0.1, 0.1))
# Departments of France.
area.plot(elec88$area)

# Dissimilarity matrix.
d0 <- dist(elec88$xy)

# Frequency distribution maximizing spatial diversity in France
# according to Rao's quadratic entropy.
France.m <- DivCoefMax(d0)
w0 <- France.m$vectors$num
v0 <- France.m$value
(1:94) [w0 > 0]

# Smallest circle including all the 94 departments.
# The squared radius of that circle is the maximal value of the
# spatial diversity.
w1 = elec88$xy[c(6, 28, 66), ]
w.c = apply(w1 * w0[c(6, 28, 66)], 2, sum)
symbols(w.c[1], w.c[2], circles = sqrt(v0), inc = FALSE, add = TRUE)
s.value(elec88$xy, w0, add.plot = TRUE)
par(mar = par.safe)

# Maximisation of Rao's diversity coefficient
# with ultrametric dissimilarities.
data(microsatt)
mic.genet <- count2genet(microsatt$tab)
mic.dist <- dist.genet(mic.genet, 1)
mic.phylog <- hclust2phylog(hclust(mic.dist))



Divisors 185

plot.phylog(mic.phylog)
mic.maxpond <- DivCoefMax(mic.phylog$Wdist)$vectors$num
dotchart.phylog(mic.phylog, mic.maxpond)

## End(Not run)

Divisors Calculate Divisors

Description

Calculate divisors of positive natural numbers.

Usage

Divisors(x)

Arguments

x integer number for which the divisors are to be returned

Details

Divisibility is a mathematical relationship between two integers. An integer is divisible by another
integer if there is no remainder in the division. The number 11 has only two divisors: 1 and the
number 11 itself, whereas the number 12 has many divisors: 1, 2, 3, 4, 6 and 12. In elementary
number theory, the concept of divisibility is limited to natural numbers. The number of its divisors
can be determined with the function length().

Value

an integer vector containg the divisors

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Primes, IsPrime, GCD, LCM

Examples

Divisors(c(145, 786))



186 DoBy

DoBy Evaluates a Function Groupwise

Description

Split the vector x into partitions and apply the function to each partition separately. Computation
restarts for each partition.
The logic is the same as the OLAP functions in SQL, e.g. SUM(x) OVER (PARTITION BY group).

Usage

DoBy(x, ...)

## S3 method for class 'formula'
DoBy(formula, data = parent.frame(), subset, na.action,

vnames = NULL, ...)
## Default S3 method:
DoBy(x, by, FUN, vnames = NULL, collapse = FALSE, ...)

Arguments

x a vector that should be operated.

by list of one or more factors, each of same length as x. If by is not a factor, the
elements are coerced to factors by as.factor().

FUN Function to apply for each factor level combination.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the
variables in the formula formula. By default the variables are taken from the
parent.frame().

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

vnames name for the new variables.

collapse logical, determining if the results should be collapsed to groups. Default is
FALSE.

... optional arguments to FUN: See the "Note" section.

Details

This is more or less the same as the function ave, with the arguments organized a bit different and
offering more flexibility.



DoBy 187

Value

a data.frame with the same number of rows as length as x containing the groupwise results of FUN
and the used group factors.
The attribute response denotes the name of the response variable in case the formula interface was
used.

Note

Optional arguments to FUN supplied by the ... argument are not divided into cells. It is therefore
inappropriate for FUN to expect additional arguments with the same length as x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ave, tapply, aggregate

Examples

d.frm <- data.frame(x=rep(1:4,3), v=sample(x=1:3, size=12, replace=TRUE),
g=gl(4,3,labels=letters[1:4]), m=gl(3,4,labels=LETTERS[1:3]))

# SQL-OLAP: sum() over (partition by g)
DoBy(d.frm$x, d.frm$g, FUN=sum)
# DoBy(d.frm$x, FUN=sum)

# more than 1 grouping variables are organized as list as in tapply:
DoBy(d.frm$x, list(d.frm$g, d.frm$m), mean)

# count
d.frm$count <- DoBy(d.frm$x, d.frm$g, length)

# rank
d.frm$rank <- DoBy(d.frm$v, d.frm$g, rank)
d.frm$dense_rank <- DoBy(d.frm$v, d.frm$g, Rank, ties.method="dense")
d.frm$rank_desc <- DoBy(d.frm$x, d.frm$g, function(x) rank(-x))

# row_number
d.frm$row_number <- DoBy(d.frm$v, d.frm$g, function(x) order(x))
d.frm



188 DoCall

DoCall Fast Alternative To The Internal do.call

Description

The do.call can be somewhat slow, especially when working with large objects. This function is
based upon the suggestions from Hadley Wickham on the R mailing list (reference not available
anymore). Also thanks to Tommy at StackOverflow for suggesting how to handle double and triple
colon operators, ::, further enhancing the function.

Usage

DoCall(what, args, quote = FALSE, envir = parent.frame())

Arguments

what either a function or a non-empty character string naming the function to be
called.

args a list of arguments to the function call. The names attribute of args gives the
argument names.

quote a logical value indicating whether to quote the arguments.

envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

Note

While the function attempts to do most of what do.call can it has limitations. It can currently not
parse the example code from the original function:
do.call(paste, list(as.name("A"), as.name("B")), quote = TRUE) and the funcitonality of
quote has not been thoroughly tested.

Note

This is a verbatim copy from Gmisc::fastDoCall.

Author(s)

Max Gordon <max@gforge.se>

Examples

DoCall("complex", list(imaginary = 1:3))

## if we already have a list (e.g. a data frame)
## we need c() to add further arguments
tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
DoCall("paste", c(tmp, sep = ""))

https://stackoverflow.com/questions/10022436/do-call-in-combination-with


Dot 189

## examples of where objects will be found.
A <- 2
f <- function(x) print(x^2)
env <- new.env()
assign("A", 10, envir = env)
assign("f", f, envir = env)
f <- function(x) print(x)
f(A) # 2
DoCall("f", list(A)) # 2
DoCall("f", list(A), envir = env) # 4
DoCall(f, list(A), envir = env) # 2
DoCall("f", list(quote(A)), envir = env) # 100
DoCall(f, list(quote(A)), envir = env) # 10
DoCall("f", list(as.name("A")), envir = env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f", A), envir = env) # 4
eval(call("f", quote(A)), envir = env) # 100

Dot Scalar Product

Description

’dot’ or ’scalar’ product of vectors or pairwise columns of matrices.

Usage

Dot(x, y)

Arguments

x numeric vector or matrix

y numeric vector or matrix

Details

Returns the ’dot’ or ’scalar’ product of vectors or columns of matrices. Two vectors must be of
same length, two matrices must be of the same size. If x and y are column or row vectors, their dot
product will be computed as if they were simple vectors.

Value

A scalar or vector of length the number of columns of x and y.

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>



190 DrawArc

See Also

Cross

Examples

Dot(1:5, 1:5) #=> 55
# Length of space diagonal in 3-dim- cube:
sqrt(Dot(c(1,1,1), c(1,1,1))) #=> 1.732051

DrawArc Draw Elliptic Arc(s)

Description

Draw one or more elliptic (or circular) arcs from theta.1 to theta.2 on an existing plot using
classic graphics.

Usage

DrawArc(x = 0, y = x, rx = 1, ry = rx,
theta.1 = 0, theta.2 = 2*pi, nv = 100,
col = par("col"), lty = par("lty"), lwd = par("lwd"),
plot = TRUE)

Arguments

x, y a vector (or scalar) of xy-coordinates of the center(s) of the arc(s).

rx a scalar or a vector giving the semi-major axis of the ellipse for the arc(s)

ry a scalar or a vector giving the semi-minor axis of the ellipse for the arc(s). De-
fault is radius.x which will result in a circle arc with radius.x.

theta.1 a scalar or a vector of starting angles in radians.

theta.2 a scalar or a vector of ending angles in radians.

nv number of vertices used to plot the arc. Scalar or vector.

col color for the arc(s). Scalar or vector.

lty line type used for drawing.

lwd line width used for drawing.

plot logical. If TRUE the structure will be plotted. If FALSE only the xy-points are
calculated and returned. Use this if you want to combine several geometric
structures to a single polygon.

Details

All parameters are recycled if necessary.
Be sure to use an aspect ratio of 1 as shown in the example to avoid distortion.



DrawBand 191

Value

DrawArc invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

DrawCircle, polygon

Examples

curve(sin(x), 0, pi, col="blue", asp=1)
DrawArc(x = pi/2, y = 0, rx = 1, theta.1 = pi/4, theta.2 = 3*pi/4, col="red")

DrawBand Draw Confidence Band

Description

Draw a band using a simple syntax. Just a wrapper for the function polygon() typically used to
draw confidence bands.

Usage

DrawBand(x, y, col = SetAlpha("grey", 0.5), border = NA)

Arguments

x a vector or a matrix with x coordinates for the band. If x is given as matrix it
must be a 2×n matrix and the second column will be reversed. x will be recyled
in the case y is a 2dimensional matrix.

y a vector or a matrix with y coordinates for the band. If y is given as matrix it
must be a 2×n matrix and the second column will be reversed. y will be recyled
in the case x is a 2dimensional matrix.

col the color of the band.

border the border color of the band.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon



192 DrawBezier

Examples

set.seed(18)
x <- rnorm(15)
y <- x + rnorm(15)

new <- seq(-3, 3, 0.5)
pred.w.plim <- predict(lm(y ~ x), newdata=data.frame(x=new), interval="prediction")
pred.w.clim <- predict(lm(y ~ x), newdata=data.frame(x=new), interval="confidence")

plot(y ~ x)
DrawBand(y = c(pred.w.plim[,2], rev(pred.w.plim[,3])),

x=c(new, rev(new)), col= SetAlpha("grey90", 0.5))

# passing y as matrix interface allows more intuitive arguments
DrawBand(y = pred.w.clim[, 2:3],

x = new, col= SetAlpha("grey80", 0.5))

abline(lm(y~x), col="brown")

DrawBezier Draw a Bezier Curve

Description

Draw a Bezier curve.

Usage

DrawBezier(x = 0, y = x, nv = 100, col = par("col"), lty = par("lty"),
lwd = par("lwd"), plot = TRUE)

Arguments

x, y a vector of xy-coordinates to define the Bezier curve. Should at least contain 3
points.

nv number of vertices to draw the curve.

col color(s) for the curve. Default is par("fg").

lty line type for borders and shading; defaults to "solid".

lwd line width for borders and shading.

plot logical. If TRUE the structure will be plotted. If FALSE only the xy-points are
calculated and returned. Use this if you want to combine several geometric
structures to a single polygon.



DrawCircle 193

Details

Bezier curves appear in such areas as mechanical computer aided design (CAD). They are named
after P. Bezier, who used a closely related representation in Renault’s UNISURF CAD system in the
early 1960s (similar, unpublished, work was done by P. de Casteljau at Citroen in the late 1950s and
early 1960s). The 1970s and 1980s saw a flowering of interest in Bezier curves, with many CAD
systems using them, and many important developments in their theory. The usefulness of Bezier
curves resides in their many geometric and analytical properties. There are elegant and efficient
algorithms for evaluation, differentiation, subdivision of the curves, and conversion to other useful
representations. (See: Farin, 1993)

Value

DrawBezier invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Frank E Harrell Jr <f.harrell@vanderbilt.edu>

References

G. Farin (1993) Curves and surfaces for computer aided geometric design. A practical guide, Acad.
Press

See Also

polygon, DrawRegPolygon, DrawCircle, DrawArc

Examples

Canvas(xlim=c(0,1))
grid()
DrawBezier( x=c(0,0.5,1), y=c(0,0.5,0), col="blue", lwd=2)
DrawBezier( x=c(0,0.5,1), y=c(0,1,0), col="red", lwd=2)
DrawBezier( x=c(0,0.25,0.5,0.75,1), y=c(0,1,1,1,0), col="darkgreen", lwd=2)

DrawCircle Draw a Circle

Description

Draw one or several circle on an existing plot.

Usage

DrawCircle(x = 0, y = x, r.out = 1, r.in = 0,
theta.1 = 0, theta.2 = 2*pi, border = par("fg"),
col = NA, lty = par("lty"), lwd = par("lwd"),
nv = 100, plot = TRUE)



194 DrawCircle

Arguments

x, y a vector (or scalar) of xy-coordinates for the center(s) of the circle(s).

r.out a vector (or scalar) of the outer radius of the circle.

r.in a vector (or scalar) of a potential inner radius of an annulus.

theta.1 a vector (or scalar) of the starting angle(s). The sectors are built counterclock-
wise.

theta.2 a vector (or scalar) of the ending angle(s).

nv number of vertices to draw the circle.

border color for circle borders. The default is par("fg"). Use border = NA to omit bor-
ders.

col color(s) to fill or shade the circle(s) with. The default NA (or also NULL) means
do not fill, i.e., draw transparent circles, unless density is specified.

lty line type for borders and shading; defaults to "solid".

lwd line width for borders and shading.

plot logical. If TRUE the structure will be plotted. If FALSE only the points are cal-
culated and returned. Use this option if you want to combine several geometric
structures to a polygon.

Details

All geometric arguments will be recycled.

Value

The function invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon, DrawRegPolygon, DrawEllipse, DrawArc

Examples

Canvas(xlim = c(-5,5), xpd=TRUE)
cols <- Pal("Helsana")[1:4]

# Draw ring
DrawCircle (r.in = 1, r.out = 5, border="darkgrey",

col=SetAlpha(DescTools::hyellow, 0.2), lwd=2)

# Draw circle
DrawCircle (r.in = 6, border=DescTools::hgreen, lwd=3)

# Draw sectors



DrawEllipse 195

geom <- rbind(c(-pi, 0, .25, .5), c(0, pi, 1, 2),
c(-pi/2, pi/2, 2, 2.5), c(pi/2, 3 * pi/2, 3, 4),
c(pi - pi/8, pi + pi/8, 1.5, 2.5))

DrawCircle (r.in = geom[,3], r.out = geom[,4],
theta.1 = geom[,1], theta.2 = geom[,2],
col = SetAlpha(cols, 0.6),
border = cols, lwd=1)

# clipping
Canvas(bg="lightgrey", main="Yin ~ Yang")
DrawCircle (r.out = 1, col="white")
clip(0, 2, 2, -2)
DrawCircle(col="black")
clip(-2, 2, 2, -2)
DrawCircle (y = c(-0.5,0.5), r.out = 0.5, col=c("black", "white"), border=NA)
DrawCircle (y = c(-0.5,0.5), r.out = 0.1, col=c("white", "black"), border=NA)
DrawCircle ()

# overplotting circles
Canvas(xlim=c(-5,5))
DrawCircle (r.out=4:1, col=c("white", "steelblue2", "white", "red"), lwd=3, nv=300)

# rotation
x <- seq(-3, 3, length.out=10)
y <- rep(0, length.out=length(x))

Canvas(xlim=c(-5,5), bg="black")

sapply( (0:11) * pi/6, function(theta) {
xy <- Rotate(x, y=y, theta=theta)
DrawCircle (x=xy$x, y=xy$y, r.in=2.4, border=SetAlpha("white", 0.2))

} )

DrawEllipse Draw an Ellipse

Description

Draw one or several ellipses on an existing plot.

Usage

DrawEllipse(x = 0, y = x, radius.x = 1, radius.y = 0.5, rot = 0,
nv = 100, border = par("fg"), col = par("bg"),
lty = par("lty"), lwd = par("lwd"), plot = TRUE)



196 DrawEllipse

Arguments

x, y the x and y co-ordinates for the centre(s) of the ellipse(s).

radius.x a scalar or a vector giving the semi-major axis of the ellipse.

radius.y a scalar or a vector giving the semi-minor axis of the ellipse.

rot angle of rotation in radians.

nv number of vertices to draw the ellipses.

border color for borders. The default is par("fg"). Use border = NA to omit borders.

col color(s) to fill or shade the annulus sector with. The default NA (or also NULL)
means do not fill (say draw transparent).

lty line type for borders and shading; defaults to "solid".

lwd line width for borders and shading.

plot logical. If TRUE the structure will be plotted. If FALSE only the points are calcu-
lated and returned. Use this if you want to combine several geometric structures
to a single polygon.

Details

Use DegToRad if you want to define rotation angle in degrees.

Value

The function invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon, DrawRegPolygon, DrawCircle, DrawArc

Examples

par(mfrow=c(1,2))

Canvas()
DrawEllipse(rot = c(1:3) * pi/3, col=SetAlpha(c("blue","red","green"), 0.5) )

plot(cars)
m <- var(cars)
eig <- eigen(m)
eig.val <- sqrt(eig$values)
eig.vec <- eig$vectors

DrawEllipse(x=mean(cars$speed), y=mean(cars$dist), radius.x=eig.val[1] , radius.y=eig.val[2]
, rot=acos(eig.vec[1,1]), border="blue", lwd=3)



DrawRegPolygon 197

DrawRegPolygon Draw Regular Polygon(s)

Description

Draw a regular polygon with n corners. This is the workhorse function for drawing regular poly-
gons. Drawing a circle can be done by setting the vertices to a value of say 100.

Usage

DrawRegPolygon(x = 0, y = x, radius.x = 1, radius.y = radius.x, rot = 0,
nv = 3, border = par("fg"), col = par("bg"), lty = par("lty"),
lwd = par("lwd"), plot = TRUE)

Arguments

x, y a vector (or scalar) of xy-coordinates of the center(s) of the regular polygon(s).

radius.x a scalar or a vector giving the semi-major axis of the ellipse for the polygon(s).

radius.y a scalar or a vector giving the semi-minor axis of the ellipse for the polygon(s).
Default is radius.x which will result in a polygon with radius.x.

rot angle of rotation in radians.

nv number of vertices to draw the polygon(s).

border color for borders. The default is par("fg"). Use border = NA to omit borders.

col color(s) to fill or shade the shape with. The default NA (or also NULL) means do
not fill (say draw transparent).

lty line type for borders and shading; defaults to "solid".

lwd line width for borders and shading.

plot logical. If TRUE the structure will be plotted. If FALSE only the points are calcu-
lated and returned. Use this if you want to combine several geometric structures
to a polygon.

Details

All geometric arguments will be recycled.

Value

The function invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon, DrawCircle, DrawArc



198 Dummy

Examples

# Draw 4 triangles (nv = 3) with different rotation angles
plot(c(0,1),c(0,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
DrawRegPolygon(x = 0.5, y = 0.5, rot = (1:4)*pi/6, radius.x = 0.5, nv = 3,

col = SetAlpha("yellow",0.5))

# Draw several polygons
plot(c(0,1),c(0,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
DrawRegPolygon(x = 0.5, y = 0.5, radius.x=seq(50, 5, -10) * 1 /100,

rot=0, nv = c(50, 10, 7, 4, 3), col=SetAlpha("blue",seq(0.2,0.7,0.1)))

# Combine several polygons by sorting the coordinates
# Calculate the xy-points for two concentric pentagons
d.pts <- do.call("rbind", lapply(DrawRegPolygon(radius.x=c(1,0.38), nv=5,

rot=c(pi/2, pi/2+pi/5), plot=FALSE ), data.frame))

# prepare plot
plot(c(-1,1),c(-1,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")

# .. and draw the polygon with reordered points
polygon( d.pts[order(rep(1:6, times=2), rep(1:2, each=6)), c("x","y")], col="yellow")

# Move the center
plot(c(0,1),c(0,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
theta <- seq(0, pi/6, length.out=5)
xy <- PolToCart( exp(theta) /2, theta)
DrawRegPolygon(x=xy$x, y=xy$y + 0.5, radius.x=seq(0.5, 0.1, -0.1),

nv=4, rot=seq(0, pi/2, length.out=5), col=rainbow(5) )

# Plot a polygon with a "hole"
plot(c(-1,1),c(-1,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
DrawRegPolygon(nv = 4, rot=pi/4, col="red" )
text(x=0,y=0, "Polygon", cex=6, srt=45)

# Calculate circle and hexagon, but do not plot
pts <- DrawRegPolygon(radius.x=c(0.7, 0.5), nv = c(100, 6), plot=FALSE )

# combine the 2 shapes and plot the new structure
polygon(x = unlist(lapply(pts, "[", "x")),

y=unlist(lapply(pts, "[", "y")), col="green", border=FALSE)

Dummy Generate Dummy Codes for a Factor



Dummy 199

Description

Generate a matrix of dummy codes (class indicators) for a given factor.

Usage

Dummy(x, method = c("treatment", "sum", "helmert", "poly", "full"),
base = 1, levels = NULL)

Arguments

x factor or vector of classes for cases.

method defines the method of the contrasts being formed. Can be one out of "treatment",
"sum", "helmert", "poly", "full", whereas "treatment" is the default one.
Abbreviations are accepted.
The option "full" returns a full set of class indicators, say a dummy factor for
each level of x. Note that this would be redundant for lm() and friends!

base an integer specifying which group is considered the baseline group.

levels an optional vector of the values (as character strings) that x might have taken.
The default is the unique set of values taken by as.character(x), sorted into in-
creasing order of x.
This is directly passed on to factor.

Details

For reverting dummy codes see the approach in the examples below.

Value

a matrix with the dummy codes. The number of rows correspond to the number of elements in x
and the number of columns to the number of its levels - 1, respectively to the number of levels given
as argument -1.

When method = "full" is chosen the number of columns will correspond to the number of levels.

Author(s)

Andri Signorell <andri@signorell.net>

References

Venables, W N and Ripley, B D (2002): Modern Applied Statistics with S. Fourth edition. Springer.

See Also

model.frame, contrasts, class.ind in the package nnet



200 DunnettTest

Examples

x <- c("red","blue","green","blue","green","red","red","blue")
Dummy(x)
Dummy(x, base=2)

Dummy(x, method="sum")

y <- c("Max","Max","Max","Max","Max","Bill","Bill","Bill")

Dummy(y)
Dummy(y, base="Max")

Dummy(y, base="Max", method="full")

# "Undummy" (revert the dummy coding)
m <- Dummy(y, method="full")
m
z <- apply(m, 1, function(x) colnames(m)[x==1])
z
identical(y, as.vector(z))

m <- Dummy(y)
m
z <- apply(m, 1, function(x) ifelse(sum(x)==0, attr(m,"base"), colnames(m)[x==1]))
z

DunnettTest Dunnett’s Test for Comparing Several Treatments With a Control

Description

Performs Dunnett’s test for comparing several treatments with a control.

Usage

DunnettTest(x, ...)

## Default S3 method:
DunnettTest(x, g, control = NULL, conf.level = 0.95, ...)

## S3 method for class 'formula'
DunnettTest(formula, data, subset, na.action, ...)



DunnettTest 201

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

control the level of the control group against which the others should be tested. If there
are multiple levels the calculation will be performed for every one.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

DunnettTest does the post hoc pairwise multiple comparisons procedure.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric
data vectors. In this case, g is ignored, and one can simply use DunnettTest(x) to perform the test.
If the samples are not yet contained in a list, use DunnettTest(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Value

A list of class c("PostHocTest"), containing one matrix named after the control with columns
diff giving the difference in the observed means, lwr.ci giving the lower end point of the interval,
upr.ci giving the upper end point and pval giving the p-value after adjustment for the multiple
comparisons.

There are print and plot methods for class "PostHocTest". The plot method does not accept xlab,
ylab or main arguments and creates its own values for each plot.

Author(s)

Andri Signorell <andri@signorell.net>, the interface is based on R-Core code

References

Dunnett C. W. (1955) A multiple comparison procedure for comparing several treatments with a
control, Journal of the American Statistical Association, 50:1096-1121.



202 DunnTest

See Also

PostHocTest

Examples

## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

DunnettTest(list(x, y, z))

## Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

DunnettTest(x, g)

## Formula interface
boxplot(Ozone ~ Month, data = airquality)
DunnettTest(Ozone ~ Month, data = airquality)

DunnettTest(Ozone ~ Month, data = airquality, control="8", conf.level=0.9)

DunnTest Dunn’s Test of Multiple Comparisons

Description

Performs Dunn’s test of multiple comparisons using rank sums.

Usage

DunnTest(x, ...)

## Default S3 method:
DunnTest(x, g,

method = c("holm", "hochberg", "hommel", "bonferroni", "BH",
"BY", "fdr", "none"),

alternative = c("two.sided", "less", "greater"),
out.list = TRUE, ...)

## S3 method for class 'formula'



DunnTest 203

DunnTest(formula, data, subset, na.action, ...)

## S3 method for class 'DunnTest'
print(x, digits = getOption("digits", 3), ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

method the method for adjusting p-values for multiple comparisons. The function is
calling p.adjust and this parameter is directly passed through.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

out.list logical, indicating if the results should be printed in list mode or as a square
matrix. Default is list (TRUE).

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

digits controls the number of fixed digits to print.

... further arguments to be passed to or from methods.

Details

DunnTest performs the post hoc pairwise multiple comparisons procedure appropriate to follow the
rejection of a Kruskal-Wallis test. The Kruskal-Wallis test, being a non-parametric analog of the
one-way ANOVA, is an omnibus test of the null hypothesis that none of k groups stochastically
dominate one another. Dunn’s test is constructed in part by summing jointly ranked data. The rank
sum test, itself a non-parametric analog of the unpaired t-test, is possibly intuitive, but inappropriate
as a post hoc pairwise test, because (1) it fails to retain the dependent ranking that produced the
Kruskal-Wallis test statistic, and (2) it does not incorporate the pooled variance estimate implied by
the null hypothesis of the Kruskal-Wallis test.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric
data vectors. In this case, g is ignored, and one can simply use DunnTest(x) to perform the test. If
the samples are not yet contained in a list, use DunnTest(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.



204 DunnTest

Value

A list with class "DunnTest" containing the following components:

res an array containing the mean rank differencens and the according p-values

Author(s)

Andri Signorell <andri@signorell.net>, the interface is based on R-Core code

References

Dunn, O. J. (1961) Multiple comparisons among means Journal of the American Statistical Associ-
ation, 56(293):52-64.

Dunn, O. J. (1964) Multiple comparisons using rank sums Technometrics, 6(3):241-252.

See Also

kruskal.test, wilcox.test, p.adjust

Examples

## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
DunnTest(list(x, y, z))

## Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

# do the kruskal.test first
kruskal.test(x, g)

# ...and the pairwise test afterwards
DunnTest(x, g)

## Formula interface.
boxplot(Ozone ~ Month, data = airquality)
DunnTest(Ozone ~ Month, data = airquality)



DurbinWatsonTest 205

DurbinWatsonTest Durbin-Watson Test

Description

Performs the Durbin-Watson test for autocorrelation of disturbances.

Usage

DurbinWatsonTest(formula, order.by = NULL,
alternative = c("greater", "two.sided", "less"),
iterations = 15, exact = NULL, tol = 1e-10, data = list())

Arguments

formula a symbolic description for the model to be tested (or a fitted "lm" object).
order.by Either a vector z or a formula with a single explanatory variable like ~ z. The

observations in the model are ordered by the size of z. If set to NULL (the default)
the observations are assumed to be ordered (e.g., a time series).

alternative a character string specifying the alternative hypothesis.
iterations an integer specifying the number of iterations when calculating the p-value with

the "pan" algorithm.
exact logical. If set to FALSE a normal approximation will be used to compute the p

value, if TRUE the "pan" algorithm is used. The default is to use "pan" if the
sample size is < 100.

tol tolerance. Eigenvalues computed have to be greater than tol to be treated as
non-zero.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which DurbinWatsonTest is called
from.

Details

The Durbin-Watson test has the null hypothesis that the autocorrelation of the disturbances is 0. It is
possible to test against the alternative that it is greater than, not equal to, or less than 0, respectively.
This can be specified by the alternative argument.

Under the assumption of normally distributed disturbances, the null distribution of the Durbin-
Watson statistic is the distribution of a linear combination of chi-squared variables. The p-value is
computed using the Fortran version of Applied Statistics Algorithm AS 153 by Farebrother (1980,
1984). This algorithm is called "pan" or "gradsol". For large sample sizes the algorithm might fail to
compute the p value; in that case a warning is printed and an approximate p value will be given; this
p value is computed using a normal approximation with mean and variance of the Durbin-Watson
test statistic.

Examples can not only be found on this page, but also on the help pages of the data sets bondyield,
currencysubstitution, growthofmoney, moneydemand, unemployment, wages.

For an overview on R and econometrics see Racine & Hyndman (2002).



206 DurbinWatsonTest

Value

An object of class "htest" containing:

statistic the test statistic.

p.value the corresponding p-value.

method a character string with the method used.

data.name a character string with the data name.

Note

This function was previously published as dwtest in the lmtest package and has been integrated
here without logical changes.

Author(s)

Torsten Hothorn, Achim Zeileis, Richard W. Farebrother (pan.f), Clint Cummins (pan.f), Giovanni
Millo, David Mitchell

References

J. Durbin & G.S. Watson (1950), Testing for Serial Correlation in Least Squares Regression I.
Biometrika 37, 409–428.

J. Durbin & G.S. Watson (1951), Testing for Serial Correlation in Least Squares Regression II.
Biometrika 38, 159–178.

J. Durbin & G.S. Watson (1971), Testing for Serial Correlation in Least Squares Regression III.
Biometrika 58, 1–19.

R.W. Farebrother (1980), Pan’s Procedure for the Tail Probabilities of the Durbin-Watson Statistic
(Corr: 81V30 p189; AS R52: 84V33 p363- 366; AS R53: 84V33 p366- 369). Applied Statistics
29, 224–227.

R. W. Farebrother (1984), [AS R53] A Remark on Algorithms AS 106 (77V26 p92-98), AS 153
(80V29 p224-227) and AS 155: The Distribution of a Linear Combination of χ2 Random Variables
(80V29 p323-333) Applied Statistics 33, 366–369.

W. Krämer & H. Sonnberger (1986), The Linear Regression Model under Test. Heidelberg: Physica.

J. Racine & R. Hyndman (2002), Using R To Teach Econometrics. Journal of Applied Econometrics
17, 175–189.

See Also

lm

Examples

## generate two AR(1) error terms with parameter
## rho = 0 (white noise) and rho = 0.9 respectively
err1 <- rnorm(100)

## generate regressor and dependent variable



Entropy 207

x <- rep(c(-1,1), 50)
y1 <- 1 + x + err1

## perform Durbin-Watson test
DurbinWatsonTest(y1 ~ x)

err2 <- stats::filter(err1, 0.9, method="recursive")
y2 <- 1 + x + err2
DurbinWatsonTest(y2 ~ x)

## for a simple vector use:
e_t <- c(-32.33, -26.603, 2.215, -16.967, -1.148, -2.512, -1.967, 11.669,

-0.513, 27.032, -4.422, 40.032, 23.577, 33.94, -2.787, -8.606,
0.575, 6.848, -18.971, -29.063)

DurbinWatsonTest(e_t ~ 1)

Entropy Shannon Entropy and Mutual Information

Description

Computes Shannon entropy and the mutual information of two variables. The entropy quantifies
the expected value of the information contained in a vector. The mutual information is a quantity
that measures the mutual dependence of the two random variables.

Usage

Entropy(x, y = NULL, base = 2, ...)

MutInf(x, y, base = 2, ...)

Arguments

x a vector or a matrix of numerical or categorical type. If only x is supplied it will
be interpreted as contingency table.

y a vector with the same type and dimension as x. If y is not NULL then the entropy
of table(x, y, ...) will be calculated.

base base of the logarithm to be used, defaults to 2.

... further arguments are passed to the function table, allowing i.e. to set useNA.

Details

The Shannon entropy equation provides a way to estimate the average minimum number of bits
needed to encode a string of symbols, based on the frequency of the symbols.
It is given by the formula H = −

∑
(πlog(π)) where π is the probability of character number i

showing up in a stream of characters of the given "script".
The entropy is ranging from 0 to Inf.



208 Entropy

Value

a numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

References

Shannon, Claude E. (July/October 1948). A Mathematical Theory of Communication, Bell System
Technical Journal 27 (3): 379-423.

Ihara, Shunsuke (1993) Information theory for continuous systems, World Scientific. p. 2. ISBN
978-981-02-0985-8.

See Also

package entropy which implements various estimators of entropy

Examples

Entropy(as.matrix(rep(1/8, 8)))

# http://r.789695.n4.nabble.com/entropy-package-how-to-compute-mutual-information-td4385339.html
x <- as.factor(c("a","b","a","c","b","c"))
y <- as.factor(c("b","a","a","c","c","b"))

Entropy(table(x), base=exp(1))
Entropy(table(y), base=exp(1))
Entropy(x, y, base=exp(1))

# Mutual information is
Entropy(table(x), base=exp(1)) + Entropy(table(y), base=exp(1)) - Entropy(x, y, base=exp(1))
MutInf(x, y, base=exp(1))

Entropy(table(x)) + Entropy(table(y)) - Entropy(x, y)
MutInf(x, y, base=2)

# http://en.wikipedia.org/wiki/Cluster_labeling
tab <- matrix(c(60,10000,200,500000), nrow=2, byrow=TRUE)
MutInf(tab, base=2)

d.frm <- Untable(as.table(tab))
str(d.frm)
MutInf(d.frm[,1], d.frm[,2])

table(d.frm[,1], d.frm[,2])

MutInf(table(d.frm[,1], d.frm[,2]))

# Ranking mutual information can help to describe clusters



Eps 209

#
# r.mi <- MutInf(x, grp)
# attributes(r.mi)$dimnames <- attributes(tab)$dimnames
#
# # calculating ranks of mutual information
# r.mi_r <- apply( -r.mi, 2, rank, na.last=TRUE )
# # show only first 6 ranks
# r.mi_r6 <- ifelse( r.mi_r < 7, r.mi_r, NA)
# attributes(r.mi_r6)$dimnames <- attributes(tab)$dimnames
# r.mi_r6

Eps Greenhouse-Geisser And Huynh-Feldt Epsilons

Description

Calculate Greenhouse-Geisser and Huynh-Feldt epsilons.

Usage

Eps(S, p, g, n)

Arguments

S pxp covariance matrix

p dimension of observation vectors

g number of groups

n number of subjects

Value

a numeric value

Author(s)

Hans Rudolf Roth <hroth@retired.ethz.ch>

References

Vonesh, E.F., Chinchilli, V.M. (1997) Linear and Nonlinear Models for the Analysis of Repeated
Measurements Marcel Dekker, New York, p.84-86

Crowder, M.J., Hand, D.J. (1990) Analysis of Repeated Measures. Chapman & Hall, London, p.54-
55

See Also

aov



210 ErrBars

Examples

## find!

ErrBars Add Error Bars to an Existing Plot

Description

Add error bars to an existing plot.

Usage

ErrBars(from, to = NULL, pos = NULL, mid = NULL, horiz = FALSE, col = par("fg"),
lty = par("lty"), lwd = par("lwd"), code = 3, length = 0.05,
pch = NA, cex.pch = par("cex"), col.pch = par("fg"), bg.pch = par("bg"),
...)

Arguments

from coordinates of points from which to draw (the lower end of the error bars). If
to is left to NULL and from is a k × 2 dimensional matrix, the first column will
be interpreted as from and the second as to.

to coordinates of points to which to draw (the upper end of the error bars).

pos numeric, position of the error bars. This will either be the x-coordinate in case
of vertical error bars and the y-coordinate in case of horizontal error bars.

mid numeric, position of midpoints. Defaults to the mean of from and to.

horiz logical, determining whether horizontal error bars are needed (default is FALSE).

col the line color.

lty the line type.

lwd line width.

code integer code, determining where end lines are to be drawn. code = 0 will draw
no end lines, code = 1 will draw an end line on the left (lower) side at (x0[i],
y0[i]), code = 2 on the right (upper) side (x1[i], y1[i]) and code = 3 (default)
will draw end lines at both ends.

length the length of the end lines.

pch plotting character for the midpoints. The position of the points is given by mid.
If mid is left to NULL the points will be plotted in the middle of from and to. No
points will be plotted if this is set to NA, which is the default.

cex.pch the character extension for the plotting characters. Default is par("cex").

col.pch the color of the plotting characters. Default is par("fg").

bg.pch the background color of the plotting characters (if pch is set to 21:25). Default
is par("bg").

... the dots are passed to the arrows function.



EtaSq 211

Details

A short wrapper for plotting error bars by means of arrows.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

arrows, lines.loess

Examples

par(mfrow=c(2,2))
b <- barplot(1:5, ylim=c(0,6))
ErrBars(from=1:5-rep(0.5,5), to=1:5+rep(0.5,5), pos=b, length=0.2)

# just on one side
b <- barplot(1:5, ylim=c(0,6))
ErrBars(from=1:5, to=1:5+rep(0.5,5), pos=b, length=0.2, col="red", code=2, lwd=2)

b <- barplot(1:5, xlim=c(0,6), horiz=TRUE)
ErrBars(from=1:5, to=1:5+rep(0.2,5), pos=b, horiz=TRUE, length=0.2, col="red", code=2, lwd=2)

par(xpd=FALSE)
dotchart(1:5, xlim=c(0,6))
ErrBars(from=1:5-rep(0.2,5), to=1:5+rep(0.2,5), horiz=TRUE, length=0.1)

EtaSq Effect Size Calculations for ANOVAs

Description

Calculates eta-squared, partial eta-squared and generalized eta-squared

Usage

EtaSq(x, type = 2, anova = FALSE)

## S3 method for class 'lm'
EtaSq(x, type = 2, anova = FALSE)

## S3 method for class 'aovlist'
EtaSq(x, type = 2, anova = FALSE)



212 EtaSq

Arguments

x An analysis of variance (aov, aovlist) object.

type What type of sum of squares to calculate? EtaSq.aovlist requires type=1.

anova Should the full ANOVA table be printed out in addition to the effect sizes?

Details

Calculates the eta-squared, partial eta-squared, and generalized eta-squared measures of effect size
that are commonly used in analysis of variance. The input x should be the analysis of variance
object itself. For between-subjects designs, generalized eta-squared equals partial eta-squared. The
reported generalized eta-squared for repeated-measures designs assumes that all factors are manip-
ulated, i.e., that there are no measured factors like gender (see references).

For unbalanced designs, the default in EtaSq is to compute Type II sums of squares (type=2), in
keeping with the Anova function in the car package. It is possible to revert to the Type I SS values
(type=1) to be consistent with anova, but this rarely tests hypotheses of interest. Type III SS values
(type=3) can also be computed. EtaSq.aovlist requires type=1.

Value

If anova=FALSE, the output for EtaSq.lm is an M x 2 matrix, for EtaSq.aovlist it is an M x
3 matrix. Each of the M rows corresponds to one of the terms in the ANOVA (e.g., main effect
1, main effect 2, interaction, etc), and each of the columns corresponds to a different measure of
effect size. Column 1 contains the eta-squared values, and column 2 contains partial eta-squared
values. Column 3 contains the generalized eta-squared values. If anova=TRUE, the output contains
additional columns containing the sums of squares, mean squares, degrees of freedom, F-statistics
and p-values. For EtaSq.aovlist, additional columns contain the error sum of squares and error
degrees of freedom corresponding to an effect term.

Author(s)

Danielle Navarro <djnavarro@protonmail.com>, Daniel Wollschlaeger <dwoll@psychologie.uni-
kiel.de>

References

Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior
Research Methods 37(3), 379-384.

Olejnik, S. and Algina, J. (2003). Generalized Eta and Omega Squared Statistics: Measures of
Effect Size for Some Common Research Designs. Psychological Methods 8(4), 434-447.

See Also

aov, anova, Anova



EX 213

Examples

#### Example 1: one-way ANOVA ####

outcome <- c(1.4,2.1,3.0,2.1,3.2,4.7,3.5,4.5,5.4) # data
treatment1 <- factor(c(1,1,1,2,2,2,3,3,3)) # grouping variable
anova1 <- aov(outcome ~ treatment1) # run the ANOVA
summary(anova1) # print the ANOVA table
EtaSq(anova1) # effect size

#### Example 2: two-way ANOVA ####

treatment2 <- factor(c(1,2,3,1,2,3,1,2,3)) # second grouping variable
anova2 <- aov(outcome ~ treatment1 + treatment2) # run the ANOVA
summary(anova2) # print the ANOVA table
EtaSq(anova2) # effect size

#### Example 3: two-way ANOVA unbalanced cell sizes ####
#### data from Maxwell & Delaney, 2004 ####
#### Designing experiments and analyzing data ####

dfMD <- data.frame(IV1=factor(rep(1:3, c(3+5+7, 5+6+4, 5+4+6))),
IV2=factor(rep(rep(1:3, 3), c(3,5,7, 5,6,4, 5,4,6))),

DV=c(c(41, 43, 50), c(51, 43, 53, 54, 46), c(45, 55, 56, 60, 58, 62, 62),
c(56, 47, 45, 46, 49), c(58, 54, 49, 61, 52, 62), c(59, 55, 68, 63),
c(43, 56, 48, 46, 47), c(59, 46, 58, 54), c(55, 69, 63, 56, 62, 67)))

# use contr.sum for correct sum of squares type 3
dfMD$IV1s <- C(dfMD$IV1, "contr.sum")
dfMD$IV2s <- C(dfMD$IV2, "contr.sum")
dfMD$IV1t <- C(dfMD$IV1, "contr.treatment")
dfMD$IV2t <- C(dfMD$IV2, "contr.treatment")

EtaSq(aov(DV ~ IV1s*IV2s, data=dfMD), type=3)
EtaSq(aov(DV ~ IV1t*IV2t, data=dfMD), type=1)

#### Example 4: two-way split-plot ANOVA -> EtaSq.aovlist ####

DV_t1 <- round(rnorm(3*10, -0.5, 1), 2)
DV_t2 <- round(rnorm(3*10, 0, 1), 2)
DV_t3 <- round(rnorm(3*10, 0.5, 1), 2)
dfSPF <- data.frame(id=factor(rep(1:(3*10), times=3)),

IVbtw=factor(rep(LETTERS[1:3], times=3*10)),
IVwth=factor(rep(1:3, each=3*10)),
DV=c(DV_t1, DV_t2, DV_t3))
spf <- aov(DV ~ IVbtw*IVwth + Error(id/IVwth), data=dfSPF)
EtaSq(spf, type=1, anova=TRUE)

EX Expected Value and Variance



214 ExpFreq

Description

Expected Value and Variance for the distribution of a discrete random variable. (For didactical
purposes..)

Usage

EX(x, p)
VarX(x, p)

Arguments

x the values of the random variable

p the probabilities of the values

Value

numeric value

Author(s)

Andri Signorell <andri@signorell.net>

Examples

EX(x=c(1:3), p=c(0.2, 0.5, 0.3))
VarX(x=c(1:3), p=c(0.2, 0.5, 0.3))

ExpFreq Expected Frequencies

Description

Calculate the expected frequencies of an n-way table assuming independence.

Usage

ExpFreq(x, freq = c("abs", "rel"))

Arguments

x a table.

freq indicates, whether absolute or relative frenquencies should be computed. Can
either be "abs" or "rel". Partial matching is supported.

Value

A table with either the absolute or the relative expected frequencies.



Extremes 215

Note

This is a copy of the function independence_table in vcd.

Author(s)

David Meyer <David.Meyer@R-project.org>

See Also

chisq.test

Examples

ExpFreq(Titanic)

ExpFreq(UCBAdmissions, freq="r")

Extremes Kth Smallest/Largest Values

Description

Find the kth smallest, resp. largest values from a vector x and return the values and their frequencies.

Usage

Small(x, k = 5, unique = FALSE, na.last = NA)
Large(x, k = 5, unique = FALSE, na.last = NA)

HighLow(x, nlow = 5, nhigh = nlow, na.last = NA)

Arguments

x a numeric vector

k an integer >0 defining how many extreme values should be returned. Default is
k = 5. If k > length(x), all values will be returned.

unique logical, defining if unique values should be considered or not. If this is set to
TRUE, a list with the k extreme values and their frequencies is returned. Default
is FALSE (as unique is a rather expensive function).

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.

nlow a single integer. The number of the smallest elements of a vector to be printed.
Defaults to 5.

nhigh a single integer. The number of the greatest elements of a vector to be printed.
Defaults to the number of nlow.



216 Extremes

Details

This does not seem to be a difficult problem at first sight. We could simply tabulate and sort
the vector and finally take the first or last k values. However sorting and tabulating the whole
vector when we’re just interested in the few smallest values is a considerable waste of resources.
This approach becomes already impracticable for medium vector lengths (~105). There are several
points and solutions of this problem discussed out there. The present implementation is based on
highly efficient C++ code and proved to be very fast.

HighLow combines the two upper functions and reports the k extreme values on both sides together
with their frequencies in parentheses. It is used for describing univariate variables and is interesting
for checking the ends of the vector, where in real data often wrong values accumulate. This is in
essence a printing routine for the highest and the lowest values of x.

Value

if unique is set to FALSE: a vector with the k most extreme values,
else: a list, containing the k most extreme values and their frequencies.

Author(s)

Andri Signorell <andri@signorell.net>
C++ parts by Nathan Russell and Romain Francois

References

https://stackoverflow.com/questions/36993935/find-the-largest-n-unique-values-and-their-frequencies-in-r-and-rcpp/

https://gallery.rcpp.org/articles/top-elements-from-vectors-using-priority-queue/

See Also

max, max, sort, rank

Examples

x <- sample(1:10, 1000, rep=TRUE)
Large(x, 3)
Large(x, k=3, unique=TRUE)

# works fine up to x ~ 1e6
x <- runif(1000000)
Small(x, 3, unique=TRUE)
Small(x, 3, unique=FALSE)

# Both ends
cat(HighLow(d.pizza$temperature, na.last=NA))

https://stackoverflow.com/questions/36993935/find-the-largest-n-unique-values-and-their-frequencies-in-r-and-rcpp/
https://gallery.rcpp.org/articles/top-elements-from-vectors-using-priority-queue/


ExtrVal 217

ExtrVal Distributions of Maxima and Minima

Description

Density function, distribution function, quantile function and random generation for the maxi-
mum/minimum of a given number of independent variables from a specified distribution.

Usage

dExtrVal(x, densfun, distnfun, ..., distn, mlen = 1, largest = TRUE,
log = FALSE)

pExtrVal(q, distnfun, ..., distn, mlen = 1, largest = TRUE,
lower.tail = TRUE)

qExtrVal(p, quantfun, ..., distn, mlen = 1, largest = TRUE,
lower.tail = TRUE)

rExtrVal(n, quantfun, ..., distn, mlen = 1, largest = TRUE)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Number of observations.
densfun, distnfun, quantfun

Density, distribution and quantile function of the specified distribution. The
density function must have a log argument (a simple wrapper can always be
constructed to achieve this).

... Parameters of the specified distribution.

distn A character string, optionally given as an alternative to densfun, distnfun and
quantfun such that the density, distribution and quantile functions are formed
upon the addition of the prefixes d, p and q respectively.

mlen The number of independent variables.

largest Logical; if TRUE (default) use maxima, otherwise minima.

log Logical; if TRUE, the log density is returned.

lower.tail Logical; if TRUE (default) probabilities are P[X <= x], otherwise P[X > x].

Value

dExtrVal gives the density function, pExtrVal gives the distribution function and qExtrVal gives
the quantile function of the maximum/minimum of mlen independent variables from a specified
distibution. rExtrVal generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>



218 Factorize

See Also

rGenExtrVal, rOrder

Examples

dExtrVal(2:4, dnorm, pnorm, mean = 0.5, sd = 1.2, mlen = 5)
dExtrVal(2:4, distn = "norm", mean = 0.5, sd = 1.2, mlen = 5)
dExtrVal(2:4, distn = "exp", mlen = 2, largest = FALSE)
pExtrVal(2:4, distn = "exp", rate = 1.2, mlen = 2)
qExtrVal(seq(0.9, 0.6, -0.1), distn = "exp", rate = 1.2, mlen = 2)
rExtrVal(5, qgamma, shape = 1, mlen = 10)
p <- (1:9)/10
pexp(qExtrVal(p, distn = "exp", rate = 1.2, mlen = 1), rate = 1.2)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Factorize Prime Factorization of Integers

Description

Compute the prime factorization(s) of integer(s) n.

Usage

Factorize(n)

Arguments

n vector of integers to factorize.

Details

works via Primes, currently in a cheap way, sub-optimal for large composite n.

Value

A named list of the same length as n, each element a 2-column matrix with column "p" the prime
factors and column~"m" their respective exponents (or multiplities), i.e., for a prime number n, the
resulting matrix is cbind(p = n, m = 1).

Author(s)

Martin Maechler, Jan. 1996.

See Also

GCD, LCM, Primes, IsPrime, Divisors

For factorization of moderately or really large numbers, see the gmp package, and its factorize()
(which is ~20x faster!).



FctArgs 219

Examples

Factorize(47)
Factorize(seq(101, 120, by=2))

FctArgs Retrieve a Function’s Arguments

Description

Retrieve a function’s arguments and default values in a list.

Usage

FctArgs(name, sort = FALSE)

Arguments

name name of the function.

sort logical. Should the function arguments be sorted? Defaults to FALSE.

Value

a data.frame with the default in the first columns and with row.names as argument names.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

formalArgs, formals, args, alist, body

Examples

formalArgs(PlotFdist)
formals(PlotFdist)

# compare:
FctArgs(PlotFdist)

# alternative also spotting unexported functions
GetArgs <- function(FUN) {

a <- formals(getAnywhere(FUN)$objs[[1]])
arg.labels <- names(a)
arg.values <- as.character(a)
char <- sapply(a, is.character)
arg.values[char] <- paste("\"", arg.values[char], "\"", sep="")

c(fname=FUN,



220 Fibonacci

args=paste(StrTrim(gsub("= $", "",
paste(arg.labels, arg.values, sep=" = "))),
collapse=", "))

}

fcts <- grep("plot.Desc", unclass(lsf.str(envir = asNamespace("DescTools"),
all.names = TRUE)), value=TRUE)

fargs <- t(unname(sapply(fcts, GetArgs)))
fargs

Fibonacci Fibonacci Numbers

Description

Generates Fibonacci numbers.

Usage

Fibonacci(n)

Arguments

n nonnegative integer or vector of nonnegative integers.

Details

Generates the n-th Fibonacci number, whereas Fibonacci(0) = 0.

Value

A single integer, or a vector of integers.

Author(s)

Andri Signorell <andri@signorell.net>

References

https://en.wikipedia.org/wiki/Fibonacci_number

https://en.wikipedia.org/wiki/Fibonacci_number


FindColor 221

Examples

Fibonacci(0) # 1
Fibonacci(2) # 2
Fibonacci(0:3) # 0 1 1 2

# Golden ratio
F <- Fibonacci(1:25) # ... 75025 121393
f25 <- F[25]/F[24] # 1.618033989
phi <- (sqrt(5) + 1)/2
abs(f25 - phi) # 7.945178e-11

# Fibonacci numbers without iteration
fibo <- function(n) {

phi <- (sqrt(5) + 1)/2
fib <- (phi^(n+1) - (1-phi)^(n+1)) / (2*phi - 1)
round(fib)

}

fibo(30:33) # 1346269 2178309 3524578 5702887

FindColor Get Color on a Defined Color Range

Description

Find a color on a defined color range depending on the value of x. This is helpful for colorcoding
numeric values.

Usage

FindColor(x, cols = rev(heat.colors(100)),
min.x = NULL, max.x = NULL, all.inside = FALSE)

Arguments

x numeric.

cols a vector of colors.

min.x the x-value to be used for the left edge of the first color. If left to the default
NULL min(pretty(x)) will be used.

max.x the x-value to be used for the right edge of the last color. If left to the default
NULL max(pretty(x)) will be used.

all.inside logical; if true, the returned indices are coerced into 1, ..., N-1, i.e., 0 is
mapped to 1 and N to N-1.



222 FindColor

Details

For the selection of colors the option rightmost.closed in the used function findInterval is
set to TRUE. This will ensure that all values on the right edge of the range are assigned a color.
How values outside the boundaries of min.x and max.x should be handled can be controlled by
all.inside. Set this value to TRUE, if those values should get the colors at the edges or set it to
FALSE, if they should remain white (which is the default).

Note that findInterval closes the intervals on the left side, e.g. [0, 1). This option can’t be
changed. Consequently will x-values lying on the edge of two colors get the color of the bigger
one.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

findInterval

Examples

Canvas(7, main="Use of function FindColor()")

# get some data
x <- c(23, 56, 96)
# get a color range from blue via white to red
cols <- colorRampPalette(c("blue","white","red"))(100)
ColorLegend(x="bottomleft", cols=cols, labels=seq(0, 100, 10), cex=0.8)

# and now the color coding of x:
(xcols <- FindColor(x, cols, min.x=0, max.x=100))

# this should be the same as
cols[x+1]

# how does it look like?
y0 <- c(-5, -2, 1)
text(x=1, y=max(y0)+2, labels="Color coding of x:")
text(x=1.5, y=y0, labels=x)
DrawRegPolygon(x=3, y=y0, nv=4, rot=pi/4, col=xcols)
text(x=6, y=y0, labels=xcols)

# how does the function select colors?
Canvas(xlim = c(0,1), ylim = c(0,1))
cols <- c(red="red", yellow="yellow", green="green", blue="blue")
ColorLegend(x=0, y=1, width=1, cols=rev(cols), horiz = TRUE,

labels=Format(seq(0, 1, .25), digits=2), frame="grey", cex=0.8 )
x <- c(-0.2, 0, 0.15, 0.55, .75, 1, 1.3)
arrows(x0 = x, y0 = 0.6, y1 = 0.8, angle = 15, length = .2)
text(x=x, y = 0.5, labels = x, adj = c(0.5,0.5))
text(x=x, y = 0.4, labels = names(FindColor(x, cols=cols,

min.x = 0, max.x = 1, all.inside = TRUE)), adj = c(0.5,0.5))



FindCorr 223

text(x=x, y = 0.3, labels = names(FindColor(x, cols=cols,
min.x = 0, max.x = 1, all.inside = FALSE)), adj = c(0.5,0.5))

FindCorr Determine Highly Correlated Variables

Description

This function searches through a correlation matrix and returns a vector of integers corresponding
to columns to remove to reduce pair-wise correlations.

Usage

FindCorr(x, cutoff = .90, verbose = FALSE)

Arguments

x A correlation matrix

cutoff A numeric value for the pair-wise absolute correlation cutoff

verbose A boolean for printing the details

Details

The absolute values of pair-wise correlations are considered. If two variables have a high correla-
tion, the function looks at the mean absolute correlation of each variable and removes the variable
with the largest mean absolute correlation.

There are several function in the subselect package that can also be used to accomplish the same
goal. However the package was removed from CRAN and available in the archives.

Value

A vector of indices denoting the columns to remove. If no correlations meet the criteria, numeric(0)
is returned.

Author(s)

Original R code by Dong Li, modified by Max Kuhn

References

Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan
Engelhardt, Tony Cooper, Zachary Mayer and the R Core Team (2014). caret: Classification and
Regression Training. R package version 6.0-35. https://cran.r-project.org/package=caret

https://cran.r-project.org/package=caret


224 FisherZ

Examples

corrMatrix <- diag(rep(1, 5))
corrMatrix[2, 3] <- corrMatrix[3, 2] <- .7
corrMatrix[5, 3] <- corrMatrix[3, 5] <- -.7
corrMatrix[4, 1] <- corrMatrix[1, 4] <- -.67

corrDF <- expand.grid(row = 1:5, col = 1:5)
corrDF$correlation <- as.vector(corrMatrix)
PlotCorr(xtabs(correlation ~ ., corrDF), las=1, border="grey")

FindCorr(corrMatrix, cutoff = .65, verbose = TRUE)

FindCorr(corrMatrix, cutoff = .99, verbose = TRUE)

# d.pizza example
m <- cor(data.frame(lapply(d.pizza, as.numeric)), use="pairwise.complete.obs")
FindCorr(m, verbose = TRUE)
m[, FindCorr(m)]

FisherZ Fisher-Transformation for Correlation to z-Score

Description

Convert a correlation to a z score or z to r using the Fisher transformation or find the confidence
intervals for a specified correlation.

Usage

FisherZ(rho)
FisherZInv(z)
CorCI(rho, n, conf.level = 0.95, alternative = c("two.sided", "less", "greater"))

Arguments

rho the Pearson’s correlation coefficient

z a Fisher z transformed value

n sample size used for calculating the confidence intervals

alternative is a character string, one of "greater", "less", or "two.sided", or the initial
letter of each, indicating the specification of the alternative hypothesis. "greater"
corresponds to positive association, "less" to negative association.

conf.level confidence level for the returned confidence interval, restricted to lie between
zero and one.



FixToTable 225

Details

The sampling distribution of Pearson’s r is not normally distributed. Fisher developed a transfor-
mation now called "Fisher’s z-transformation" that converts Pearson’s r to the normally distributed
variable z. The formula for the transformation is:

zr = tanh−1(r) =
1

2
log

(
1 + r

1− r

)
Value

z value corresponding to r (in FisherZ)
r corresponding to z (in FisherZInv)
rho, lower and upper confidence intervals (CorCI)

Author(s)

William Revelle <revelle@northwestern.edu>,
slight modifications Andri Signorell <andri@signorell.net> based on R-Core code

See Also

cor.test

Examples

cors <- seq(-.9, .9, .1)

zs <- FisherZ(cors)
rs <- FisherZInv(zs)
round(zs, 2)
n <- 30
r <- seq(0, .9, .1)
rc <- t(sapply(r, CorCI, n=n))
t <- r * sqrt(n-2) / sqrt(1-r^2)
p <- (1 - pt(t, n-2)) / 2

r.rc <- data.frame(r=r, z=FisherZ(r), lower=rc[,2], upper=rc[,3], t=t, p=p)

round(r.rc,2)

FixToTable Convert a Text to a Table

Description

Convert a text to a table by using complete columns of spaces (or any other separator) as delimiting
point.



226 Format

Usage

FixToTable(txt, sep = " ", delim = "\t", trim = TRUE, header = TRUE)

Arguments

txt the text to be partitioned. Works best, if txt is a matrix.

sep the separator to use. Will frequently be " ".

delim the new delimiter to insert. (default tab)

trim logical. Should the separated text be trimmed from whitespace? Defaults to
TRUE.

header logical. Should the first line be interpreted as header?

Details

Only a complete appearance of the separator character in the same position over all rows will be
accepted as column delimiter.

Value

a matrix of the separated text.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

StrChop

Examples

# let's get some tabbed text
txt <- matrix(capture.output(Titanic[,,2,1]))
FixToTable(txt[-1,])

Format Format Numbers and Dates

Description

Formatting numbers with base R tools often degenerates into a major intellectual challenge for us
little minds down here in the valley of tears. There are a number of options available and quite
often it’s hard to work out which one to use, when a more uncommon setting is needed. The
Format() function wraps all these functions and tries to offer a simpler, less technical, but still
flexible interface.

There’s also an easygoing interface for format templates, defined as a list consisting of any accepted
format features. This enables to define templates globally and easily change or modify them later.



Format 227

Usage

Format(x, digits = NULL, sci = NULL, big.mark = NULL,
ldigits = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL,
eps = NULL, ...)

## S3 method for class 'table'
Format(x, digits = NULL, sci = NULL, big.mark = NULL,

ldigits = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL,
eps = NULL, ...)

## S3 method for class 'matrix'
Format(x, digits = NULL, sci = NULL, big.mark = NULL,

ldigits = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL,
eps = NULL, ...)

## Default S3 method:
Format(x, digits = NULL, sci = NULL, big.mark = NULL,

ldigits = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL,
eps = NULL, ...)

Fmt(...)

as.fmt(...)

as.CDateFmt(fmt)

Arguments

x an atomic numerical, typically a vector of real numbers or a matrix of numerical
values. Factors will be converted to strings.

digits integer, the desired (fixed) number of digits after the decimal point. Unlike
formatC you will always get this number of digits even if the last digit is 0.
Negative numbers of digits round to a power of ten (digits=-2 would round to
the nearest hundred).

sci integer. The power of 10 to be set when deciding to print numeric values in
exponential notation. Fixed notation will be preferred unless the number is
larger than 10^scipen. If just one value is set it will be used for the left border
10^(-scipen) as well as for the right one (10^scipen). A negative and a positive
value can also be set independently. Default is getOption("scipen"), whereas
scipen=0 is overridden.

big.mark character; if not empty used as mark between every 3 decimals before the deci-
mal point. Default is "" (none).



228 Format

ldigits number of leading zeros. ldigits=3 would make sure that at least 3 digits on
the left side will be printed, say 3.4 will be printed as 003.4. Setting ldigits to
0 will yield results like .452 for 0.452. The default NULL will leave the numbers
as they are (meaning at least one 0 digit).

zero.form character, string specifying how zeros should be specially formatted. Useful for
pretty printing ’sparse’ objects. If set to NULL (default) no special action will be
taken.

na.form character, string specifying how NAs should be specially formatted. If set to NULL
(default) no special action will be taken.

fmt either a format string, allowing to flexibly define special formats or an object of
class fmt, consisting of a list of Format arguments. See Details.

align the character on whose position the strings will be aligned. Left alignment can
be requested by setting sep = "\\l", right alignment by "\\r" and center align-
ment by "\\c". Mind the backslashes, as if they are omitted, strings would be
aligned to the character l, r or c respectively. The default is NULL which would
just leave the strings as they are.
This argument is send directly to the function StrAlign() as argument sep.

width integer, the defined fixed width of the strings.

lang optional value setting the language for the months and daynames. Can be either
"local" for current locale or "engl" for english. If left to NULL, the DescTool-
sOption "lang" will be searched for and if not found "local" will be taken as
default.

eps a numerical tolerance used mainly for formatting p values, those less than eps
are formatted as "< [eps]" (where ’[eps]’ stands for format(eps, digits)).
Default is .Machine$double.eps.

... further arguments to be passed to or from methods.

Details

Format() is the workhorse here and formats numbers and dates.

The argument fmt is very flexible and is used to generate a variety of different formats. When
x is a date, it can take ISO-8601-date-and-time-format codes consisting of (d, m and y for day,
month or year) and defining the combination of day month and year representation. Repeating the
specific code defines the degree of abbreviation. The format 'yyyy-mm-dd' would yield a date as
2020-10-12.

Date Codes
d day of the month without leading zero (1 - 31)
dd day of the month with leading zero (01 - 31)
ddd abbreviated name for the day of the week (e.g. Mon) in the current user’s language
dddd full name for the day of the week (e.g. Monday) in the current user’s language
m month without leading zero (1 - 12)
mm month with leading zero (01 - 12)
mmm abbreviated month name (e.g. Jan) in the current user’s language
mmmm full month name (e.g. January) in the current user’s language



Format 229

y year without century, without leading zero (0 - 99)
yy year without century, with leading zero (00 - 99)
yyyy year with century. For example: 2005

The function as.CDateFmt() converts ISO-8601 codes into the C-format codes used in base R.
So as.CDateFmt("yyyy mm dd") yields "%Y %m %d".

Even more variability is needed to display numeric values. For the most frequently used formats
there are the following special codes available:

Code
e scientific forces scientific representation of x, e.g. 3.141e-05. The number of digits,

alignment and zero values are further respected.

eng engineering forces scientific representation of x, but only with powers that are a multiple of 3.
engabb engineering abbr. same as eng, but replaces the exponential representation by codes,

e.g. M for mega (1e6). See d.prefix.
% percent will divide the given number by 100 and append the %-sign (without a separator).

p p-value will wrap the function format.pval and return a p-value format.
Use eps to define the threshold to switch to a < 000 representation.

frac fractions will (try to) convert numbers to fractions. So 0.1 will be displayed as 1/10.
See fractions().

* significance will produce a significance representation of a p-value consisting of * and .,
while the breaks are set according to the used defaults e.g. in lm as
[0, 0.001] = ***
(0.001, 0.01] = **
(0.01, 0.05] = *
(0.05, 0.1] = .
(0.1,1] =

p* p-value stars will produce p-value and significance stars

fmt can as well be an object of class fmt consisting of a list out of the arguments above. This allows
to store and manage the full format in variables or as options (in DescToolsOptions()) and use it
as format template subsequently.

Finally fmt can also be a function in x, which makes formatting very flexible.

New formats can be created by means of as.fmt(). This works quite straight on. We can use any
of the arguments from Format() and combine them to a list.
The following code will define a new format template named "myNumFmt" of the class "fmt". Pro-
vided to Format() this will result in a number displayed with 2 fixed digits and a comma as big
mark:

myNumFmt <- as.fmt(digits=2, big.mark=",")
Format(12222.89345, fmt=myNumFmt) = 12,222.89



230 Format

The latter returns the same result as if the arguments would have been supplied directly:
Format(12222.89345, digits=2, big.mark=",").

Many report functions (e.g. TOne()) in DescTools use three default formats for counts (named
"abs"), numeric values ("num") and percentages ("per"). These formats can be set by the user as
options (see DescToolsOptions(). For other purposes any number of any named formats can be
defined.

Fmt() is used to access and edit already defined Formats. It can directly adapt defined proper-
ties and returns the format template. Fmt("num", digits=1, sci=10) will use the current version
of the numeric format and change the digits to 1 and the threshold to switch to scientifc presen-
tation to numbers >1e10 and <1e-10. Format templates can be altered using their names. With
Fmt(abs=Fmt("abs", big.mark=" ")) the format template for count values "abs" will be over-
written with the new values and stored as option for the current session.

The formats can as well be organized as options. DescToolsOptions("fmt") would display the
currently defined formats. This mechanic works analogously to the options() procedure of base
R. So to store the current settings we can use

opt <- DescToolsOptions("fmt")
... do some stuff like redefining the global formats ...
DescToolOptions(opt)

The last command resets the options and so we have again the initial definitions for the format
templates.

Value

the formatted values as characters.
If x was a matrix, then a the result will also be a matrix. (Hope this will not surprise you...)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

format, formatC, prettyNum, sprintf, symnum,
StrAlign, StrPad, Sys.setlocale,
Weekday, Month, DescToolsOptions

Examples

Format(as.Date(c("2014-11-28", "2014-1-2")), fmt="ddd, d mmmm yyyy")
Format(as.Date(c("2014-11-28", "2014-1-2")), fmt="ddd, d mmmm yyyy", lang="engl")

x <- pi * 10^(-10:10)

Format(x, digits=3, fmt="%", sci=NA)
Format(x, digits=4, sci=c(4, 6), ldigits=0, width=9, align=".")



Frac 231

# format a matrix
m <- matrix(runif(100), nrow=10,

dimnames=list(LETTERS[1:10], LETTERS[1:10]))

Format(m, digits=1)

# engineering format
Format(x, fmt="eng", digits=2)
Format(x, fmt="engabb", ldigits=2, digits=2)
# combine with grams [g]
paste(Format(x, fmt="engabb", ldigits=2, digits=2), "g", sep="")

# example form symnum
pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))
noquote(cbind(Format(pval, fmt="p"), Format(pval, fmt="*")))

# use Fmt() to get and define new formats stored as option
Fmt() # all defined formats
Fmt("abs") # only format named "abs"
Fmt("nexist") # only format named "nexist" (nonexisting)
Fmt("abs", "per", "nexist")
Fmt("abs", digits=3) # get Fmt("abs") and overwrite digits
Fmt("abs", na.form="-") # get Fmt("abs") and add user defined na.form

# define totally new format and store as option
Fmt(nob=as.fmt(digits=10, na.form="nodat"))

# overwrite an existing format
Fmt(nob=Fmt("nob", digits=5))
Fmt("nob")

# change the character to be used as the decimal point
opt <- options(OutDec=",")
Format(1200, digits=2, big.mark = ".")
options(opt)

Frac Fractional Part and Maximal Digits of a Numeric Value

Description

Frac() returns the fractional part of a numeric value. MaxDigits() return the number of digits in
x.
Ndec() returns the number of decimals.
Prec() returns the precision of a number x.

Usage

Frac(x, dpwr = NA)
MaxDigits(x)



232 Frechet

Ndec(x)
Prec(x)

Arguments

x the numeric value (or a vector of numerics), whose fractional part is to be cal-
culated.

dpwr power of 10 for a factor z, the fractional part will be multiplied with. The result
will be returned rounded to integer. Defaults to NA and will then be ignored.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

format.info, as.integer, trunc

Examples

x <- rnorm(5)*100
x
Frac(x)

# multiply by 10^4
Frac(x, dpwr=4)

MaxDigits(c(1.25, 1.8, 12.0, 1.00000))

x <- c("0.0000", "0", "159.283", "1.45e+10", "1.4599E+10" )
Ndec(x)
Prec(as.numeric(x))

Frechet The Frechet Distribution

Description

Density function, distribution function, quantile function and random generation for the Frechet
distribution with location, scale and shape parameters.

Usage

dFrechet(x, loc=0, scale=1, shape=1, log = FALSE)
pFrechet(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qFrechet(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rFrechet(n, loc=0, scale=1, shape=1)



Frechet 233

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Number of observations.
loc, scale, shape

Location, scale and shape parameters (can be given as vectors).

log Logical; if TRUE, the log density is returned.

lower.tail Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The Frechet distribution function with parameters loc = a, scale = b and shape = s is

G(z) = exp

{
−
(
z − a

b

)−s
}

for z > a and zero otherwise, where b > 0 and s > 0.

Value

dFrechet gives the density function, pFrechet gives the distribution function, qFrechet gives the
quantile function, and rFrechet generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

rGenExtrVal, rGumbel, rRevWeibull

Examples

dFrechet(2:4, 1, 0.5, 0.8)
pFrechet(2:4, 1, 0.5, 0.8)
qFrechet(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rFrechet(6, 1, 0.5, 0.8)
p <- (1:9)/10
pFrechet(qFrechet(p, 1, 2, 0.8), 1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9



234 Freq

Freq Frequency Table for a Single Variable

Description

Calculates absolute and relative frequencies of a vector x. Continuous (numeric) variables will be
cut using the same logic as used by the function hist. Categorical variables will be aggregated
by table. The result will contain single and cumulative frequencies for both, absolute values and
percentages.

Usage

Freq(x, breaks = hist(x, plot = FALSE)$breaks, include.lowest = TRUE,
ord = c("level", "desc", "asc", "name"),
useNA = c("no", "ifany", "always"), ...)

## S3 method for class 'Freq'
print(x, digits = NULL, ...)

Arguments

x the variable to be described, can be any atomic type.

breaks either a numeric vector of two or more cut points or a single number (greater
than or equal to 2) giving the number of intervals into which x is to be cut.
Default taken from the function hist(). This is ignored if x is not of numeric
type.

include.lowest logical, indicating if an x[i] equal to the lowest (or highest, for right = FALSE)
"breaks" value should be included. Ignored if x is not of numeric type.

ord how should the result be ordered? Default is "level", other choices are ’by fre-
quency’ ("descending" or "ascending") or ’by name of the levels’ ("name").
The argument can be abbreviated. This is ignored if x is numeric.

useNA one out of "no", "ifany", "always". Defines whether to include extra NA levels
in the table. Defaults to "no" which is the table() default too.

digits integer, determining the number of digits used to format the relative frequencies.

... further arguments are passed to the function cut(). Use dig.lab to control
the format of numeric group names. Use the argument right to define if the
intervals should be closed on the right (and open on the left) or vice versa.
In print.Freq the dots are not used.

Details

By default only the valid cases are considered for the frequencies, say NA values are excluded. (This
is in accordance with the default behavior of the R function table, which seemed a reasonable
reference.) If the NAs should be included you can set the useNA argument to either "ifany" or
"always".



Freq 235

For numeric variables, if breaks is specified as a single number, the range of the data is divided
into breaks pieces of equal length, and then the outer limits are moved away by 0.1% of the range
to ensure that the extreme values both fall within the break intervals. (If x is a constant vector,
equal-length intervals are created that cover the single value.) See cut.

Value

an object of type "Freq", which is basically a data.frame with 5 columns (earning a specific print
routine), containing the following components:

level factor. The levels of the grouping variable.

freq integer. The absolute frequencies.

perc numeric. The relative frequencies (percent).

cumfreq integer. The cumulative sum of the absolute frequencies.

cumperc numeric. The cumulative sum of the relative frequencies.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

cut, hist, cumsum, table, prop.table, PercTable, Freq2D

Examples

data(d.pizza)

# result is a data.frame
d.freq <- Freq(d.pizza$price)
d.freq

# it is printed by default with 3 digits for the percent values,
# but the number of digits can be defined in the print function
print(d.freq, digits=5)

# sorted by frequency
Freq(d.pizza$driver, ord="desc")

# sorted by name using all the observations, say including NAs
Freq(d.pizza$driver, ord="name", useNA="ifany")

# percentages and cumulative frequencies for a vector of count data
Freq(as.table(c(2,4,12,8)))



236 Freq2D

Freq2D Bivariate (Two-Dimensional) Frequency Distribution

Description

Calculate a frequency distribution for two continuous variables.

Usage

Freq2D(x, ...)

## S3 method for class 'formula'
Freq2D(formula, data, subset, ...)

## Default S3 method:
Freq2D(x, y, n=20, pad=0, dnn=NULL, ...)

Arguments

x a vector of x values, or a data frame whose first two columns contain the x and
y values.

y a vector of y values.

formula a formula, such as y~x.

data a data.frame, matrix, or list from which the variables in formula should be
taken.

subset an optional vector specifying a subset of observations to be used.

n the desired number of bins for the output, a scalar or a vector of length 2.

pad number of rows and columns to add to each margin, containing only zeros.

dnn the names to be given to the dimensions in the result.

... named arguments to be passed to the default method.

Details

The exact number of bins is determined by the pretty function, based on the value of n.

Padding the margins with zeros can be helpful for subsequent analysis, such as smoothing.

The print logical flag only has an effect when layout=1.

Value

The layout argument specifies one of the following formats for the binned frequency output:

1. matrix that is easy to read, aligned like a scatterplot.

2. list with three elements (x, y, matrix) that can be passed to various plotting functions.

3. data.frame with three columns (x, y, frequency) that can be analyzed further.



GCD, LCM 237

Author(s)

Arni Magnusson <thisisarni@gmail.com»

See Also

cut, table, and print.table are the basic underlying functions.
Freq, PercTable

Examples

Freq2D(quakes$long, quakes$lat, dnn="")
Freq2D(lat ~ long, quakes, n=c(10, 20), pad=1)

# range(Freq2D(saithe, print=FALSE))

# Layout, plot
# Freq2D(saithe, layout=2)
# Freq2D(saithe, layout=3)
# contour(Freq2D(saithe, layout=2))
# lattice::contourplot(Freq ~ Bio + HR, Freq2D(saithe,layout=3))

GCD, LCM Greatest Common Divisor and Least Common Multiple

Description

Calculates the greatest common divisor (GCD) and least common multiple (LCM) of all the values
present in its arguments.

Usage

GCD(..., na.rm = FALSE)
LCM(..., na.rm = FALSE)

Arguments

... integer or logical vectors.

na.rm logical. Should missing values (including NaN) be removed?

Details

The computation is based on the Euclidean algorithm without using the extended version.The great-
est common divisor for all numbers in the integer vector x will be computed (the multiple GCD).

Value

A numeric (integer) value.



238 GenExtrVal

Note

The following relation is always true:

n * m = GCD(n, m) * LCM(n, m)

Author(s)

Dirk Eddelbuettel <edd@debian.org> (RCPP part), Andri Signorell <andri@signorell.net>, origi-
nally based on code in package numbers by Hans W Borchers <hwborchers@googlemail.com>

References

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. New York, NY: Springer.

See Also

Factorize, Primes, IsPrime

Examples

GCD(12, 10)
GCD(144, 233) # Fibonacci numbers are relatively prime to each other

LCM(12, 10)
LCM(144, 233) # = 144 * 233

# all elements will be flattened by unlist
GCD(2, 3, c(5, 7) * 11)
GCD(c(2*3, 3*5, 5*7))
LCM(c(2, 3, 5, 7) * 11)
LCM(2*3, 3*5, 5*7)

GenExtrVal The Generalized Extreme Value Distribution

Description

Density function, distribution function, quantile function and random generation for the generalized
Extreme value (GenExtrVal) distribution with location, scale and shape parameters.

Usage

dGenExtrVal(x, loc=0, scale=1, shape=0, log = FALSE)
pGenExtrVal(q, loc=0, scale=1, shape=0, lower.tail = TRUE)
qGenExtrVal(p, loc=0, scale=1, shape=0, lower.tail = TRUE)
rGenExtrVal(n, loc=0, scale=1, shape=0)



GenExtrVal 239

Arguments

x, q Vector of quantiles.
p Vector of probabilities.
n Number of observations.
loc, scale, shape

Location, scale and shape parameters; the shape argument cannot be a vector
(must have length one).

log Logical; if TRUE, the log density is returned.
lower.tail Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The GenExtrVal distribution function with parameters loc = a, scale = b and shape = s is

G(z) = exp
[
−{1 + s(z − a)/b}−1/s

]
for 1 + s(z − a)/b > 0, where b > 0. If s = 0 the distribution is defined by continuity. If
1+ s(z− a)/b ≤ 0, the value z is either greater than the upper end point (if s < 0), or less than the
lower end point (if s > 0).
The parametric form of the GenExtrVal encompasses that of the Gumbel, Frechet and reverse
Weibull distributions, which are obtained for s = 0, s > 0 and s < 0 respectively. It was first
introduced by Jenkinson (1955).

Value

dGenExtrVal gives the density function, pGenExtrVal gives the distribution function, qGenExtrVal
gives the quantile function, and rGenExtrVal generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

References

Jenkinson, A. F. (1955) The frequency distribution of the annual maximum (or minimum) of mete-
orological elements. Quart. J. R. Met. Soc., 81, 158–171.

See Also

rFrechet, rGumbel, rRevWeibull

Examples

dGenExtrVal(2:4, 1, 0.5, 0.8)
pGenExtrVal(2:4, 1, 0.5, 0.8)
qGenExtrVal(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rGenExtrVal(6, 1, 0.5, 0.8)
p <- (1:9)/10
pGenExtrVal(qGenExtrVal(p, 1, 2, 0.8), 1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9



240 GenPareto

GenPareto The Generalized Pareto Distribution

Description

Density function, distribution function, quantile function and random generation for the generalized
Pareto distribution (GenPareto) with location, scale and shape parameters.

Usage

dGenPareto(x, loc=0, scale=1, shape=0, log = FALSE)
pGenPareto(q, loc=0, scale=1, shape=0, lower.tail = TRUE)
qGenPareto(p, loc=0, scale=1, shape=0, lower.tail = TRUE)
rGenPareto(n, loc=0, scale=1, shape=0)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Number of observations.
loc, scale, shape

Location, scale and shape parameters; the shape argument cannot be a vector
(must have length one).

log Logical; if TRUE, the log density is returned.

lower.tail Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The generalized Pareto distribution function (Pickands, 1975) with parameters loc = a, scale = b
and shape = s is

G(z) = 1− {1 + s(z − a)/b}−1/s

for 1 + s(z − a)/b > 0 and z > a, where b > 0. If s = 0 the distribution is defined by continuity.

Value

dGenPareto gives the density function, pGenPareto gives the distribution function, qGenPareto
gives the quantile function, and rGenPareto generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

References

Pickands, J. (1975) Statistical inference using Extreme Order statistics. Annals of Statistics, 3,
119–131.



GenRandGroups 241

See Also

rGenExtrVal

Examples

dGenPareto(2:4, 1, 0.5, 0.8)
pGenPareto(2:4, 1, 0.5, 0.8)
qGenPareto(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rGenPareto(6, 1, 0.5, 0.8)
p <- (1:9)/10
pGenPareto(qGenPareto(p, 1, 2, 0.8), 1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GenRandGroups Generate Random Groups

Description

Generates a random grouping from a given data vector, where the group sizes correspond to the
numeric vector grp_n.

Usage

GenRandGroups(x, grp_n)

Arguments

x a vector containing the objects which should be grouped

grp_n an integer vector with the required group sizes

Details

For group divisions in class, it is often useful to have a function available that randomizes these
divisions.

Value

a list sized length of grp_n with the x elements assigned to their group.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

CombN, CombSet



242 GeomSn

Examples

# say we have 12 students and want 3 groups with sizes 4,3, and 5

GenRandGroups(x=LETTERS[1:12], grp_n=c(4,3,5))

GeomSn Geometric Series

Description

A geometric sequence is a sequence, such that each term is given by a multiple of q of the previous
one. A geometric series consists out of the sum of all former values of a geometric sequence..

Usage

GeomSn(a1, q, n)

Arguments

a1 the first element of the sequence

q the factor of the sequence

n number of elements to include in the sum

Value

the sum as numeric value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

sum

Examples

GeomSn(a1=3, q=2, n=5)

# calculates the sum of the first 5 elements of the sequence
(gseq <- 3 * (2^(0:5)))
sum(gseq)

GeomSn(a1=3, q=2, n=0:5)



GeomTrans 243

GeomTrans Geometric Transformations

Description

This function transforms geometric structures by translating, scaling and/or rotating them.

Usage

GeomTrans(x, y = NULL, trans = 0, scale = 1, theta = 0)

Arguments

x, y vectors containing the coordinates of the vertices of the polygon , which has to
be transformed. The coordinates can be passed in a plotting structure (a list with
x and y components), a two-column matrix, .... See xy.coords.

trans a vector of two values for the translation in x-, resp. y-direction. If only one
value is supplied it will be recycled.

scale a vector of two values for the scaling factor in x-, resp. y-direction. If only one
value is supplied it will be recycled.

theta angle of the rotation in radians starting from 3 o’clock counterclockwise.

Value

The function invisibly returns a list of the coordinates for the transformed shape(s).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon, DrawRegPolygon, DrawEllipse, DrawArc

Examples

# let's have a triangle
Canvas(main="Rotation")
x <- DrawRegPolygon(nv=3)[[1]]

xt <- GeomTrans(x, trans=c(1, 3), scale=c(2, 2), theta=pi/4)
polygon(xt)



244 GetCalls

GetCalls Return All Used Functions Within a Function

Description

For screening purposes it can be useful to get a list of all function calls our function may depend on.
GetCall() parses the function source and return all found function calls grouped by their package.

Usage

GetCalls(fun, alphabetic = TRUE, package = NULL)

Arguments

fun the name of the function to be parsed

alphabetic logic, determining the order of the result

package name of the package, if only functions of this specific package should be re-
turned.

Value

a list of vectors structered by package

Author(s)

Nicholas Cooper <njcooper at gmx.co.uk> (in package NCmisc) with some tweaking by Andri
Signorell <andri@signorell.net>

See Also

LsFct()

Examples

GetCalls("t.test.default")

sapply(c("Closest", "Format"),
function(x) paste(unname(unlist(GetCalls(x))), collapse=", "))



GetCurrWrd 245

GetCurrWrd Get a Handle to a Running Word/Excel Instance

Description

Look for a running Word, resp. Excel instance and return its handle. If no running instance is found
a new instance will be created (which will be communicated with a warning).

Usage

GetCurrWrd()
GetCurrXL()

Value

a handle (pointer) to the running Word, resp. Excel instance.

Note

When closing an application instance, the value of the pointer in R is not somehow automatically
invalidated. In such cases the corresponding variable contains an invalid address. Whether the
pointer still refers to a valid running application instance can be checked by IsValidHwnd.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewWrd, IsValidHwnd

Examples

## Not run: # Windows-specific example

# Start a new instance
GetNewWrd()

# grab the handle to this instance
wrd <- GetCurrWrd()

# this should be valid
IsValidHwnd(wrd)

# close the instance
wrd$quit()

# now it should be gone and the pointer invalid
if(IsValidHwnd(wrd)){



246 GetNewWrd

print("Ouups! Still there?")
} else {

print("GetCurrWrd: no running word instance found...")
}

## End(Not run)

GetNewWrd Create a New Word Instance

Description

Start a new instance of Word and return its handle. By means of this handle we can then control the
word application.
WrdKill ends a running MS-Word task.

Usage

GetNewWrd(visible = TRUE, template = "Normal", header = FALSE,
main = "Descriptive report")

WrdKill()

Arguments

visible logical, should Word made visible? Defaults to TRUE.

template the name of the template to be used for creating a new document.

header logical, should a caption and a list of contents be inserted? Default is FALSE.

main the main title of the report

Details

The package RDCOMClient reveals the whole VBA-world of MS-Word. So generally speaking
any VBA code can be run fully controlled by R. In practise, it might be a good idea to record a
macro and rewrite the VB-code in R.

Here’s a list of some frequently used commands. Let’s assume we have a handle to the application
and a handle to the current selection defined as:

wrd <- GetNewWrd()
sel <- wrd$Selection()

Then we can access the most common properties as follows:



GetNewWrd 247

new document wrd[["Documents"]]$Add(template, FALSE, 0), template is the templatename.
open document wrd[["Documents"]]$Open(Filename="C:/MyPath/MyDocument.docx").
save document wrd$ActiveDocument()$SaveAs2(FileName="P:/MyFile.docx")
quit word wrd$quit()
kill word task WrdKill kills a running word task (which might not be ended with quit.)
normal text Use ToWrd which offers many arguments as fontname, size, color, alignment etc.

ToWrd("Lorem ipsum dolor sit amet, consetetur",
font=list(name="Arial", size=10, col=wdConst$wdColorRed)

simple text sel$TypeText("sed diam nonumy eirmod tempor invidunt ut labore")
heading WrdCaption("My Word-Story", index=1)
insert R output ToWrd(capture.output(str(d.diamonds)))
pagebreak sel$InsertBreak(wdConst$wdPageBreak)
sectionbreak sel$InsertBreak(wdConst$wdSectionBreakContinuous)

(wdSectionBreakNextPage)
move cursor right sel$MoveRight(Unit=wdConst$wdCharacter, Count=2, Extend=wdConst$wdExtend)
goto end sel$EndKey(Unit=wdConst$wdStory)
pagesetup sel[["PageSetup"]][["Bottommargin"]] <- 4 * 72
orientation sel[["PageSetup"]][["Orientation"]] <- wdConst$wdOrientLandscape
add bookmark wrd[["ActiveDocument"]][["Bookmarks"]]$Add("myBookmark")
goto bookmark sel$GoTo(wdConst$wdGoToBookmark, 0, 0, "myBookmark")
update bookmark WrdUpdateBookmark("myBookmark", "New text for my bookmark")
show document map wrd[["ActiveWindow"]][["DocumentMap"]] <- TRUE
create table WrdTable() which allows to define the table’s geometry
insert caption sel$InsertCaption(Label="Abbildung", TitleAutoText="InsertCaption",

Title="My Title")
tables of figures wrd$ActiveDocument()$TablesOfFigures()$Add(Range=sel$range(),

Caption="Figure")
insert header wview <- wrd[["ActiveWindow"]][["ActivePane"]][["View"]][["SeekView"]]

wview <- ifelse(header, wdConst$wdSeekCurrentPageHeader, wdConst$wdSeekCurrentPageFooter)
ToWrd(x, ..., wrd=wrd)

Value

a handle (pointer) to the created Word instance.

Note

Note that the list of contents has to be refreshed by hand after inserting text (if inserted by header
= TRUE).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewXL, GetNewPP



248 GetNewXL

Examples

## Not run: # Windows-specific example

wrd <- GetNewWrd()
Desc(d.pizza[,1:4], wrd=wrd)

wrd <- GetNewWrd(header=TRUE)
Desc(d.pizza[,1:4], wrd=wrd)

# enumerate all bookmarks in active document
for(i in 1:wrd[["ActiveDocument"]][["Bookmarks"]]$count()){

print(wrd[["ActiveDocument"]][["Bookmarks"]]$Item(i)$Name())
}

## End(Not run)

GetNewXL Create a New Excel Instance

Description

Start a new instance of Excel and return its handle. This is needed to address the Excel application
and objects afterwards.

Usage

GetNewXL(visible = TRUE, newdoc = TRUE)

Arguments

visible logical, should Excel made visible? Defaults to TRUE.

newdoc logical, determining if a new workbook should be created. Defaults to TRUE.

Details

Here’s a list of some frequently used commands.
Let’s assume:

xl <- GetNewXL()

workbooks xl$workbooks()$count()
quit excel xl$quit()

Author(s)

Andri Signorell <andri@signorell.net>



Gini 249

See Also

XLView, XLGetRange, XLGetWorkbook

Examples

## Not run: # Windows-specific example
# get a handle to a new excel instance
xl <- GetNewXL()

## End(Not run)

Gini Gini Coefficient

Description

Compute the Gini coefficient, the most commonly used measure of inequality.

Usage

Gini(x, weights = NULL, unbiased = TRUE,
conf.level = NA, R = 10000, type = "bca", na.rm = FALSE)

Arguments

x a vector containing at least non-negative elements. The result will be NA, if x
contains negative elements.

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

unbiased logical. In order for G to be an unbiased estimate of the true population value,
calculated gini is multiplied by n/(n− 1). Default is TRUE. (See Dixon, 1987)

conf.level confidence level for the confidence interval, restricted to lie between 0 and 1. If
set to TRUE the bootstrap confidence intervals are calculated. If set to NA (default)
no confidence intervals are returned.

R number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights.
This is ignored if no confidence intervals are to be calculated.

type character string representing the type of interval required. The value should be
one out of the c("norm","basic", "stud", "perc" or "bca").
This argument is ignored if no confidence intervals are to be calculated.

na.rm logical. Should missing values be removed? Defaults to FALSE.



250 Gini

Details

The range of the Gini coefficient goes from 0 (no concentration) to
√
(n−1

n ) (maximal concentra-
tion). The bias corrected Gini coefficient goes from 0 to 1.
The small sample variance properties of the Gini coefficient are not known, and large sample ap-
proximations to the variance of the coefficient are poor (Mills and Zandvakili, 1997; Glasser, 1962;
Dixon et al., 1987), therefore confidence intervals are calculated via bootstrap re-sampling methods
(Efron and Tibshirani, 1997).
Two types of bootstrap confidence intervals are commonly used, these are percentile and bias-
corrected (Mills and Zandvakili, 1997; Dixon et al., 1987; Efron and Tibshirani, 1997). The bias-
corrected intervals are most appropriate for most applications. This is set as default for the type
argument ("bca"). Dixon (1987) describes a refinement of the bias-corrected method known as
’accelerated’ - this produces values very closed to conventional bias corrected intervals.
(Iain Buchan (2002) Calculating the Gini coefficient of inequality, see: https://www.statsdirect.
com/help/default.htm#nonparametric_methods/gini.htm)

Value

If conf.level is set to NA then the result will be

a single numeric value

and if a conf.level is provided, a named numeric vector with 3 elements:

gini Gini coefficient

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

References

Cowell, F. A. (2000) Measurement of Inequality in Atkinson, A. B. / Bourguignon, F. (Eds): Hand-
book of Income Distribution. Amsterdam.

Cowell, F. A. (1995) Measuring Inequality Harvester Wheatshef: Prentice Hall.

Marshall, Olkin (1979) Inequalities: Theory of Majorization and Its Applications. New York:
Academic Press.

Glasser C. (1962) Variance formulas for the mean difference and coefficient of concentration. Jour-
nal of the American Statistical Association 57:648-654.

Mills JA, Zandvakili A. (1997). Statistical inference via bootstrapping for measures of inequality.
Journal of Applied Econometrics 12:133-150.

Dixon, PM, Weiner J., Mitchell-Olds T, Woodley R. (1987) Boot-strapping the Gini coefficient of
inequality. Ecology 68:1548-1551.

Efron B, Tibshirani R. (1997) Improvements on cross-validation: The bootstrap method. Journal of
the American Statistical Association 92:548-560.

https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm
https://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm


GiniSimpson 251

See Also

See Herfindahl, Rosenbluth for concentration measures, Lc for the Lorenz curve
ineq() in the package ineq contains additional inequality measures

Examples

# generate vector (of incomes)
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)

# compute Gini coefficient
Gini(x)

# working with weights
fl <- c(2.5, 7.5, 15, 35, 75, 150) # midpoints of classes
n <- c(25, 13, 10, 5, 5, 2) # frequencies

# with confidence intervals
Gini(x=fl, weights=n, conf.level=0.95, unbiased=FALSE)

# some special cases
x <- c(10, 10, 0, 0, 0)
plot(Lc(x))

Gini(x, unbiased=FALSE)

# the same with weights
Gini(x=c(10, 0), weights=c(2,3), unbiased=FALSE)

# perfect balance
Gini(c(10, 10, 10))

GiniSimpson Gini-Simpson Coefficient, Gini-Deltas coefficient and Hunter-Gaston
Index

Description

Calculate the Gini-Simpson coefficient, the Gini variant proposed by Deltas and the Hunter-Gaston
Index.

Usage

GiniSimpson(x, na.rm = FALSE)
GiniDeltas(x, na.rm = FALSE)

HunterGaston(x, na.rm = FALSE)



252 GiniSimpson

Arguments

x a factor containing at least non-negative elements.

na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

The original Simpson index λ equals the probability that two entities taken at random from the
dataset of interest (with replacement) represent the same type. The Simpson index was introduced in
1949 by Edward H. Simpson to measure the degree of concentration when individuals are classified
into types. The same index was rediscovered by Orris C. Herfindahl in 1950. The square root of the
index had already been introduced in 1945 by the economist Albert O. Hirschman. As a result, the
same measure is usually known as the Simpson index in ecology, and as the Herfindahl index or the
Herfindahl-Hirschman index (HHI) in economics.
Its transformation 1 - λ therefore equals the probability that the two entities represent different
types. This measure is also known in ecology as the probability of interspecific encounter (PIE) and
the Gini-Simpson index.

Value

a numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

References

Cover Thomas M. and Thomas Joy A. (1991) Elements of Information Theory. Wiley.

Hunter, P., Gaston, A. G. (1988) Numerical Index of the Discriminatory Ability of Typing Systems:
an Application of Simpson’s Index of Diversity, JOURNAL OF CLINICAL MICROBIOLOGY, Nov.
1988, p. 2465-2466, 0095-1137/88/112465-02$02.00/0

Deltas (2003) DOI:10.1162/rest.2003.85.1.226.

See Also

DivCoef, Entropy, Gini, Herfindahl

Examples

x <- c(261,29,33,15,39,28,95,5,6,28,69,8,105,38,15)

GiniSimpson(x)

# is the same as
1 - Herfindahl(x)

GiniSimpson(c(783,121,112,70,201,153,425,19,37,126,325,51,442,193,41))



Gmean 253

Gmean Geometric Mean and Standard Deviation

Description

Calculates the geometric mean, its confidence interval and the geometric standard deviation of a
vector x.

Usage

Gmean(x, method = c("classic", "boot"), conf.level = NA,
sides = c("two.sided","left","right"), na.rm = FALSE, ...)

Gsd(x, na.rm = FALSE)

Arguments

x a positive numeric vector. An object which is not a vector is coerced (if possible)
by as.vector.

method a vector of character strings representing the type of intervals required. The
value should be any subset of the values "classic", "boot". See boot.ci.

conf.level confidence level of the interval. Default is NA.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. Defaults to FALSE.

... further arguments are passed to the boot function. Supported arguments are
type ("norm", "basic", "stud", "perc", "bca"), parallel and the number
of bootstrap replicates R. If not defined those will be set to their defaults, being
"basic" for type, option "boot.parallel" (and if that is not set, "no") for
parallel and 999 for R.

Details

The geometric mean is defined as:

n
√
x1 · x2 · x3 . . . · xn

The geometric mean and geometric standard deviation are restricted to positive inputs (because
otherwise the answer can have an imaginary component). Hence if any argument is negative, the
result will be NA. If any argument is zero, then the geometric mean is zero.
For strict positive values the geometric mean is computed as exp(MeanCI(log(x))).

Considerations (Roenfeldt 2018) "The calculation of the geometric mean requires that
all values are non-zero and positive. So what should you do if you have data that do not meet this
requirement? If you have values that equal zero, you have a few options:



254 Gmean

• Adjust your scale so that you add 1 to every number in the data set, and then subtract 1 from
the resulting geometric mean.

• Ignore zeros or missing data in your calculations.

• Convert zeros to a very small number (often called "below the detection limit") that is less
than the next smallest number in the data set.

If you have negative numbers, you will need to convert those numbers to a positive value before
calculating the geometric mean. You can then assign the resulting geometric mean a negative value.
If your data set contains both positive and negative values, you will have to separate them and find
the geometric means for each group, and you can then find the weighted average of their individual
geometric means to find the total geometric mean for the full data set. If none of these options
appeals to you, you are not alone! There is controversy among statisticians about what is the best
method for dealing with these values. You may want to calculate several types of averages and
decide what makes the most sense for you and the results you are trying to report."

Value

a numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

References

Snedecor, G. W., Cochran, W. G. Cochran (1989) Statistical Methods, 8th ed. Ames, IA: Iowa State
University Press

Roenfeldt K. (2018) Better than Average: Calculating Geometric Means Using SAS, Henry M.
Jackson Foundation for the Advancement of Military Medicine, https://www.lexjansen.com/
wuss/2018/56_Final_Paper_PDF.pdf

See Also

mean, Hmean

Examples

x <- runif(5)
Gmean(x)

m <- matrix(runif(50), nrow = 10)
apply(m, 2, Gmean)

sapply(as.data.frame(m), Gmean)

# ......................................................
# example in https://www.stata.com/manuals13/rameans.pdf
x <- c(5,4,-4,-5,0,0,NA,7)

# positives only

https://www.lexjansen.com/wuss/2018/56_Final_Paper_PDF.pdf
https://www.lexjansen.com/wuss/2018/56_Final_Paper_PDF.pdf


Gompertz 255

Gmean(x[x>0], na.rm=TRUE, conf.level=0.95)

# add 5 to original values and remove zeros
Gmean(NAIfZero(x+5), na.rm=TRUE, conf.level = 0.95)

Gompertz The Gompertz distribution

Description

Density, distribution function, quantile function and random generation for the Gompertz distribu-
tion with unrestricted shape.

Usage

dGompertz(x, shape, rate = 1, log = FALSE)
pGompertz(q, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
qGompertz(p, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
rGompertz(n, shape = 1, rate = 1)

Arguments

x, q vector of quantiles.

shape, rate vector of shape and rate parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P (X ≤ x), otherwise, P (X > x).

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Details

The Gompertz distribution with shape parameter a and rate parameter b has probability density
function

f(x|a, b) = beax exp(−b/a(eax − 1))

For a = 0 the Gompertz is equivalent to the exponential distribution with constant hazard and rate
b.

The probability distribution function is

F (x|a, b) = 1− exp(−b/a(eax − 1))

Thus if a is negative, letting x tend to infinity shows that there is a non-zero probability 1−exp(b/a)
of living forever. On these occasions qGompertz and rGompertz will return Inf.



256 GoodmanKruskalGamma

Value

dGompertz gives the density, pGompertz gives the distribution function, qGompertz gives the quan-
tile function, and rGompertz generates random deviates.

Note

Some implementations of the Gompertz restrict a to be strictly positive, which ensures that the
probability of survival decreases to zero as x increases to infinity. The more flexible implementation
given here is consistent with streg in Stata.

The functions dGompertz and similar available in the package eha label the parameters the other
way round, so that what is called the shape there is called the rate here, and what is called 1 /
scale there is called the shape here. The terminology here is consistent with the exponential dexp
and Weibull dweibull distributions in R.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Stata Press (2007) Stata release 10 manual: Survival analysis and epidemiological tables.

See Also

dexp

GoodmanKruskalGamma Goodman Kruskal’s Gamma

Description

Calculate Goodman Kruskal’s Gamma statistic, a measure of association for ordinal factors in a
two-way table.
The function has interfaces for a contingency table (matrix) and for single vectors (which will then
be tabulated).

Usage

GoodmanKruskalGamma(x, y = NULL, conf.level = NA, ...)

Arguments

x a numeric vector or a contingency table. A matrix will be treated as a table.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
intervals will be calculated.



GoodmanKruskalGamma 257

... further arguments are passed to the function table, allowing i.e. to control the
handling of NAs by setting the useNA argument. This refers only to the vector
interface, the dots are ignored if x is a contingency table.

Details

The estimator of γ is based only on the number of concordant and discordant pairs of observations.
It ignores tied pairs (that is, pairs of observations that have equal values of X or equal values of Y).
Gamma is appropriate only when both variables lie on an ordinal scale.
It has the range [-1, 1]. If the two variables are independent, then the estimator of gamma tends to
be close to zero. For 2× 2 tables, gamma is equivalent to Yule’s Q (YuleQ).
Gamma is estimated by

G =
P −Q

P +Q

where P equals twice the number of concordances and Q twice the number of discordances.

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57-59.

Brown, M.B., Benedetti, J.K.(1977) Sampling Behavior of Tests for Correlation in Two-Way Con-
tingency Tables, Journal of the American Statistical Association, 72, 309-315.

Goodman, L. A., & Kruskal, W. H. (1954) Measures of association for cross classifications. Journal
of the American Statistical Association, 49, 732-764.

Goodman, L. A., & Kruskal, W. H. (1963) Measures of association for cross classifications III:
Approximate sampling theory. Journal of the American Statistical Association, 58, 310-364.

See Also

There’s another implementation of gamma in vcdExtra GKgamma
ConDisPairs yields concordant and discordant pairs

Other association measures:
KendallTauA (tau-a), KendallTauB (tau-b), cor (method="kendall") for tau-b, StuartTauC (tau-
c), SomersDelta
Lambda, GoodmanKruskalTau (tau), UncertCoef, MutInf



258 GoodmanKruskalTau

Examples

# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1821 (149)

tab <- as.table(rbind(
c(26,26,23,18, 9),
c( 6, 7, 9,14,23))
)

GoodmanKruskalGamma(tab, conf.level=0.95)

GoodmanKruskalTau Goodman Kruskal’s Tau

Description

Calculate Goodman Kruskal’s tau statistic, a measure of association for ordinal factors in a two-way
table.
The function has interfaces for a table (matrix) and for single vectors.

Usage

GoodmanKruskalTau(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...)

Arguments

x a numeric vector or a table. A matrix will be treated as table.
y NULL (default) or a vector with compatible dimensions to x. If y is provided,

table(x, y, ...) is calculated.
direction direction of the calculation. Can be "row" (default) or "column", where "row"

calculates Goodman Kruskal’s tau-a (R|C) ("column dependent").
conf.level confidence level of the interval. If set to NA (which is the default) no confidence

interval will be calculated.
... further arguments are passed to the function table, allowing i.e. to set useNA.

This refers only to the vector interface.

Details

Goodman-Kruskal tau measures association for cross tabulations of nominal level variables. Goodman-
Kruskal tau is based on random category assignment. It measures the percentage improvement in
predictability of the dependent variable (column or row variable) given the value of other variables
(row or column variables). Goodman-Kruskal tau is the same as Goodman-Kruskal lambda except
the calculations of the tau statistic are based on assignment probabilities specified by marginal or
conditional proportions. Misclassification probabilities are based on random category assignment
with probabilities specified by marginal or conditional proportion.

Goodman Kruskal tau reduces to ϕ2 (see: Phi) in the 2x2-table case.



GoodmanKruskalTau 259

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Andri Signorell <andri@signorell.net>, based on code from Antti Arppe <antti.arppe@helsinki.fi>

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57-59.

Goodman, L. A., & Kruskal, W. H. (1954) Measures of association for cross classifications. Journal
of the American Statistical Association, 49, 732-764.

Somers, R. H. (1962) A New Asymmetric Measure of Association for Ordinal Variables, American
Sociological Review, 27, 799-811.

Goodman, L. A., & Kruskal, W. H. (1963) Measures of association for cross classifications III:
Approximate sampling theory. Journal of the American Statistical Association, 58, 310-364.

Liebetrau, A. M. (1983) Measures of Association, Sage University Papers Series on Quantitative
Applications in the Social Sciences, 07-004. Newbury Park, CA: Sage, pp. 24–30

See Also

ConDisPairs yields concordant and discordant pairs

Other association measures:
KendallTauA (Tau a), cor (method="kendall") for Tau b, StuartTauC, GoodmanKruskalGamma
Lambda, UncertCoef, MutInf

Examples

# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

# Goodman Kruskal's tau C|R
GoodmanKruskalTau(tab, direction="column", conf.level=0.95)
# Goodman Kruskal's tau R|C
GoodmanKruskalTau(tab, direction="row", conf.level=0.95)

# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. 1814 (143)
tab <- as.table(cbind(c(11,2),c(4,6)))

GoodmanKruskalTau(tab, direction="row", conf.level=0.95)
GoodmanKruskalTau(tab, direction="column", conf.level=0.95)
# reduce both to:



260 GTest

Phi(tab)^2

# example 1 in Liebetrau (1983)

tt <- matrix(c(549,93,233,119,225,455,402,
212,124,78,42,41,12,132,
54,54,33,13,46,7,153), ncol=3,

dimnames=list(rownames=c("Gov", "Mil", "Edu", "Eco", "Intel", "Rel", "For"),
colnames=c("One", "Two", "Multi")))

GoodmanKruskalTau(tt, direction = "row", conf.level = 0.95)
GoodmanKruskalTau(tt, direction = "column", conf.level = 0.95)

# SPSS
ttt <- matrix(c(225,53,206,3,1,12), nrow=3,

dimnames=list(rownames=c("right","center", "left"),
colnames=c("us","ussr")))

round(GoodmanKruskalTau(ttt, direction = "r", con=0.95), d=3)
round(GoodmanKruskalTau(ttt, direction = "c"), d=3)

GTest G-Test for Count Data

Description

GTest performs chi-squared contingency table tests and goodness-of-fit tests.

Usage

GTest(x, y = NULL, correct = c("none", "williams", "yates"),
p = rep(1/length(x), length(x)), rescale.p = FALSE)

Arguments

x a numeric vector or matrix. x and y can also both be factors.

y a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of
the same length.

correct one out of "none" (default), "williams", "yates" . See Details.

p a vector of probabilities of the same length of x. An error is given if any entry
of p is negative.

rescale.p a logical scalar; if TRUE then p is rescaled (if necessary) to sum to 1. If rescale.p
is FALSE, and p does not sum to 1, an error is given.



GTest 261

Details

The G-test is also called "Likelihood Ratio Test" and is asymptotically equivalent to the Pearson
ChiSquare-test but not usually used when analyzing 2x2 tables. It is used in logistic regression and
loglinear modeling which involves contingency tables. The G-test is also reported in the standard
summary of Desc for tables.

If x is a matrix with one row or column, or if x is a vector and y is not given, then a goodness-of-fit
test is performed (x is treated as a one-dimensional contingency table). The entries of x must be
non-negative integers. In this case, the hypothesis tested is whether the population probabilities
equal those in p, or are all equal if p is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional contingency
table: the entries of x must be non-negative integers. Otherwise, x and y must be vectors or factors
of the same length; cases with missing values are removed, the objects are coerced to factors, and
the contingency table is computed from these. Then G-test is performed on the null hypothesis that
the joint distribution of the cell counts in a 2-dimensional contingency table is the product of the
row and column marginals.

Test of independence Yates’ correction taken from Mike Camann’s 2x2 G-test function. Goodness
of Fit Yates’ correction as described in Zar (2000).

Value

A list with class "htest" containing the following components:

statistic the value the chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic, NA if the p-value is computed by Monte Carlo simulation.

p.value the p-value for the test.

method a character string indicating the type of test performed, and whether Monte Carlo
simulation or continuity correction was used.

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

Author(s)

Pete Hurd <phurd@ualberta.ca>, Andri Signorell <andri@signorell.net> (tiny tweaks)

References

Hope, A. C. A. (1968) A simplified Monte Carlo significance test procedure. J. Roy, Statist. Soc. B
30, 582–598.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

Agresti, A. (2007) An Introduction to Categorical Data Analysis, 2nd ed., New York: John Wiley
& Sons. Page 38.

Sokal, R. R., F. J. Rohlf (2012) Biometry: the principles and practice of statistics in biological
research. 4th edition. W. H. Freeman and Co.: New York. 937 pp.



262 Gumbel

See Also

chisq.test.

Examples

## From Agresti(2007) p.39
M <- as.table(rbind(c(762, 327, 468), c(484,239,477)))
dimnames(M) <- list(gender=c("M","F"),

party=c("Democrat","Independent", "Republican"))

(Xsq <- GTest(M)) # Prints test summary

Xsq$observed # observed counts (same as M)
Xsq$expected # expected counts under the null

## Testing for population probabilities
## Case A. Tabulated data
x <- c(A = 20, B = 15, C = 25)
GTest(x)
GTest(as.table(x)) # the same
x <- c(89,37,30,28,2)
p <- c(40,20,20,15,5)
try(
GTest(x, p = p) # gives an error
)
# works
p <- c(0.40,0.20,0.20,0.19,0.01)
# Expected count in category 5
# is 1.86 < 5 ==> chi square approx.
GTest(x, p = p) # maybe doubtful, but is ok!

## Case B. Raw data
x <- trunc(5 * runif(100))
GTest(table(x)) # NOT 'GTest(x)'!

Gumbel The Gumbel Distribution

Description

Density function, distribution function, quantile function and random generation for the Gumbel
distribution with location and scale parameters.

Usage

dGumbel(x, loc=0, scale=1, log = FALSE)
pGumbel(q, loc=0, scale=1, lower.tail = TRUE)
qGumbel(p, loc=0, scale=1, lower.tail = TRUE)
rGumbel(n, loc=0, scale=1)



Gumbel 263

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Number of observations.

loc, scale Location and scale parameters (can be given as vectors).

log Logical; if TRUE, the log density is returned.

lower.tail Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The Gumbel distribution function with parameters loc = a and scale = b is

G(z) = exp

{
− exp

[
−
(
z − a

b

)]}
for all real z, where b > 0.

Value

dGumbel gives the density function, pGumbel gives the distribution function, qGumbel gives the
quantile function, and rGumbel generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

rFrechet, rGenExtrVal, rRevWeibull

Examples

dGumbel(-1:2, -1, 0.5)
pGumbel(-1:2, -1, 0.5)
qGumbel(seq(0.9, 0.6, -0.1), 2, 0.5)
rGumbel(6, -1, 0.5)
p <- (1:9)/10
pGumbel(qGumbel(p, -1, 2), -1, 2)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9



264 Herfindahl

Herfindahl Concentration Measures

Description

Computes the concentration within a vector according to the specified concentration measure.

Usage

Herfindahl(x, n = rep(1, length(x)), parameter = 1, na.rm = FALSE)
Rosenbluth(x, n = rep(1, length(x)), na.rm = FALSE)

Arguments

x a vector containing non-negative elements

n a vector of frequencies (weights), must be same length as x.

parameter parameter of the concentration measure (if set to NULL the default parameter of
the respective measure is used)

na.rm logical. Should missing values be removed? Defaults to FALSE.

Value

the value of the concentration measure

Note

The same measure is usually known as the Simpson index in ecology, and as the Herfindahl index
or the Herfindahl-Hirschman index (HHI) in economics.

Note

These functions were previously published as conc() in the ineq package and have been integrated
here without logical changes. NA and weights support were added.

Author(s)

Achim Zeileis <achim.zeileis@r-project.org>

References

Cowell, F. A. (2000) Measurement of Inequality, in Atkinson, A. B., Bourguignon, F. Handbook of
Income Distribution. (Eds) Amsterdam

Cowell, F. A. (1995) Measuring Inequality. Prentice Hall/Harvester Wheatshef

Hall, M., Tidemann, N. (1967) Measures of Concentration, JASA 62, 162-168.



HexToCol 265

See Also

See Gini, Atkinson and ineq() for additional inequality measures

Examples

# generate vector (of sales)
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)

# compute Herfindahl coefficient with parameter 1
Herfindahl(x)

# compute coefficient of Hall/Tiedemann/Rosenbluth
Rosenbluth(x)

# Some more examples
Herfindahl(c(261,29,33,15,39,28,95,5,6,28,69,8,105,38,15))
Herfindahl(c(783,121,112,70,201,153,425,19,37,126,325,51,442,193,41))

HexToCol Identify Closest Match to a Color Given by a Hexadecimal String

Description

Given a color as a hex string #rrggbb, find the closest match in the table of known (named) colors.

Usage

HexToCol(hexstr, method = "rgb", metric = "euclidean")

Arguments

hexstr a color or a vector of colors specified as hexadecimal string of the form "#RRGGBB"
or "#RRGGBBAA"

method character string specifying the color space to be used. Can be "rgb" (default) or
"hsv".

metric character string specifying the metric to be used for calculating distances be-
tween the colors. Available options are "euclidean" (default) and "manhattan".
Euclidean distances are root sum-of-squares of differences, and manhattan dis-
tances are the sum of absolute differences.

Details

Finds the color with the minimum squared distance in RGB space.

Value

The colorname(s) of the closest match(es) (if more than one).



266 HexToRgb

Author(s)

Ben Bolker, vector support Andri Signorell <andri@signorell.net>

See Also

ColToHex, ColToRgb, colors

Examples

ColToHex(c("lightblue", "salmon"))

HexToCol(c("#ADD8E6", "#FA1572"))
HexToCol(Pal("Helsana"))

x <- ColToRgb("darkmagenta")
x[2,] <- x[2,] + 155
RgbToCol(x)

HexToRgb Convert a Hexstring Color to a Matrix With Three Red/Green/Blue
Rows

Description

HexToRgb() converts a hexstring color the its red/green/blue representation.

Usage

HexToRgb(hex)

Arguments

hex a color or a vector of colors specified as hexadecimal string of the form "#RRGGBB"
or "#RRGGBBAA"

Details

A hex color is written as a hash character, "#", followed by 3 or 4 hexadecimal numbers, say 6,
resp. 8, digits (0-9A-F). The first 3 pairs of digits specify the red, green and blue components.
When there are 8 digits, then the last pair is interpreted as alpha channel defining transparency,
where 00 represents a fully transparent color and FF represent a fully opaque color.
The result will be returned as a matrix having 3 or 4 rows, depending on if the input contained
a RRGGBBAA definition or not. No distinction is made between upper and lower case. A missing
leading # is tolerated.

Value

a matrix with 3 or 4 rows.



Hmean 267

Author(s)

Andri Signorell <andri@signorell.net>

See Also

HexToCol

Examples

HexToRgb(c("#ADD8E6", "#FA1572"))

# 4-digit representation returns a 4 row matrix
HexToRgb(hex=c("#A52A2ABB","#A52A3B","C52A3B"))

Hmean Harmonic Mean and Its Confidence Interval

Description

Calculates the harmonic mean and its confidence interval of a vector x.

Usage

Hmean(x, method = c("classic", "boot"), conf.level = NA,
sides = c("two.sided","left","right"), na.rm = FALSE, ...)

Arguments

x a positive numeric vector. An object which is not a vector is coerced (if possible)
by as.vector.

method a vector of character strings representing the type of intervals required. The
value should be any subset of the values "classic", "boot". See boot.ci.

conf.level confidence level of the interval. Default is NA.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. Defaults to FALSE.

... further arguments are passed to the boot function. Supported arguments are
type ("norm", "basic", "stud", "perc", "bca"), parallel and the number
of bootstrap replicates R. If not defined those will be set to their defaults, being
"basic" for type, option "boot.parallel" (and if that is not set, "no") for
parallel and 999 for R.



268 HmsToSec

Details

To compute the harmonic mean, 1/x is first calculated, before the arithmetic mean and its confidence
interval are computed by MeanCI. The harmonic mean is then the reciprocal of the arithmetic mean
of the reciprocals of the values. The same applies to the confidence interval.

The harmonic mean is restricted to strictly positive inputs, if any argument is negative, then the
result will be NA. If the lower bound of the confidence interval is not greater than zero, then the
confidence interval is not defined, and thus NA will be reported.

Use sapply to calculate the measures from data frame, resp. from a matrix.

Value

a numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

References

Snedecor, G. W., Cochran, W. G. (1989) Statistical Methods, 8th ed. Ames, IA: Iowa State Univer-
sity Press

See Also

Gmean

Examples

x <- runif(5)
Hmean(x)

m <- matrix(runif(50), nrow = 10)
apply(m, 2, Hmean)

sapply(as.data.frame(m), Hmean)

HmsToSec Convert h:m:s To/From Seconds

Description

HmsToSec - Converts a vector of h:m:s to seconds.

SecToHms - Converts a vector of seconds to h:m:s.



HodgesLehmann 269

Usage

HmsToSec(x)
SecToHms(x, digits = NULL)

Arguments

x A vector of times in h:m:s (for HmsToSec) or seconds (for SecToHms).

digits the number of digits to use for potential fractions of seconds.

Value

HmsToSec - Returns a vector of times in seconds.

SecToHms - Returns a vector of times in h:m:s format.

Author(s)

Tyler Rinker <tyler.rinker@gmail.com>

See Also

times

Examples

HmsToSec(c("02:00:03", "04:03:01"))
HmsToSec(SecToHms(c(222, 1234, 55)))
SecToHms(c(256, 3456, 56565))

HodgesLehmann Hodges-Lehmann Estimator of Location

Description

Function to compute the Hodges-Lehmann estimator of location in the one and two sample case
following a clever fast algorithm by John Monahan (1984).

Usage

HodgesLehmann(x, y = NULL, conf.level = NA, na.rm = FALSE)

Arguments

x a numeric vector.

y an optional numeric vector of data values: as with x non-finite values will be
omitted.

conf.level confidence level of the interval.

na.rm logical. Should missing values be removed? Defaults to FALSE.



270 HodgesLehmann

Details

The Hodges-Lehmann estimator is the median of the combined data points and Walsh averages. It
is the same as the Pseudo Median returned as a by-product of the function wilcox.test (which
however does not calculate correctly as soon as ties are present).
Note that in the two-sample case the estimator for the difference in location parameters does not es-
timate the difference in medians (a common misconception) but rather the median of the difference
between a sample from x and a sample from y.

(The calculation of the confidence intervals is not yet implemented.)

Value

the Hodges-Lehmann estimator of location as a single numeric value if no confidence intervals are
requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Cyril Flurin Moser (Cyril did the lion’s share and coded Monahan’s algorithm in C++), Andri
Signorell <andri@signorell.net>

References

Hodges, J.L., and Lehmann, E.L. (1963), Estimates of location based on rank tests. The Annals of
Mathematical Statistics, 34, 598–611.

Monahan, J. (1984), Algorithm 616: Fast Computation of the Hodges-Lehmann Location Estimator,
ACM Transactions on Mathematical Software, Vol. 10, No. 3, pp. 265-270

See Also

wilcox.test, median, MedianCI

Examples

set.seed(1)
x <- rt(100, df = 3)
y <- rt(100, df = 5)

HodgesLehmann(x)
HodgesLehmann(x, y)

# same as
wilcox.test(x, conf.int = TRUE)$estimate



HoeffD 271

HoeffD Matrix of Hoeffding’s D Statistics

Description

Computes a matrix of Hoeffding’s (1948) D statistics for all possible pairs of columns of a matrix. D
is a measure of the distance between F(x,y) and G(x)H(y), where F(x,y) is the joint CDF of X and
Y, and G and H are marginal CDFs. Missing values are deleted in pairs rather than deleting all rows
of x having any missing variables. The D statistic is robust against a wide variety of alternatives to
independence, such as non-monotonic relationships. The larger the value of D, the more dependent
are X and Y (for many types of dependencies). D used here is 30 times Hoeffding’s original D, and
ranges from -0.5 to 1.0 if there are no ties in the data. print.HoeffD prints the information derived
by HoeffD. The higher the value of D, the more dependent are x and y.

Usage

HoeffD(x, y)
## S3 method for class 'HoeffD'
print(x, ...)

Arguments

x a numeric matrix with at least 5 rows and at least 2 columns (if y is absent), or
an object created by HoeffD

y a numeric vector or matrix which will be concatenated to x

... ignored

Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values are approximated by
linear interpolation on the table in Hollander and Wolfe, which uses the asymptotically equivalent
Blum-Kiefer-Rosenblatt statistic. For P<.0001 or >0.5, P values are computed using a well-fitting
linear regression function in log P vs. the test statistic. Ranks (but not bivariate ranks) are computed
using efficient algorithms (see reference 3).

Value

a list with elements D, the matrix of D statistics, n the matrix of number of observations used in
analyzing each pair of variables, and P, the asymptotic P-values. Pairs with fewer than 5 non-
missing values have the D statistic set to NA. The diagonals of n are the number of non-NAs for the
single variable corresponding to that row and column.

Author(s)

Frank Harrell <f.harrell@vanderbilt.edu>
Department of Biostatistics
Vanderbilt University



272 HosmerLemeshowTest

References

Hoeffding W. (1948) A non-parametric test of independence. Ann Math Stat 19:546–57.

Hollander M., Wolfe D.A. (1973) Nonparametric Statistical Methods, pp. 228–235, 423. New
York: Wiley.

Press W.H., Flannery B.P., Teukolsky S.A., Vetterling, W.T. (1988) Numerical Recipes in C Cam-
bridge: Cambridge University Press.

See Also

rcorr, varclus

Examples

x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
q <- c(1, 2, 3, 4, 5)

HoeffD(cbind(x, y, z, q))

# Hoeffding's test can detect even one-to-many dependency
set.seed(1)
x <- seq(-10, 10, length=200)
y <- x * sign(runif(200, -1, 1))
plot(x, y)

HoeffD(x, y)

HosmerLemeshowTest Hosmer-Lemeshow Goodness of Fit Tests

Description

The function computes Hosmer-Lemeshow goodness of fit tests for C and H statistic as well as the
le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for global goodness of
fit.

Usage

HosmerLemeshowTest(fit, obs, ngr = 10, X, verbose = FALSE)

Arguments

fit numeric vector with fitted probabilities.

obs numeric vector with observed values.

ngr number of groups for C and H statistic.



HosmerLemeshowTest 273

X covariate(s) for le Cessie-van Houwelingen-Copas-Hosmer global goodness of
fit test.

verbose logical, print intermediate results.

Details

Hosmer-Lemeshow goodness of fit tests are computed; see Lemeshow and Hosmer (1982).

If X is specified, the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for
global goodness of fit is additionally determined; see Hosmer et al. (1997).

Value

A list of tests.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Lemeshow, S. Hosmer, D.W., (1982): A review of goodness of fit statistics for use in the develop-
ment of logistic regression models. American Journal of Epidemiology, 115(1), 92-106.

Hosmer, D.W., Hosmer, T., le Cessie, S., Lemeshow, S. (1997). A comparison of goodness-of-fit
tests for the logistic regression model. Statistics in Medicine, 16, 965-980.

See Also

glm

Examples

set.seed(111)

x1 <- factor(sample(1:3, 50, replace = TRUE))
x2 <- rnorm(50)
obs <- sample(c(0,1), 50, replace = TRUE)

fit <- glm(obs ~ x1+x2, family = binomial)

HosmerLemeshowTest(fit = fitted(fit), obs = obs, X = cbind(x1, x2))



274 HotellingsT2Test

HotellingsT2Test Hotelling’s T2 Test

Description

Hotelling’s T2 test is the multivariate generlisation of the Student’s t test. A one-sample Hotelling’s
T2 test can be used to test if a set of vectors of data (which should be a sample of a single statistical
population) has a mean equal to a hypothetical mean. A two-sample Hotelling’s T2 test may be used
to test for significant differences between the mean vectors (multivariate means) of two multivariate
data sets are different.

Usage

HotellingsT2Test(x, ...)

## Default S3 method:
HotellingsT2Test(x, y = NULL, mu = NULL, test = "f", ...)

## S3 method for class 'formula'
HotellingsT2Test(formula, data, subset, na.action, ...)

Arguments

x a numeric data frame or matrix.

y an optional numeric data frame or matrix for the two sample test. If NULL a one
sample test is performed.

mu a vector indicating the hypothesized value of the mean (or difference in means if
a two sample test is performed). NULL represents origin or no difference between
the groups.

test if "f", the decision is based on the F-distribution, if "chi" a chi-squared ap-
proximation is used.

formula a formula of the form x ~ g where x is a numeric matrix giving the data values
and g a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.



HotellingsT2Test 275

Details

The classical test for testing the location of a multivariate population or for testing the mean dif-
ference for two multivariate populations. When test = "f" the F-distribution is used for the test
statistic and it is assumed that the data are normally distributed. If the chisquare approximation is
used, the normal assumption can be relaxed to existence of second moments. In the two sample
case both populations are assumed to have the same covariance matrix.

The formula interface is only applicable for the 2-sample tests.

Value

A list with class ’htest’ containing the following components:

statistic the value of the T2-statistic. (That is the scaled value of the statistic that has an
F distribution or a chisquare distribution depending on the value of test).

parameter the degrees of freedom for the T2-statistic.

p.value the p-value for the test.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

alternative a character string with the value ’two.sided’.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data (and grouping vector).

Author(s)

Klaus Nordhausen, <klaus.nordhausen@uta.fi>

References

Nordhausen K., Sirkia S., Oja H. and Tyler D. E. (2012) ICSNP: Tools for Multivariate Nonpara-
metrics. R package version 1.0-9.
https://cran.r-project.org/package=ICSNP

Anderson, T.W. (2003), An introduction to multivariate analysis, New Jersey: Wiley.

Examples

math.teach <- data.frame(
teacher = factor(rep(1:2, c(3, 6))),
satis = c(1, 3, 2, 4, 6, 6, 5, 5, 4),
know = c(3, 7, 2, 6, 8, 8, 10, 10, 6))

with(math.teach,
HotellingsT2Test(cbind(satis, know) ~ teacher))

https://cran.r-project.org/package=ICSNP


276 HuberM

HuberM Safe (generalized) Huber M-Estimator of Location

Description

(Generalized) Huber M-estimator of location with MAD scale, being sensible also when the scale
is zero where huber() returns an error.

Usage

HuberM(x, k = 1.345, mu = median(x), s = mad(x, center = mu),
na.rm = FALSE, conf.level = NA, ci.type = c("wald", "boot"), ...)

Arguments

x numeric vector.

k positive factor; the algorithm winsorizes at k standard deviations.

mu initial location estimator.

s scale estimator held constant through the iterations.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. Defaults to FALSE.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

ci.type The type of confidence interval required. The value should be any subset of the
values "wald", "boot".

... the dots are passed to the function boot.ci, when confidence intervalls are cal-
culated.

Details

The standard error is computed using the τ correction factor but no finite sample correction.
The original function is not exported, but can be accessed as DescTools::.huberM.

Value

If conf.level is set to NA then the result will be

a single numeric value

and if a conf.level is provided, a named numeric vector with 3 elements:

huberm the estimate for location

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval



ICC 277

Author(s)

Martin Maechler, building on the MASS code mentioned.
Andri Signorell <andri@signorell.net> (confidence intervals and interface)

References

Huber, P. J. (1981) Robust Statistics. Wiley.

See Also

hubers (and huber) in package MASS; mad.

Examples

HuberM(c(1:9, 1000))
mad (c(1:9, 1000))

set.seed(7)
x <- c(round(rnorm(1000), 1), round(rnorm(50, m=10, sd = 10)))
HuberM(x, conf.level=0.95)

## Not run:

# scale zero
HuberM(rep(9, 100))
mad (rep(9, 100))

# bootstrap confidence intervals
HuberM(x, conf.level=0.95, ci.type="boot")

## End(Not run)

ICC Intraclass Correlations (ICC1, ICC2, ICC3 From Shrout and Fleiss)

Description

The Intraclass correlation is used as a measure of association when studying the reliability of raters.
Shrout and Fleiss (1979) outline 6 different estimates, that depend upon the particular experimental
design. All are implemented and given confidence limits.

Usage

ICC(x, type = c("all", "ICC1", "ICC2", "ICC3", "ICC1k", "ICC2k", "ICC3k"),
conf.level = NA, na.rm = FALSE)

## S3 method for class 'ICC'



278 ICC

print(x, digits = 3, ...)

Arguments

x n×m matrix or dataframe, k subjects (in rows) m raters (in columns).

type one out of "all", "ICC1", "ICC2", "ICC3", "ICC1k", "ICC2k", "ICC3k". See
details.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
intervals will be calculated.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. If set to TRUE only the complete cases of the ratings will be used.
Defaults to FALSE.

digits number of digits to use in printing

... further arguments to be passed to or from methods.

Details

Shrout and Fleiss (1979) consider six cases of reliability of ratings done by k raters on n targets.

ICC1 Each target is rated by a different judge and the judges are selected at random.
(This is a one-way ANOVA fixed effects model and is found by (MSB- MSW)/(MSB+ (nr-1)*MSW))

ICC2 A random sample of k judges rate each target. The measure is one of absolute agreement
in the ratings. Found as (MSB- MSE)/(MSB + (nr-1)*MSE + nr*(MSJ-MSE)/nc)

ICC3 A fixed set of k judges rate each target. There is no generalization to a larger population
of judges. (MSB - MSE)/(MSB+ (nr-1)*MSE)

Then, for each of these cases, is reliability to be estimated for a single rating or for the average of
k ratings? (The 1 rating case is equivalent to the average intercorrelation, the k rating case to the
Spearman Brown adjusted reliability.)

ICC1 is sensitive to differences in means between raters and is a measure of absolute agreement.

ICC2 and ICC3 remove mean differences between judges, but are sensitive to interactions of raters
by judges.
The difference between ICC2 and ICC3 is whether raters are seen as fixed or random effects.

ICC1k, ICC2k, ICC3K reflect the means of k raters.

The intraclass correlation is used if raters are all of the same “class". That is, there is no logical way
of distinguishing them. Examples include correlations between pairs of twins, correlations between
raters. If the variables are logically distinguishable (e.g., different items on a test), then the more
typical coefficient is based upon the inter-class correlation (e.g., a Pearson r) and a statistic such as
alpha or omega might be used.

Value

if method is set to "all", then the result will be



ICC 279

results A matrix of 6 rows and 8 columns, including the ICCs, F test, p values, and
confidence limits

summary The anova summary table
stats The anova statistics
MSW Mean Square Within based upon the anova

if a specific type has been defined, the function will first check, whether no confidence intervals are
requested: if so, the result will be the estimate as numeric value

else a named numeric vector with 3 elements

ICCx estimate (name is the selected type of coefficient)
lwr.ci lower confidence interval
upr.ci upper confidence interval

Note

The results for the lower and upper Bounds for ICC(2,k) do not match those of SPSS 9 or 10, but do
match the definitions of Shrout and Fleiss. SPSS seems to have been using the formula in McGraw
and Wong, but not the errata on p 390. They seem to have fixed it in more recent releases (15).

Author(s)

William Revelle <revelle@northwestern.edu>, some editorial amendments Andri Signorell <an-
dri@signorell.net>

References

Shrout, P. E., Fleiss, J. L. (1979) Intraclass correlations: uses in assessing rater reliability. Psycho-
logical Bulletin, 86, 420-3428.

McGraw, K. O., Wong, S. P. (1996) Forming inferences about some intraclass correlation coeffi-
cients. Psychological Methods, 1, 30-46. + errata on page 390.

Revelle, W. (in prep) An introduction to psychometric theory with applications in R Springer.
(working draft available at http://personality-project.org/r/book/

Examples

sf <- matrix(c(
9, 2, 5, 8,
6, 1, 3, 2,
8, 4, 6, 8,
7, 1, 2, 6,
10,5, 6, 9,
6, 2, 4, 7),
ncol=4, byrow=TRUE,
dimnames=list(paste("S", 1:6, sep=""), paste("J", 1:4, sep=""))

)

sf #example from Shrout and Fleiss (1979)
ICC(sf)

http://personality-project.org/r/book/


280 identify.formula

identify.formula Identify Points In a Plot Using a Formula

Description

The function identify reads the position of the graphics pointer when the (first) mouse button is
pressed. It then searches the coordinates given in x and y for the point closest to the pointer. If this
point is close enough to the pointer, its index will be returned as part of the value of the call.

Usage

## S3 method for class 'formula'
identify(formula, data, subset, na.action, ...)

Arguments

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data The data frame from which the formula should be evaluated.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... Other arguments to be passed to identify.

Details

This function is meant to make it easier to call identify after plot has been called using a formula
and the data argument.

A two dimensional plot must be active and the vectors in x and data frame in data must correspond
to the x- and y-axes and the data of the plot.

Value

If pos is FALSE, an integer vector containing the indices of the identified points, in the order they
were identified. If pos is TRUE, a list containing a component ind, indicating which points were
identified and a component pos, indicating where the labels were placed relative to the identified
points (1=below, 2=left, 3=above, 4=right and 0=no offset, used if atpen = TRUE).

Author(s)

Derek Ogle <dogle@northland.edu>

See Also

identify, locator, text
https://www.rforge.net/NCStats/files/

https://www.rforge.net/NCStats/files/


IdentifyA 281

Examples

## Not run:
## Copy and try in an interactive R session
plot(dist ~ speed, data = cars, subset = speed < 17)
identify(dist ~ speed, data = cars, subset = speed < 17)

## End(Not run)

IdentifyA Identify Points in Plot Lying Within a Rectangle or Polygon

Description

Find all the points lying either in a rectangle area spanned by an upper left and a bottom-right point
or by a polygon area consisting of any number of points defined by point and click.

Usage

IdentifyA(x, ...)

## S3 method for class 'formula'
IdentifyA(formula, data, subset, poly = FALSE, ...)

## Default S3 method:
IdentifyA(x, y = NULL, poly = FALSE, ...)

Arguments

x, y x and y values of the points used to create the plot.

formula a formula, such as y ~ x specifying x and y values.
Here the formula must be entered that was used to create the scatterplot.

data a data frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used.

poly logical. Defines if a polygon or a rectangle should be used to select the points.
Default is rectangle. If a polygon should be used, set this argument to TRUE
and select all desired points. The polygon will be closed automatically when
finished.

... Other arguments to be passed to IdentifyA.

Value

Index vector with the points lying within the selected area. The coordinates are returned as text in
the attribute "cond".

Author(s)

Andri Signorell <andri@signorell.net>



282 ImputeKnn

See Also

identify, locator

Examples

## Not run:
# run the example via copy and paste

plot(temperature ~ delivery_min, data=d.pizza)
idx <- IdentifyA(temperature ~ delivery_min, data=d.pizza)

# you selected the following points
d.pizza[idx,]
points(temperature ~ delivery_min, data = d.pizza[idx,], col="green")

# use the attr("cond") for subsets in code
attr(idx, "cond")

# create a group variable for the found points
d.pizza$grp <- seq(nrow(d.pizza)) %in% idx

# try the polygon option
idx <- IdentifyA(temperature ~ delivery_min, data=d.pizza, poly=TRUE)
points(temperature ~ delivery_min, data = d.pizza[idx,], col="red")

## End(Not run)

ImputeKnn Fill in NA values with the values of the nearest neighbours

Description

Function that fills in all NA values using the k Nearest Neighbours of each case with NA values.
By default it uses the values of the neighbours and obtains an weighted (by the distance to the case)
average of their values to fill in the unknows. If meth=’median’ it uses the median/most frequent
value, instead.

Usage

ImputeKnn(data, k = 10, scale = TRUE, meth = "weighAvg", distData = NULL)

Arguments

data A data frame with the data set

k The number of nearest neighbours to use (defaults to 10)

scale Boolean setting if the data should be scale before finding the nearest neighbours
(defaults to TRUE)



InDots 283

meth String indicating the method used to calculate the value to fill in each NA. Avail-
able values are ’median’ or ’weighAvg’ (the default).

distData Optionally you may sepecify here a data frame containing the data set that
should be used to find the neighbours. This is usefull when filling in NA values
on a test set, where you should use only information from the training set. This
defaults to NULL, which means that the neighbours will be searched in data

Details

This function uses the k-nearest neighbours to fill in the unknown (NA) values in a data set. For
each case with any NA value it will search for its k most similar cases and use the values of these
cases to fill in the unknowns.

If meth='median' the function will use either the median (in case of numeric variables) or the most
frequent value (in case of factors), of the neighbours to fill in the NAs. If meth='weighAvg' the
function will use a weighted average of the values of the neighbours. The weights are given by
exp(-dist(k,x) where dist(k,x) is the euclidean distance between the case with NAs (x) and
the neighbour k.

Value

A data frame without NA values

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2010) Data Mining using R: learning with case studies, CRC Press (ISBN: 9781439810187).

See Also

complete.cases, na.omit

Examples

cleanPizza <- ImputeKnn(d.pizza[, -2]) # no dates allowed
summary(cleanPizza)

InDots Is a Specific Argument in the Dots-Arguments?

Description

Returns the value of a specific named argument if it was comprised in the dots or a default value, if
it wasn’t.



284 IQRw

Usage

InDots(..., arg, default)

Arguments

... the dots arguments to be checked.

arg the name of argument to test for.

default the default value to return, if the argument arg does not exist in the dots.

Value

the value of the argument, if it exists else the specified default value.

Author(s)

Andri Signorell <andri@signorell.net>

Examples

# Function returns the argument A, if supplied or 999
foobar <- function(...){

DescTools::InDots(..., arg="A", default=99)
}

foobar(A=5)
foobar(B=5, C=8)

IQRw The (weighted) Interquartile Range

Description

computes interquartile range of the x values. Weights are supported.

Usage

IQRw(x, weights = NULL, na.rm = FALSE, type = 7)

Arguments

x a numeric vector.

weights an optional numeric vector giving the sample weights.

na.rm logical. Should missing values be removed?

type an integer selecting one of the many quantile algorithms, see Quantile().



IsDate 285

Details

This implementation is based on Quantile() function, which allows to define weights.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Median(), Quantile(), IQR(), quantile()

Examples

x <- c(3.7,3.3,3.5,2.8)
w <- c(5, 5, 4, 1)/15

IQRw(x=x, weights=w)

IsDate Check If an Object Is of Type Date

Description

Check if the given x is of any known Date type.

Usage

IsDate(x, what = c("either", "both", "timeVaries"))

Arguments

x a vector or values to be checked.

what can be any value out of "either" (default), "both" or "timeVaries".

Details

This checks for many known Date and Time classes: "POSIXt", "POSIXct", "dates", "times",
"chron", "Date".

Value

logical vector of the same dimension as x.

Author(s)

Frank E Harrell



286 IsDichotomous

See Also

Year, Month, etc.

Examples

IsDate(as.Date("2013-04-10"))

IsDate(31002)

IsDichotomous Test If a Variable Contains Only Two Unique Values

Description

Test if a variable contains only two values. The variable does not need to be a numerical value,
factors and logicals are supported as well. NAs can be skipped by setting na.rm to TRUE.

Usage

IsDichotomous(x, strict = FALSE, na.rm = FALSE)

Flags(x, na.rm = FALSE)

Arguments

x a numeric or integer vector, a logical vector or a factor (ordered and unordered)

strict logical. If set to TRUE, the result will only be TRUE, if x contains exactly 2 levels.
If set to FALSE the result will be TRUE for 1 and for 2 levels.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. Defaults to FALSE.

Details

IsDichotomous tests a single variable. Flags returns the names of all the dichotomous variables in a
list or data.frame.

Value

TRUE if x contains only two unique values, FALSE else

Author(s)

Andri Signorell <andri@signorell.net>

Examples

IsDichotomous(sample(10, 5, replace=TRUE))



IsEuclid 287

IsEuclid Is a Distance Matrix Euclidean?

Description

Confirmation of the Euclidean nature of a distance matrix by the Gower’s theorem.
IsEuclid is used in summary.dist.

Usage

IsEuclid(distmat, plot = FALSE, print = FALSE, tol = 1e-07)

Arguments

distmat an object of class ’dist’

plot a logical value indicating whether the eigenvalues bar plot of the matrix of the
term − 1

2d
2
ij centred by rows and columns should be diplayed

print a logical value indicating whether the eigenvalues of the matrix of the term
− 1

2d
2
ij centred by rows and columns should be printed

tol a tolerance threshold : an eigenvalue is considered positive if it is larger than
-tol*lambda1 where lambda1 is the largest eigenvalue.

Value

returns a logical value indicating if all the eigenvalues are positive or equal to zero

Author(s)

Daniel Chessel
Stephane Dray <dray@biomserv.univ-lyon1.fr>

References

Gower, J.C. and Legendre, P. (1986) Metric and Euclidean properties of dissimilarity coefficients.
Journal of Classification, 3, 5–48.

Examples

w <- matrix(runif(10000), 100, 100)
w <- dist(w)
summary(w)
IsEuclid (w) # TRUE



288 IsPrime

IsOdd Checks If An Integer Is Even Or Odd

Description

Checks if the elements of an integer vector x are even or odd.

Usage

IsOdd(x)

Arguments

x vector of integers

Value

a logic vector

Author(s)

Andri Signorell <andri@signorell.net>

See Also

IsWhole

Examples

IsOdd(1:10)

IsPrime IsPrime Property

Description

Returns for a vector or matrix of positive integers a logical object of the same dimension(s) con-
taining TRUE for the elements that are prime and FALSE otherwise.

Usage

IsPrime(x)

Arguments

x vector or matrix of nonnegative integers



IsValidHwnd 289

Details

Given a vector or a matrix of positive integers returns a vector of the same size of FALSE and TRUE.
Use which(IsPrime(1:21)) to get the positions.

Value

logical vector

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>

See Also

Factorize, Primes

Examples

x <- matrix(1:10, nrow=10, ncol=10, byrow=TRUE)
x * IsPrime(x)

# Find first prime number octett:
octett <- c(0, 2, 6, 8, 30, 32, 36, 38) - 19
while (TRUE) {

octett <- octett + 210
if (all(IsPrime(octett))) {

cat(octett, "\n", sep=" ")
break

}
}

IsValidHwnd Check Windows Pointer

Description

Check if a pointer points to a valid and running MS-Office instance. The function does this by first
checking for NULL and nil pointer and then trying to get the current selection of the application.

Usage

IsValidHwnd(hwnd)

Arguments

hwnd the pointer to a word instance as created by GetNewWrd() or GetCurrWrd().
Default is the last created pointer stored in DescToolsOptions("lastWord").



290 JarqueBeraTest

Value

logical value, TRUE if hwnd is a valid pointer to a running application

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetCurrWrd(), GetCurrXL(), GetCurrPP()

JarqueBeraTest (Robust) Jarque Bera Test

Description

This function performs the Jarque-Bera tests of normality either the robust or the classical way.

Usage

JarqueBeraTest(x, robust = TRUE, method = c("chisq", "mc"),
N = 0, na.rm = FALSE)

Arguments

x a numeric vector of data values.

robust defines, whether the robust version should be used. Default is TRUE.

method a character string out of chisq or mc, specifying how the critical values should
be obtained. Default is approximated by the chisq-distribution or empirically
via Monte Carlo.

N number of Monte Carlo simulations for the empirical critical values

na.rm defines if NAs should be omitted. Default is FALSE.

Details

The test is based on a joint statistic using skewness and kurtosis coefficients. The robust Jarque-
Bera (RJB) version of utilizes the robust standard deviation (namely the mean absolute deviation
from the median, as provided e. g. by MeanAD(x, FUN=median)) to estimate sample kurtosis and
skewness. For more details see Gel and Gastwirth (2006).
Setting robust to FALSE will perform the original Jarque-Bera test (see Jarque, C. and Bera, A
(1980)).



JarqueBeraTest 291

Value

A list with class htest containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom.

p.value the p-value of the test.

method type of test was performed.

data.name a character string giving the name of the data.

Note

This function is melted from the jarque.bera.test (in tseries package) and the rjb.test from
the package lawstat.

Author(s)

W. Wallace Hui, Yulia R. Gel, Joseph L. Gastwirth, Weiwen Miao

References

Gastwirth, J. L.(1982) Statistical Properties of A Measure of Tax Assessment Uniformity, Journal of
Statistical Planning and Inference 6, 1-12.

Gel, Y. R. and Gastwirth, J. L. (2008) A robust modification of the Jarque-Bera test of normality,
Economics Letters 99, 30-32.

Jarque, C. and Bera, A. (1980) Efficient tests for normality, homoscedasticity and serial indepen-
dence of regression residuals, Economics Letters 6, 255-259.

See Also

Alternative tests for normality as shapiro.test, AndersonDarlingTest, CramerVonMisesTest,
LillieTest, PearsonTest, ShapiroFranciaTest

qqnorm, qqline for producing a normal quantile-quantile plot

Examples

x <- rnorm(100) # null hypothesis
JarqueBeraTest(x)

x <- runif(100) # alternative hypothesis
JarqueBeraTest(x, robust=TRUE)



292 JonckheereTerpstraTest

JonckheereTerpstraTest

Exact Version of Jonckheere-Terpstra Test

Description

Jonckheere-Terpstra test to test for ordered differences among classes.

Usage

JonckheereTerpstraTest(x, ...)

## Default S3 method:
JonckheereTerpstraTest(x, g, alternative = c("two.sided", "increasing", "decreasing"),

nperm = NULL, exact = NULL, ...)

## S3 method for class 'formula'
JonckheereTerpstraTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

alternative means are monotonic (two.sided), increasing, or decreasing

nperm number of permutations for the reference distribution. The default is NULL in
which case the permutation p-value is not computed. It’s recommended to set
nperm to 1000 or higher if permutation p-value is desired.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

exact logical, defining if the exact test should be calculated. If left to NULL, the func-
tion uses the exact test up to a samplesize of 100 and falls back to normal approx-
imation for larger samples. The exact procedure can not be applied to samples
containing ties.

... further argument to be passed to methods.



JonckheereTerpstraTest 293

Details

JonckheereTerpstraTest is the exact (permutation) version of the Jonckheere-Terpstra test. It uses
the statistic ∑

k<l

∑
ij

I(Xik < Xjl) + 0.5I(Xik = Xjl),

where i, j are observations in groups k and l respectively. The asymptotic version is equivalent
to cor.test(x, g, method="k"). The exact calculation requires that there be no ties and that the
sample size is less than 100. When data are tied and sample size is at most 100 permutation p-value
is returned.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric data
vectors. In this case, g is ignored, and one can simply use JonckheereTerpstraTest(x) to perform the
test. If the samples are not yet contained in a list, use JonckheereTerpstraTest(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Note

The function was previously published as jonckheere.test() in the clinfun package and has been
integrated here without logical changes. Some argument checks and a formula interface were added.

Author(s)

Venkatraman E. Seshan <seshanv@mskcc.org>, minor adaptations Andri Signorell

References

Jonckheere, A. R. (1954). A distribution-free k-sample test again ordered alternatives. Biometrika
41:133-145.

Terpstra, T. J. (1952). The asymptotic normality and consistency of Kendall’s test against trend,
when ties are present in one ranking. Indagationes Mathematicae 14:327-333.

Examples

set.seed(1234)
g <- ordered(rep(1:5, rep(10,5)))
x <- rnorm(50) + 0.3 * as.numeric(g)

JonckheereTerpstraTest(x, g)

x[1:2] <- mean(x[1:2]) # tied data

JonckheereTerpstraTest(x, g)
JonckheereTerpstraTest(x, g, nperm=5000)

# Duller, S. 222
coffee <- list(

c_4=c(447,396,383,410),



294 KappaM

c_2=c(438,521,468,391,504,472),
c_0=c(513,543,506,489,407))

# the list interface:
JonckheereTerpstraTest(coffee)

# the formula interface
breaking <- data.frame(

speed=c(20,25,25,25,25,30,30,30,35,35),
distance=c(48,33,59,48,56,60,101,67,85,107))

JonckheereTerpstraTest(distance ~ speed, breaking, alternative="increasing")

KappaM Kappa for m Raters

Description

Computes kappa as an index of interrater agreement between m raters on categorical data.

Usage

KappaM(x, method = c("Fleiss", "Conger", "Light"), conf.level = NA)

Arguments

x n×m matrix or dataframe, n subjects m raters.

method a logical indicating whether the exact Kappa (Conger, 1980), the Kappa de-
scribed by Fleiss (1971) or Light’s Kappa (1971) should be computed.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
intervals will be calculated.

Details

Missing data are omitted in a listwise way.
The coefficient described by Fleiss (1971) does not reduce to Cohen’s Kappa (unweighted) for m=2
raters. Therefore, the exact Kappa coefficient, which is slightly higher in most cases, was proposed
by Conger (1980).
Light’s Kappa equals the average of all possible combinations of bivariate Kappas between raters.
The confidence levels can only be reported using Fleiss’ formulation of Kappa.

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval



KappaM 295

Note

This function was previously published as kappam.fleiss() in the irr package and has been inte-
grated here with some changes in the interface.

Author(s)

Matthias Gamer, with some modifications by Andri Signorell <andri@signorell.net>

References

Conger, A.J. (1980): Integration and generalisation of Kappas for multiple raters. Psychological
Bulletin, 88, 322-328

Fleiss, J.L. (1971): Measuring nominal scale agreement among many raters Psychological Bulletin,
76, 378-382

Fleiss, J.L., Levin, B., & Paik, M.C. (2003): Statistical Methods for Rates and Proportions, 3rd
Edition. New York: John Wiley & Sons

Light, R.J. (1971): Measures of response agreement for qualitative data: Some generalizations and
alternatives. Psychological Bulletin, 76, 365-377.

See Also

CohenKappa

Examples

statement <- data.frame(
A=c(2,3,1,3,1,2,1,2,3,3,3,3,3,2,1,3,3,2,2,1,

2,1,3,3,2,2,1,2,1,1,2,3,3,3,3,3,1,2,1,1),
B=c(2,2,2,1,1,2,1,2,3,3,2,3,1,3,1,1,3,2,1,2,

2,1,3,2,2,2,3,2,1,1,2,2,3,3,3,3,2,2,2,3),
C=c(2,2,2,1,1,2,1,2,3,3,2,3,3,3,3,2,2,2,2,3,

2,2,3,3,2,2,3,2,2,2,2,3,3,3,3,3,3,2,2,2),
D=c(2,2,2,1,1,2,1,2,3,3,2,3,3,3,3,3,2,2,2,2,

3,1,3,2,2,2,1,2,2,1,2,3,3,3,3,3,3,2,2,1),
E=c(2,2,2,3,3,2,3,1,3,3,2,3,3,3,3,3,2,2,2,3,

2,3,3,2,2,2,3,2,1,3,2,3,3,1,3,3,3,2,2,1)
)

KappaM(statement)

KappaM(statement, method="Conger") # Exact Kappa
KappaM(statement, conf.level=0.95) # Fleiss' Kappa and confidence intervals

KappaM(statement, method="Light") # Exact Kappa



296 KendallTauA

KendallTauA Kendall’s τ_a

Description

Calculate Kendall’s tau-a statistic, a measure of association for ordinal factors in a two-way table.
The function has interfaces for a table (matrix) and for single vectors.

Usage

KendallTauA(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...)

Arguments

x a numeric vector or a table. A matrix will be treated as table.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated.

direction direction of the calculation. Can be "row" (default) or "column", where "row"
calculates Kendall’s tau-a (R|C) ("column dependent").

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

... further arguments are passed to the function table, allowing i.e. to set useNA.
This refers only to the vector interface.

Details

Kendall’s tau coefficient (sometimes called "Kendall rank correlation coefficient"), is a statistic used
to measure the association between two measured quantities. It is a measure of rank correlation:
the similarity of the orderings of the data when ranked by each of the quantities.
Kendall’s tau-a is computed as

τa(C|R) =
P −Q

1
2 · n · (n− 1)

where P equals twice the number of concordances and Q twice the number of discordances. Its
range is [-1, 1].
(Note that Kendall tau-a does not take into consideration any ties, which makes it unpractical.
Consider using KendallTauB (Tau-b) when ties are present.)

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Andri Signorell <andri@signorell.net>



KendallTauB 297

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57-59.

Hollander, M, Wolfe, D. A., Chicken, E. (2014) Nonparametric Statistical Methods, Third edition,
Wiley,

Liebetrau, A. M. (1983) Measures of Association, Sage University Papers Series on Quantitative
Applications in the Social Sciences, 07-004. Newbury Park, CA: Sage, pp. 49-56

See Also

ConDisPairs yields concordant and discordant pairs

Other association measures:
cor (method="kendall") for Tau b, StuartTauC, GoodmanKruskalGamma
Lambda, UncertCoef, MutInf

Examples

# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

# Kendall's tau-a C|R
KendallTauA(tab, direction="column", conf.level=0.95)
# Kendall's tau-a R|C
KendallTauA(tab, direction="row", conf.level=0.95)

# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. 1814 (143)
tab <- as.table(cbind(c(11,2),c(4,6)))

KendallTauA(tab, direction="row", conf.level=0.95)
KendallTauA(tab, direction="column", conf.level=0.95)

# Liebetrau, pp. 52
x <- c(1,2,2,3,3,3,4,5)
y <- c(1,3,2,1,5,3,4,5)

ConDisPairs(table(x, y))
KendallTauA(x, y, conf.level=0.95)

KendallTauB Kendall’s τ_b

Description

Calculate Kendall’s tau-b. The estimator could also be calculated with cor(..., method="kendall").
The calculation of confidence intervals however would not be found there.



298 KendallTauB

Usage

KendallTauB(x, y = NULL, conf.level = NA, ...)

Arguments

x a numeric vector, matrix or data.frame.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

... further arguments are passed to the function table, allowing i.e. to set useNA.
This refers only to the vector interface.

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57-59.

Kendall, M. (1955) Rank Correlation Methods, Second Edition, London: Charles Griffin and Co.

Brown, M.B.andBenedetti, J.K.(1977) Sampling Behavior of Tests for Correlation in Two-Way
Contingency Tables, Journal of the American Statistical Association, 72, 309-315.

See Also

ConDisPairs yields concordant and discordant pairs

Other association measures:
GoodmanKruskalGamma, KendallTauA (tau-a), cor (method="kendall") for tau-b, StuartTauC (tau-
c), SomersDelta
Lambda, GoodmanKruskalTau, UncertCoef, MutInf

Examples

# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

KendallTauB(tab, conf.level=0.95)



KendallW 299

KendallW Kendall’s Coefficient of Concordance W

Description

Computes Kendall’s coefficient of concordance, a popular measure of association. It is an index of
interrater reliability of ordinal data. The coefficient could be corrected for ties within raters.

Usage

KendallW(x, correct = FALSE, test = FALSE, na.rm = FALSE)

Arguments

x n×m matrix or dataframe, k subjects (in rows) m raters (in columns).

correct a logical indicating whether the coefficient should be corrected for ties within
raters.

test a logical indicating whether the test statistic and p-value should be reported.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. If set to TRUE only the complete cases of the ratings will be used.
Defaults to FALSE.

Details

The test for Kendall’s W is completely equivalent to friedman.test. The only advantage of this
test over Friedman’s is that Kendall’s W has an interpretation as the coefficient of concordance. The
test itself is only valid for large samples.
Kendall’s W should be corrected for ties, if raters did not use a true ranking order for the subjects.

Value

Either a single value if test is set to FALSE or else

a list with class “htest” containing the following components:

statistic the value of the chi-square statistic.

p.value the p-value for the test.

method the character string “Kendall’s coefficient of concordance W”.

data.name a character string giving the name(s) of the data.

estimate the coefficient of concordance.

parameter the degrees of freedom df, the number of subjects examined and the number of
raters.



300 KendallW

Note

This function was previously published as kendall() in the irr package and has been integrated
here without logical changes, but with some adaptations in the result structure.

Author(s)

Matthias Gamer <m.gamer@uke.uni-hamburg.de>

References

Kendall, M.G. (1948) Rank correlation methods. London: Griffin.

See Also

cor, KappaM, CronbachAlpha, ICC, friedman.test

Examples

anxiety <- data.frame(rater1=c(3,3,3,4,5,5,2,3,5,2,2,6,1,5,2,2,1,2,4,3),
rater2=c(3,6,4,6,2,4,2,4,3,3,2,3,3,3,2,2,1,3,3,4),
rater3=c(2,1,4,4,3,2,1,6,1,1,1,2,3,3,1,1,3,3,2,2))

KendallW(anxiety, TRUE)

# with test results
KendallW(anxiety, TRUE, test=TRUE)

# example from Siegel and Castellan (1988)
d.att <- data.frame(

id = c(4,21,11),
airfare = c(5,1,4),
climate = c(6,7,5),
season = c(7,6,1),
people = c(1,2,3),
program = c(2,3,2),
publicity = c(4,5,7),
present = c(3,4,6),
interest = c(8,8,8)

)

KendallW(t(d.att[, -1]), test = TRUE)

# which is perfectly the same as
friedman.test(y=as.matrix(d.att[,-1]), groups = d.att$id)



Keywords 301

Keywords List Keywords For R Manual Pages

Description

List the keywords for specific R man pages or return a list of valid R keywords.

Usage

Keywords(topic)

Arguments

topic optional, object or man page topic

Details

If topic is provided, return a list of the Keywords associated with topic. Otherwise, display the
list of valid R Keywords from the R doc/Keywords file.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

help

Examples

## Show all valid R Keywords
Keywords()

## Show Keywords associated with the 'merge' function
Keywords(merge)
Keywords("merge")



302 KrippAlpha

KrippAlpha Krippendorff’s Alpha Reliability Coefficient

Description

Calculate the alpha coefficient of reliability proposed by Krippendorff.

Usage

KrippAlpha(x, method=c("nominal", "ordinal", "interval", "ratio"))

Arguments

x classifier x object matrix of classifications or scores

method data level of x

Value

A list with class ’"irrlist"’ containing the following components:

method a character string describing the method.

subjects the number of data objects.

raters the number of raters.

irr.name a character string specifying the name of the coefficient.

value value of alpha.

stat.name here "nil" as there is no test statistic.

statistic the value of the test statistic (NULL).

p.value the probability of the test statistic (NULL).

cm the concordance/discordance matrix used in the calculation of alpha

data.values a character vector of the unique data values

levx the unique values of the ratings

nmatchval the count of matches, used in calculation

data.level the data level of the ratings ("nominal","ordinal", "interval","ratio")

Note

Krippendorff’s alpha coefficient is particularly useful where the level of measurement of classifica-
tion data is higher than nominal or ordinal. https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-
016-0200-9

Note

This function was previously published as kripp.alpha() in the irr package and has been inte-
grated here without logical changes, but with some adaptations in the result structure.



Label, Unit 303

Author(s)

Jim Lemon <jim@bitwrit.com.au>

References

Krippendorff, K. (1980) Content analysis: An introduction to its methodology. Beverly Hills, CA:
Sage.

See Also

CronbachAlpha, KappaM, CohenKappa

Examples

# the "C" data from Krippendorff
nmm <- matrix(c(1,1,NA,1,2,2,3,2,3,3,3,3,3,3,3,3,2,2,2,2,1,2,3,4,4,4,4,4,

1,1,2,1,2,2,2,2,NA,5,5,5,NA,NA,1,1,NA,NA,3,NA), nrow=4)

# first assume the default nominal classification
KrippAlpha(nmm)

# now use the same data with the other three methods
KrippAlpha(nmm, "ordinal")
KrippAlpha(nmm, "interval")
KrippAlpha(nmm, "ratio")

Label, Unit Label, Unit Attribute of an Object

Description

Set and retrieve the label, resp. unit attribute of x. This can be helpful for documenting the
specific meaning of a variable, of an entire data.frame or any other object. For single vectors it can
be useful to store the unit.

Usage

Label(x)
Label(x) <- value

Labels(x)
Labels(x) <- value

Unit(x)
Unit(x) <- value



304 Label, Unit

Arguments

x any object

value a single string describing the object

Details

The label should consist of a single text (length of 1). The text may contain line feeds. It can be
deleted by setting the label to NULL.

Labels() can be used to retrieve and assign vectorized labels to data.frames or lists.

Value

Label and Unit return the label attribute of x, if any; otherwise, NULL.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

A more elaborated label version can be found in package Hmisc label().

Examples

# add a descriptive label to a variable
Label(d.diamonds$colour) <- "The rating scale applied to diamonds ranges from colorless
to yellow, as any other color is extremely rare."

# technically just appending the text as attribute to the variable
attributes(d.diamonds$colour)

# label is supported while describing data
Desc(d.diamonds$colour)

# The label can be deleted by setting it to NULL
Label(d.diamonds$colour) <- NULL

# Labelling the columns of a data.frame is best done with a loop
# (all so far seen *apply aproaches lead to more complicated code...)
lbl <- RndWord(16, 7)
for(i in seq_along(lbl))

Label(d.pizza[, i]) <- lbl[i]

Str(d.pizza)



Lambda 305

Lambda Goodman Kruskal Lambda

Description

Calculate symmetric and asymmetric Goodman Kruskal lambda and their confidence intervals.
Lamdba is a measure of proportional reduction in error in cross tabulation analysis. For any sample
with a nominal independent variable and dependent variable (or ones that can be treated nomi-
nally), it indicates the extent to which the modal categories and frequencies for each value of the
independent variable differ from the overall modal category and frequency, i.e. for all values of the
independent variable together

Usage

Lambda(x, y = NULL, direction = c("symmetric", "row", "column"), conf.level = NA, ...)

Arguments

x a numeric vector, a matrix or a table.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated.

direction type of lambda. Can be one out of "symmetric" (default), "row", "column"
(abbreviations are allowed). If direction is set to "row" then Lambda(R|C) (col-
umn dependent) will be reported. See details.

conf.level confidence level for the returned confidence interval, restricted to lie between 0
and 1.

... further arguments are passed to the function table, allowing i.e. to set
useNA = c("no", "ifany", "always").

Details

Asymmetric lambda is interpreted as the probable improvement in predicting the column variable
Y given knowledge of the row variable X.
The nondirectional lambda is the average of the two asymmetric lambdas, Lambda(C|R) and Lambda(R|C).
Lambda (asymmetric and symmetric) has a scale ranging from 0 to 1.

Data can be passed to the function either as matrix or data.frame in x, or as two numeric vec-
tors x and y. In the latter case table(x, y, ...) is calculated. Thus NAs are handled the same way
as table does. Note that tables are by default calculated without NAs (which breaks the package’s
law to in general not omit NAs silently). The specific argument useNA can be passed via the ...
argument.
PairApply can be used to calculate pairwise lambdas.



306 Lambda

Value

if no confidence intervals are requested: the estimate as numeric value

else a named numeric vector with 3 elements

lambda estimate

lwr.ci lower confidence interval

upr.ci upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net> based on code from Antti Arppe <antti.arppe@helsinki.fi>,
Nanina Anderegg (confidence interval symmetric lambda)

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons

Goodman, L. A., Kruskal W. H. (1979) Measures of Association for Cross Classifications. New
York: Springer-Verlag (contains articles appearing in J. Amer. Statist. Assoc. in 1954, 1959, 1963,
1972).
http://www.nssl.noaa.gov/users/brooks/public_html/feda/papers/goodmankruskal1.pdf (might be out-
dated)

Liebetrau, A. M. (1983) Measures of Association, Sage University Papers Series on Quantitative
Applications in the Social Sciences, 07-004. Newbury Park, CA: Sage, pp. 17–24

See Also

GoodmanKruskalTau, GoodmanKruskalGamma, KendallTauA, KendallTauB, StuartTauC, SomersDelta,
cor

Examples

# example from Goodman Kruskal (1954)
m <- as.table(cbind(c(1768,946,115), c(807,1387,438), c(189,746,288), c(47,53,16)))
dimnames(m) <- list(paste("A", 1:3), paste("B", 1:4))
m

# direction default is "symmetric"
Lambda(m)
Lambda(m, conf.level=0.95)

Lambda(m, direction="row")
Lambda(m, direction="column")



Lc 307

Lc Lorenz Curve

Description

Lc computes the (empirical) ordinary and generalized Lorenz curve of a vector x. Desc calculates
some key figures for a Lorenz curve and produces a quick description.

Usage

Lc(x, ...)

## Default S3 method:
Lc(x, n = rep(1, length(x)), na.rm = FALSE, ...)

## S3 method for class 'formula'
Lc(formula, data, subset, na.action, ...)

## S3 method for class 'Lc'
plot(x, general = FALSE, lwd = 2, type = "l", xlab = "p", ylab = "L(p)",

main = "Lorenz curve", las = 1, pch = NA, ...)

## S3 method for class 'Lclist'
plot(x, col = 1, lwd = 2, lty = 1, main = "Lorenz curve",

xlab = "p", ylab = "L(p)", ...)

## S3 method for class 'Lc'
lines(x, general = FALSE, lwd = 2, conf.level = NA, args.cband = NULL, ...)

## S3 method for class 'Lc'
predict(object, newdata, conf.level=NA, general=FALSE, n=1000, ...)

Arguments

x a vector containing non-negative elements, or a Lc-object for plot and lines.

n a vector of frequencies, must be same length as x.

na.rm logical. Should missing values be removed? Defaults to FALSE.

general logical. If TRUE the empirical Lorenz curve will be plotted.

col color of the curve

lwd the linewidth of the curve

lty the linetype of the curve

type type of the plot, default is line ("l").

xlab, ylab label of the x-, resp. y-axis.



308 Lc

pch the point character (default is NA, meaning no points will be drawn)

main main title of the plot.

las las of the axis.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

conf.level confidence level for the bootstrap confidence interval. Set this to NA, if no confi-
dence band should be plotted. Default is NA.

args.cband list of arguments for the confidence band, such as color or border (see DrawBand).

object object of class inheriting from "Lc"

newdata an optional vector of percentages p for which to predict. If omitted, the original
values of the object are used.

... further argument to be passed to methods.

Details

Lc(x) computes the empirical ordinary Lorenz curve of x as well as the generalized Lorenz curve
(= ordinary Lorenz curve * mean(x)). The result can be interpreted like this: p*100 percent have
L(p)*100 percent of x.

If n is changed to anything but the default x is interpreted as a vector of class means and n as a
vector of class frequencies: in this case Lc will compute the minimal Lorenz curve (= no inequality
within each group).

Value

A list of class "Lc" with the following components:

p vector of percentages

L vector with values of the ordinary Lorenz curve

L.general vector with values of the generalized Lorenz curve

x the original x values (needed for computing confidence intervals)

n the original n values

Note

These functions were previously published as Lc() in the ineq package and have been integrated
here without logical changes.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>, extensions Andri Signorell <andri@signorell.net>



Lc 309

References

Arnold, B. C. (1987) Majorization and the Lorenz Order: A Brief Introduction, Springer

Cowell, F. A. (2000) Measurement of Inequality in Atkinson, A. B. / Bourguignon, F. (Eds): Hand-
book of Income Distribution. Amsterdam.

Cowell, F. A. (1995) Measuring Inequality Harvester Wheatshef: Prentice Hall.

See Also

The original location Lc(),
inequality measures Gini(), Atkinson()

Examples

priceCarpenter <- d.pizza$price[d.pizza$driver=="Carpenter"]
priceMiller <- d.pizza$price[d.pizza$driver=="Miller"]

# compute the Lorenz curves
Lc.p <- Lc(priceCarpenter, na.rm=TRUE)
Lc.u <- Lc(priceMiller, na.rm=TRUE)
plot(Lc.p)
lines(Lc.u, col=2)

# the picture becomes even clearer with generalized Lorenz curves
plot(Lc.p, general=TRUE)
lines(Lc.u, general=TRUE, col=2)

# inequality measures emphasize these results, e.g. Atkinson's measure
Atkinson(priceCarpenter, na.rm=TRUE)
Atkinson(priceMiller, na.rm=TRUE)

# income distribution of the USA in 1968 (in 10 classes)
# x vector of class means, n vector of class frequencies
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)
n <- c(482, 825, 722, 690, 661, 760, 745, 2140, 1911, 1024)

# compute minimal Lorenz curve (= no inequality in each group)
Lc.min <- Lc(x, n=n)
plot(Lc.min)

# input of frequency tables with midpoints of classes
fl <- c(2.5,7.5,15,35,75,150) # midpoints
n <- c(25,13,10,5,5,2) # frequencies

plot(Lc(fl, n), # Lorenz-Curve
panel.first=grid(10, 10),
main="Lorenzcurve Farmers",
xlab="Percent farmers (cumulative)",
ylab="Percent of area (%)"

)



310 LehmacherTest

# add confidence band
lines(Lc(fl, n), conf.level=0.95,

args.cband=list(col=SetAlpha(DescToolsOptions("col")[2], 0.3)))

Gini(fl, n)

# find specific function values using predict
x <- c(1,1,4)
lx <- Lc(x)
plot(lx)

# get interpolated function value at p=0.55
y0 <- predict(lx, newdata=0.55)
abline(v=0.55, h=y0$L, lty="dotted")

# and for the inverse question use approx
y0 <- approx(x=lx$L, y=lx$p, xout=0.6)
abline(h=0.6, v=y0$y, col="red")

text(x=0.1, y=0.65, label=expression(L^{-1}*(0.6) == 0.8), col="red")
text(x=0.65, y=0.2, label=expression(L(0.55) == 0.275))

# input of frequency tables with midpoints of classes
fl <- c(2.5,7.5,15,35,75,150) # midpoints
n <- c(25,13,10,5,5,2) # frequencies

# the formula interface for Lc
lst <- Lc(count ~ cut(price, breaks=5), data=d.pizza)

plot(lst, col=1:length(lst), panel.first=grid(), lwd=2)
legend(x="topleft", legend=names(lst), fill=1:length(lst))

# Describe with Desc-function
lx <- Lc(fl, n)
Desc(lx)

LehmacherTest Lehmacher’s Test for Marginal Homogenity

Description

Performs Lehmacher’s chi-squared test for marginal homogenity in a symmetric two-dimensional
contingency table.

Usage

LehmacherTest(x, y = NULL)

## S3 method for class 'mtest'



LehmacherTest 311

print(x, digits = 4L, ...)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor object.

y a factor object; ignored if x is a matrix.

digits a non-null value for digits specifies the minimum number of significant digits to
be printed in values. See details in print.default.

... further arguments to be passed to or from other methods. They are ignored in
this function.

Details

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, both x and y must be vectors or factors of the same length. In-
complete cases are removed, vectors are coerced into factors, and the contingency table is computed
from these.

Value

A list with class "mtest" containing the following components:

statistic a vector with the value of the test statistics.

parameter the degrees of freedom, which is always 1 in LehmacherTest.

p.value a vector with the p-values of the single tests.

p.value.corr a vector with the "hochberg" adjusted p-values of the single tests. (See p.adjust)

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

Andri Signorell <andri@signorell.net>

References

Lehmacher, W. (1980) Simultaneous sign tests for marginal homogeneity of square contingency
tables Biometrical Journal, Volume 22, Issue 8, pages 795-798

See Also

mcnemar.test (resp. BowkerTest for a CxC-matrix), StuartMaxwellTest, WoolfTest



312 LeveneTest

Examples

x <- matrix(c(400,40,20,10,
50,300,60,20,
10,40,120,5,
5,90,50,80), nrow=4, byrow=TRUE)

LehmacherTest(x)

LeveneTest Levene’s Test for Homogeneity of Variance

Description

Computes Levene’s test for homogeneity of variance across groups.

Usage

LeveneTest(y, ...)

## S3 method for class 'formula'
LeveneTest(formula, data, ...)
## S3 method for class 'lm'
LeveneTest(y, ...)
## Default S3 method:
LeveneTest(y, group, center=median, ...)

Arguments

y response variable for the default method, or a lm or formula object. If y is
a linear-model object or a formula, the variables on the right-hand-side of the
model must all be factors and must be completely crossed.

group factor defining groups.
center The name of a function to compute the center of each group; mean gives the

original Levene’s test; the default, median, provides a more robust test (Brown-
Forsythe-Test).

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

... arguments to be passed down, e.g., data for the formula and lm methods; can
also be used to pass arguments to the function given by center (e.g., center=mean
and trim=0.1 specify the 10% trimmed mean).

Value

returns an object meant to be printed showing the results of the test.



LeveneTest 313

Note

This function was previously published as leveneTest() in the library(car) and has been integrated
here without logical changes.

Author(s)

John Fox <jfox@mcmaster.ca>; original generic version contributed by Derek Ogle
adapted from a response posted by Brian Ripley to the r-help email list.

References

Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.

Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances; mood.test
for another rank-based two-sample test for a difference in scale parameters; var.test and bartlett.test
for parametric tests for the homogeneity in variance.

ansari_test in package coin for exact and approximate conditional p-values for the Ansari-
Bradley test, as well as different methods for handling ties.

Examples

## example from ansari.test:
## Hollander & Wolfe (1973, p. 86f):
## Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)

LeveneTest( c(ramsay, jung.parekh),
factor(c(rep("ramsay",length(ramsay)), rep("jung.parekh",length(jung.parekh)))))

LeveneTest( c(rnorm(10), rnorm(10, 0, 2)), factor(rep(c("A","B"),each=10)) )

## Not run:
# original example from package car

with(Moore, LeveneTest(conformity, fcategory))
with(Moore, LeveneTest(conformity, interaction(fcategory, partner.status)))

LeveneTest(conformity ~ fcategory * partner.status, data = Moore)
LeveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean)
LeveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean, trim = 0.1)

LeveneTest(lm(conformity ~ fcategory*partner.status, data = Moore))

## End(Not run)



314 LillieTest

LillieTest Lilliefors (Kolmogorov-Smirnov) Test for Normality

Description

Performs the Lilliefors (Kolmogorov-Smirnov) test for the composite hypothesis of normality, see
e.g. Thode (2002, Sec. 5.1.1).

Usage

LillieTest(x)

Arguments

x a numeric vector of data values, the number of which must be greater than 4.
Missing values are allowed.

Details

The Lilliefors (Kolmogorov-Smirnov) test is an EDF omnibus test for the composite hypothesis of
normality. The test statistic is the maximal absolute difference between empirical and hypothetical
cumulative distribution function. It may be computed as D = max{D+, D−} with

D+ = max
i=1,...,n

{i/n− p(i)}, D− = max
i=1,...,n

{p(i) − (i− 1)/n},

where p(i) = Φ([x(i) − x]/s). Here, Φ is the cumulative distribution function of the standard
normal distribution, and x and s are mean and standard deviation of the data values. The p-value is
computed from the Dallal-Wilkinson (1986) formula, which is claimed to be only reliable when the
p-value is smaller than 0.1. If the Dallal-Wilkinson p-value turns out to be greater than 0.1, then the
p-value is computed from the distribution of the modified statistic Z = D(

√
n− 0.01+ 0.85/

√
n),

see Stephens (1974), the actual p-value formula being obtained by a simulation and approximation
process.

Value

A list of class htest, containing the following components:

statistic the value of the Lilliefors (Kolomogorv-Smirnov) statistic.

p.value the p-value for the test.

method the character string “Lilliefors (Kolmogorov-Smirnov) normality test”.

data.name a character string giving the name(s) of the data.



lines.lm 315

Note

The Lilliefors (Kolomorov-Smirnov) test is the most famous EDF omnibus test for normality.
Compared to the Anderson-Darling test and the Cramer-von Mises test it is known to perform
worse. Although the test statistic obtained from LillieTest(x) is the same as that obtained from
ks.test(x, "pnorm", mean(x), sd(x)), it is not correct to use the p-value from the latter for the
composite hypothesis of normality (mean and variance unknown), since the distribution of the test
statistic is different when the parameters are estimated.

The function call LillieTest(x) essentially produces the same result as the S-PLUS function
call ks.gof(x) with the distinction that the p-value is not set to 0.5 when the Dallal-Wilkinson
approximation yields a p-value greater than 0.1. (Actually, the alternative p-value approximation is
provided for the complete range of test statistic values, but is only used when the Dallal-Wilkinson
approximation fails.)

Author(s)

Juergen Gross <gross@statistik.uni-dortmund.de>

References

Dallal, G.E. and Wilkinson, L. (1986) An analytic approximation to the distribution of Lilliefors’
test for normality. The American Statistician, 40, 294–296.

Stephens, M.A. (1974) EDF statistics for goodness of fit and some comparisons. Journal of the
American Statistical Association, 69, 730–737.

Thode Jr., H.C. (2002) Testing for Normality Marcel Dekker, New York.

See Also

shapiro.test for performing the Shapiro-Wilk test for normality. AndersonDarlingTest, CramerVonMisesTest,
PearsonTest, ShapiroFranciaTest for performing further tests for normality. qqnorm for produc-
ing a normal quantile-quantile plot.

Examples

LillieTest(rnorm(100, mean = 5, sd = 3))
LillieTest(runif(100, min = 2, max = 4))

lines.lm Add a Linear Regression Line

Description

Add a linear regression line to an existing plot. The function first calculates the prediction of a lm
object for a reasonable amount of points, then adds the line to the plot and inserts a polygon with
the confidence and, if required, the prediction intervals. In addition to abline the function will also
display polynomial models.



316 lines.lm

Usage

## S3 method for class 'lm'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",

type = "l", n = 100, conf.level = 0.95, args.cband = NULL,
pred.level = NA, args.pband = NULL, xpred = NULL, ...)

Arguments

x linear model object as result from lm(y~x).

col linecolor of the line. Default is the color returned by Pal()[1].

lwd line width of the line.

lty line type of the line.

type character indicating the type of plotting; actually any of the types as in plot.default.
Type of plot, defaults to "l".

n number of points used for plotting the fit.

conf.level confidence level for the confidence interval. Set this to NA, if no confidence band
should be plotted. Default is 0.95.

args.cband list of arguments for the confidence band, such as color or border (see DrawBand).

pred.level confidence level for the prediction interval. Set this to NA, if no prediction band
should be plotted. Default is 0.95.

args.pband list of arguments for the prediction band, such as color or border (see DrawBand).

xpred a numeric vector c(from, to), if the x limits can’t be defined based on available
data, xpred can be used to provide the range where the line and especially the
confidence intervals should be plotted.

... further arguments are not used specifically.

Details

It’s sometimes illuminating to plot a regression line with its prediction, resp. confidence intervals
over an existing scatterplot. This only makes sense, if just a simple linear model explaining a target
variable by (a function of) one single predictor is to be visualized.

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

lines, lines.loess, lm



lines.loess 317

Examples

opar <- par(mfrow=c(1,2))

plot(hp ~ wt, mtcars)
lines(lm(hp ~ wt, mtcars), col="steelblue")

# add the prediction intervals in different color
plot(hp ~ wt, mtcars)
r.lm <- lm(hp ~ wt, mtcars)
lines(r.lm, col="red", pred.level=0.95, args.pband=list(col=SetAlpha("grey",0.3)) )

# works with transformations too
plot(dist ~ sqrt(speed), cars)
lines(lm(dist ~ sqrt(speed), cars), col=DescTools::hred)

plot(dist ~ log(speed), cars)
lines(lm(dist ~ log(speed), cars), col=DescTools::hred)

# and with more specific variables based on only one predictor
plot(dist ~ speed, cars)
lines(lm(dist ~ poly(speed, degree=2), cars), col=DescTools::hred)

par(opar)

lines.loess Add a Loess or a Spline Smoother

Description

Add a loess smoother to an existing plot. The function first calculates the prediction of a loess
object for a reasonable amount of points, then adds the line to the plot and inserts a polygon with
the confidence intervals.

Usage

## S3 method for class 'loess'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",

type = "l", n = 100, conf.level = 0.95, args.band = NULL, ...)

## S3 method for class 'smooth.spline'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",

type = "l", conf.level = 0.95, args.band = NULL, ...)

## S3 method for class 'SmoothSpline'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",

type = "l", conf.level = 0.95, args.band = NULL, ...)



318 lines.loess

Arguments

x the loess or smooth.spline object to be plotted.

col linecolor of the smoother. Default is DescTools’s col1.

lwd line width of the smoother.

lty line type of the smoother.

type type of plot, defaults to "l".

n number of points used for plotting the fit.

conf.level confidence level for the confidence interval. Set this to NA, if no confidence
band should be plotted. Default is 0.95.

args.band list of arguments for the confidence band, such as color or border (see DrawBand).

... further arguments are passed to the smoother (loess() or SmoothSpline()).

Note

Loess can result in heavy computational load if there are many points!

Author(s)

Andri Signorell <andri@signorell.net>

See Also

loess, scatter.smooth, smooth.spline, SmoothSpline

Examples

par(mfrow=c(1,2))

x <- runif(100)
y <- rnorm(100)
plot(x, y)
lines(loess(y~x))

plot(temperature ~ delivery_min, data=d.pizza)
lines(loess(temperature ~ delivery_min, data=d.pizza))

plot(temperature ~ delivery_min, data=d.pizza)
lines(loess(temperature ~ delivery_min, data=d.pizza), conf.level = 0.99,

args.band = list(col=SetAlpha("red", 0.4), border="black") )

# the default values from scatter.smooth
lines(loess(temperature ~ delivery_min, data=d.pizza,

span=2/3, degree=1, family="symmetric"), col="red")



LineToUser 319

LineToUser Convert Line Coordinates To User Coordinates

Description

Functions like mtext or axis use the line argument to set the distance from plot. Sometimes it’s
useful to have the distance in user coordinates. LineToUser() does this nontrivial conversion.

Usage

LineToUser(line, side)

Arguments

line the number of lines

side the side of the plot

Details

For the LineToUser function to work, there must be an open plot.

Value

the user coordinates for the given lines

Author(s)

Andri Signorell <andri@signorell.net>

See Also

mtext

Examples

plot(1:10)
LineToUser(line=2, side=4)



320 LinScale

LinScale Linear Scaling

Description

This will scale the numeric vector x linearly from an old scale between low and high to a new one
between newlow and newhigh.

Usage

LinScale(x, low = NULL, high = NULL, newlow = 0, newhigh = 1)

Arguments

x a numeric matrix(like object).

low numeric. The minimum value of the scale, defaults to min(x). This is calcu-
lated columnwise by default; defined low or high arguments will be recycled if
necessary.

high numeric. The maximum value of the scale, defaults to max(x). This is calculated
columnwise by default; when a maxval is entered, it will be recycled.

newlow numeric. The minimum value of the new scale, defaults to 0, resulting in a 0-1
scale for x. newlow is recycled if necessary.

newhigh numeric. The maximum value of the scale, defaults to 1. newhigh is recycled if
necessary.

Details

Hmm, hardly worth coding...

Value

The centered and scaled matrix. The numeric centering and scalings used (if any) are returned as
attributes "scaled:center" and "scaled:scale"

Author(s)

Andri Signorell <andri@signorell.net>

See Also

scale, RobScale, sweep



List Variety Of Objects 321

Examples

# transform the temperature from Celsius to Fahrenheit
LinScale(d.pizza[1:20, "temperature"], 0, 100, -17.8, 37.8 )

# and the price from Dollar to Euro
LinScale(d.pizza[1:20, "price"], 0, 1, 0, 0.76)

# together
LinScale(d.pizza[1:20, c("temperature", "price")],

0, c(100, 1), c(-17.8, 0), c(37.8, 0.76) )

## Not run:
par(mfrow=c(3,1), mar=c(0,5,0,3), oma=c(5,0,5,0))
plot(LinScale(d.frm[,1]), ylim=c(-2,2), xaxt="n", ylab="LinScale")
plot(RobScale(d.frm[,1]), ylim=c(-2,2), xaxt="n", ylab="RobScale")
plot(scale(d.frm[,1]), ylim=c(-2,2), ylab="scale")
title("Compare scales", outer = TRUE)

## End(Not run)

List Variety Of Objects

List Objects, Functions Or Data in a Package

Description

List all the objects, functions or data in a package.

Usage

LsObj(package)
LsFct(package)

Arguments

package the name of the package

Details

This is just a wrapper for ls, ls.str and lsf.str with the appropriate arguments (as I always
forgot how to do the trick). LsObj() lists all objects, LsFct() just the functions in a package.

Author(s)

Andri Signorell <andri@signorell.net>



322 LOCF

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ls, ls.str, lsf.str

Examples

LsFct("DescTools")

LOCF Last Observation Carried Forward

Description

In longitudinal studies it’s common that individuals drop out before all responses can be obtained.
Measurements obtained before the individual dropped out can be used to impute the unknown mea-
surement(s). The last observation carried forward method is one way to impute values for the
missing observations. For the last observation carried forward (LOCF) approach the missing values
are replaced by the last observed value of that variable for each individual regardless of when it
occurred.

LOCF() replaces NAs with the most recent non-NA prior to it.

Usage

LOCF(x)

## Default S3 method:
LOCF(x)
## S3 method for class 'data.frame'
LOCF(x)
## S3 method for class 'matrix'
LOCF(x)

Arguments

x a vector, a data.frame or a matrix containing NAs.

Details

The function will replace all NAs found in a vector with the last earlier value not being NA. In
data.frames each column will be treated as described.

It should be noted, that the last observation carried forward approach may result in biased estimates
and may underestimate the variability.



LOF 323

Value

a vector with the same dimension as x.

Author(s)

Daniel Wollschlaeger <dwoll@psychologie.uni-kiel.de>

See Also

See also the package Hmisc for less coarse imputation functions.

Examples

d.frm <- data.frame(
tag=rep(c("mo", "di", "mi", "do", "fr", "sa", "so"), 4)

, val=rep(c(runif(5), rep(NA,2)), 4) )

d.frm$locf <- LOCF( d.frm$val )
d.frm

LOF Local Outlier Factor

Description

A function that finds the local outlier factor (Breunig et al.,2000) of the matrix "data" using k
neighbours. The local outlier factor (LOF) is a measure of outlyingness that is calculated for each
observation. The user decides whether or not an observation will be considered an outlier based
on this measure. The LOF takes into consideration the density of the neighborhood around the
observation to determine its outlyingness.

Usage

LOF(data, k)

Arguments

data The data set to be explored

k The kth-distance to be used to calculate the LOF’s.

Details

The LOFs are calculated over a range of values, and the max local outlier factor is determined over
this range.

Value

lof A vector with the local outlier factor of each observation



324 Logit

Note

This function was originally published in the library dprep.

Author(s)

Caroline Rodriguez

References

Breuning, M., Kriegel, H., Ng, R.T, and Sander. J. (2000). LOF: Identifying density-based local
outliers. In Proceedings of the ACM SIGMOD International Conference on Management of Data

Examples

# Detecting the top 10 outliers using the LOF algorithm

(iris.lof <- LOF(iris[,-5], 10))

Logit Generalized Logit and Inverse Logit Function

Description

Compute generalized logit and generalized inverse logit functions.

Usage

Logit(x, min = 0, max = 1)
LogitInv(x, min = 0, max = 1)

Arguments

x value(s) to be transformed

min lower end of logit interval

max upper end of logit interval

Details

The generalized logit function takes values on [min, max] and transforms them to span [−∞,∞].
It is defined as:

y = log

(
p

1− p

)
where p =

x−min

max−min

The generalized inverse logit function provides the inverse transformation:

x = p′ · (max−min) +min where p′ =
exp(y)

1 + exp(y)



LogSt 325

Value

Transformed value(s).

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

logit

Examples

x <- seq(0,10, by=0.25)
xt <- Logit(x, min=0, max=10)
cbind(x,xt)

y <- LogitInv(xt, min=0, max=10)
cbind(x, xt, y)

LogSt Started Logarithmic Transformation and Its Inverse

Description

Transforms the data by a log transformation, modifying small and zero observations such that the
transformation is linear for x <= threshold and logarithmic for x > threshold. So the transforma-
tion yields finite values and is continuously differentiable.

Usage

LogSt(x, base = 10, calib = x, threshold = NULL, mult = 1)

LogStInv(x, base = NULL, threshold = NULL)

Arguments

x a vector or matrix of data, which is to be transformed

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to 10. Use=exp(1) for natural log.

calib a vector or matrix of data used to calibrate the transformation(s), i.e., to deter-
mine the constant c needed

threshold constant c that determines the transformation. The inverse function LogStInv
will look for an attribute named "threshold" if the argument is set to NULL.

mult a tuning constant affecting the transformation of small values, see Details.



326 LogSt

Details

In order to avoid log(x) = −∞ for x = 0 in log-transformations there’s often a constant added
to the variable before taking the log. This is not always a pleasable strategy. The function LogSt
handles this problem based on the following ideas:

• The modification should only affect the values for "small" arguments.
• What "small" is should be determined in connection with the non-zero values of the original

variable, since it should behave well (be equivariant) with respect to a change in the "unit of
measurement".

• The function must remain monotone, and it should remain (weakly) convex.

These criteria are implemented here as follows: The shape is determined by a threshold c at which -
coming from above - the log function switches to a linear function with the same slope at this point.

This is obtained by

g(x) =

{
log10(x) for x ≥ c
log10(c)− c−x

c·log(10) for x < c

Small values are determined by the threshold c. If not given by the argument threshold, it is de-
termined by the quartiles q1 and q3 of the non-zero data as those smaller than c =

q1+r
1

qr3
where r

can be set by the argument mult. The rationale is, that, for lognormal data, this constant identifies
2 percent of the data as small.
Beyond this limit, the transformation continues linear with the derivative of the log curve at this
point.

Another idea for choosing the threshold c was: median(x) / (median(x)/quantile(x, 0.25))^2.9)

The function chooses log10 rather than natural logs by default because they can be backtransformed
relatively easily in mind.

A generalized log (see: Rocke 2003) can be calculated in order to stabilize the variance as:

function (x, a) {
return(log((x + sqrt(x^2 + a^2)) / 2))

}

Value

the transformed data. The value c used for the transformation and needed for inverse transformation
is returned as attr(.,"threshold") and the used base as attr(.,"base").

Author(s)

Werner A. Stahel, ETH Zurich
slight modifications Andri Signorell <andri@signorell.net>

References

Rocke, D M, Durbin B (2003): Approximate variance-stabilizing transformations for gene-expression
microarray data, Bioinformatics. 22;19(8):966-72.



MAD 327

See Also

log, log10

Examples

dd <- c(seq(0,1,0.1), 5 * 10^rnorm(100, 0, 0.2))
dd <- sort(dd)
r.dl <- LogSt(dd)
plot(dd, r.dl, type="l")
abline(v=attr(r.dl, "threshold"), lty=2)

x <- rchisq(df=3, n=100)
# should give 0 (or at least something small):
LogStInv(LogSt(x)) - x

MAD Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations from
the median, and (by default) adjust by a factor for asymptotically normal consistency. This function
wraps the specific base R function mad and extends it for the use of weights.

Usage

MAD(x, weights = NULL, center = Median, constant = 1.4826,
na.rm = FALSE, low = FALSE, high = FALSE)

Arguments

x a numeric vector.

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

center the centre given either as numeric value or as a function to be applied to x (de-
faults to the DescTools::Median(x)). Note in cases when weights are defined
to provide a function that also support weights. If this is not possible fall back
to a numeric value.

constant scale factor (default is 1.4826)

na.rm if TRUE then NA values are stripped from x before computation takes place.

low if TRUE, compute the ‘lo-median’, i.e., for even sample size, do not average the
two middle values, but take the smaller one.

high if TRUE, compute the ‘hi-median’, i.e., take the larger of the two middle values
for even sample size.



328 MADCI

Details

The actual value calculated is constant * cMedian(abs(x - center)) with the default value of
center being median(x), and cMedian being the usual, the ‘low’ or ‘high’ median, see the argu-
ments description for low and high above.

The default constant = 1.4826 (approximately 1/Φ−1( 34 ) = 1/qnorm(3/4)) ensures consistency,
i.e.,

E[mad(X1, . . . , Xn)] = σ

for Xi distributed as N(µ, σ2) and large n.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this is not
done then an NA value in x will cause MAD to return NA.

See Also

IQR which is simpler but less robust, IQRw for weights, mad, median, var, MADCI (confidence inter-
vals).

Examples

MAD(c(1:9))
print(MAD(c(1:9), constant = 1)) ==

MAD(c(1:8, 100), constant = 1) # = 2 ; TRUE
x <- c(1,2,3,5,7,8)
sort(abs(x - median(x)))
c(MAD(x, constant = 1),

MAD(x, constant = 1, low = TRUE),
MAD(x, constant = 1, high = TRUE))

# use weights
x <- sample(20, 30, replace = TRUE)
z <- as.numeric(names(w <- table(x)))

(m1 <- MAD(z, weights=w))
(m2 <- MAD(x))
stopifnot(identical(m1, m2))

MADCI Confidence Intervals for Median Absolute Deviations

Description

A function for the median absolute deviation is included in base R, mad, but there’s no function
for calculating confidence intervals. Arachchige/Prendergast introduce interval estimators of the
MAD to make reliable inferences for dispersion for a single population and ratios and differences
of MADs for comparing two populations.



MADCI 329

Usage

MADCI(x, y = NULL, two.samp.diff = TRUE, gld.est = "TM",
conf.level = 0.95, sides = c("two.sided","left","right"),
na.rm = FALSE, ...)

Arguments

x a (non-empty) numeric vector of data values.

y a second (non-empty) numeric vector of data values.

two.samp.diff logical, defining if the confidence intervals for the difference (mad(x)-mad(y))
(default) or for the squared ratio ((mad(x)/mad(y))^2) should be calculated. Ig-
nored if y is not given.

gld.est A character string, to select the estimation method for the generalized lambda
distribution. One of: ML for numerical Maximum Likelihood, MPS or MSP for
Maximum Spacings Product, TM for Titterington’s Method (default), SM for Star-
ship Method, TL for method of Trimmed L-moments, Lmom for method of L-
moments, DLA for the method of Distributional Least Absolutes, or Mom for
method of Moments. See fit.fkml().

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

na.rm logical. Should missing values be removed? Defaults to FALSE.

... further arguments, not used here

Value

a numeric vector with 3 elements:

mad median absolute deviation

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Arachchige Chandima N. P. G., Prendergast Luke A., Andri Signorell <andri@signorell.net> (only
interface)

References

Arachchige Chandima N. P. G., Prendergast Luke A. (2019) Confidence intervals for median abso-
lute deviations, arXiv:1910.00229 [math.ST]

See Also

mad, MAD



330 Mar and Mgp

Examples

x <- rlnorm(100)
y <- rlnorm(200, meanlog=1.2)

MADCI(x) # single sample

MADCI(x, y) # two sample difference
MADCI(x, y, two.samp.diff = FALSE) # two sample squared ratio

Mar and Mgp Set Plot Margins and Distances

Description

Plot margins are normally set by par("mar"). However one is forced to always define all margins,
even if just one should be altered. The convenience function Mar() allows to set one single margin
(or several) while leaving the others unchanged.

Mgp() does the same for the distances of axis title, labels and line.

Usage

Mar(bottom = NULL, left = NULL, top = NULL, right = NULL, outer = FALSE,
reset = FALSE)

Mgp(title = NULL, labels = NULL, line = NULL, reset = FALSE)

Arguments

bottom the bottom margin, if set to NULL the current value will be maintained.

left the left margin, if set to NULL the current value will be maintained.

top the top margin, if set to NULL the current value will be maintained.

right the right margin, if set to NULL the current value will be maintained.

outer logical, defining if inner margins (par("mar")) or the outer margins (par("oma"))
should be set. Default is FALSE, meaning that the inner margins will be con-
cerned.

reset if set to TRUE the margins are reset to the defaults (respecting outer). Other
arguments are ignored.

title margin line for the axis title (default 3)

labels margin line for the axis labels (default 1)

line margin line for the axis line (default 0)

Details

Running Mar() without any arguments will return the current settings, either par("mar"), when
outer is set to FALSE or par("oma") for outer = TRUE.



matpow 331

Author(s)

Andri Signorell <andri@signorell.net>

See Also

par

Examples

# largen the left margin only
Mar(left=10.1) # or as alternative: Mar(, 10.1)
Mgp(title=6) # ylab must be placed a little further to the left
barplot(1:7, names=levels(d.pizza$driver), horiz=TRUE, las=1,

ylab="driver", col=Pal("Helsana"))

matpow Matrix Power

Description

Compute the k-th power of a matrix. Whereas x^k computes element wise powers, x %^% k corre-
sponds to k − 1 matrix multiplications, x %*% x %*% ... %*% x.

Usage

x %^% k

Arguments

x a square matrix.
k an integer, k ≥ 0.

Details

Argument k is coerced to integer using as.integer.

The algorithm uses O(log2(k)) matrix multiplications.

Value

A matrix of the same dimension as x.

Note

If you think you need x^k for k < 0, then consider instead solve(x %^% (-k)).

Author(s)

Based on an R-help posting of Vicente Canto Casasola, and Vincent Goulet’s C implementation in
actuar.



332 Mean

See Also

%*% for matrix multiplication.

Examples

A <- cbind(1, 2 * diag(3)[,-1])
A
A %^% 2
stopifnot(identical(A, A %^% 1),

A %^% 2 == A %*% A)

Mean (Weighted) Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean, possibly with given weights.

Usage

Mean(x, ...)

## S3 method for class 'Freq'
Mean(x, breaks, ...)

## Default S3 method:
Mean(x, weights = NULL, trim = 0, na.rm = FALSE, ...)

Arguments

x An object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects. Complex vectors are allowed for trim = 0,
only.

... further arguments passed to or from other methods.

breaks breaks for calculating the mean for classified data as composed by Freq.

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.



MeanAD 333

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)
or complex, NA_real_ is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observa-
tions deleted from each end before the mean is computed.

trim and weights can’t be used together at the same time.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

weighted.mean, mean.POSIXct, colMeans for row and column means.

Examples

x <- c(0:10, 50)
xm <- Mean(x)
c(xm, Mean(x, trim = 0.10))

MeanAD Mean Absolute Deviation From a Center Point

Description

Calculates the mean absolute deviation from a center point, typically the sample mean or the me-
dian. %% ~~ A concise (1-5 lines) description of what the function does. ~~

Usage

MeanAD(x, weights = NULL, center = Mean, na.rm = FALSE)

Arguments

x a vector containing the observations. %% ~~Describe x here~~

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

center a single numerical value or the name of a function applied to x to be used as
center. Can as well be a self defined function. Default is Mean().

na.rm a logical value indicating whether or not missing values should be removed.
Defaults to FALSE.



334 MeanAD

Details

The MeanAD function calculates the mean absolute deviation from the mean value (or from another
supplied center point) of x, after having removed NA values (if requested):

1

n
·

n∑
i=1

|xi − c| where c = mean(x) or c = med(x)

The function supports the use of weights. The default function for the center value Mean() has a
weights arguments, too. If a user defined function is used it must be assured that it has a weights
argument.

Value

Numeric value.

Author(s)

Andri Signorell andri@signorell.net following an idea of Danielle Navarro (aad in the lsr package)

See Also

mad

Examples

x <- runif(100)
MeanAD(x)

speed <- c(58, 88, 40, 60, 72, 66, 80, 48, NA)
MeanAD(speed)
MeanAD(speed, na.rm=TRUE)

# using the median as centerpoint
x <- c(2,3,5,3,1,15,23)

MeanAD(x, center=mean)
MeanAD(x, center=median)

# define a fixed center
MeanAD(x, center=4)

# use of weights
MeanAD(x=0:6, weights=c(21,46,54,40,24,10,5))

mailto:andri@signorell.net


MeanCI 335

MeanCI Confidence Intervals for the Mean

Description

Collection of several approaches to determine confidence intervals for the mean. Both, the classical
way and bootstrap intervals are implemented for both, normal and trimmed means.

Usage

MeanCI(
x,
sd = NULL,
trim = 0,
conf.level = 0.95,
sides = c("two.sided", "left", "right"),
method = c("classic", "boot"),
na.rm = FALSE,
...

)

Arguments

x a (non-empty) numeric vector of data values.

sd the standard deviation of x. If provided it’s interpreted as sd of the population
and the normal quantiles will be used for constructing the confidence intervals.
If left to NULL (default) the sample sd(x) will be calculated and used in combi-
nation with the t-distribution.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one of
"two.sided" (default), "left" or "right". "left" would be analogue to a
hypothesis of "greater" in a t.test. You can specify just the initial letter.

method A vector of character strings representing the type of intervals required. The
value should be any subset of the values "classic", "boot". See boot.ci.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds. Defaults to FALSE.

... further arguments are passed to the boot function. Supported arguments are
type ("norm", "basic", "stud", "perc", "bca"), parallel and the number
of bootstrap replicates R. If not defined those will be set to their defaults, being
"basic" for type, option "boot.parallel" (and if that is not set, "no") for
parallel and 999 for R.



336 MeanCI

Details

The confidence intervals for the trimmed means use winsorized variances as described in the refer-
ences.

Value

a numeric vector with 3 elements:

mean mean

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell andri@signorell.net

References

Wilcox, R. R., Keselman H. J. (2003) Modern robust data analysis methods: measures of central
tendency Psychol Methods, 8(3):254-74

Wilcox, R. R. (2005) Introduction to robust estimation and hypothesis testing Elsevier Academic
Press

See Also

Mean, t.test, MeanDiffCI, MedianCI, VarCI, MeanCIn

Examples

x <- d.pizza$price[1:20]

MeanCI(x, na.rm=TRUE)
MeanCI(x, conf.level=0.99, na.rm=TRUE)

MeanCI(x, sides="left")
# same as:
t.test(x, alternative="greater")

MeanCI(x, sd=25, na.rm=TRUE)

# the different types of bootstrap confints
MeanCI(x, method="boot", type="norm", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="norm", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="basic", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="stud", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="perc", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="bca", na.rm=TRUE)

MeanCI(x, trim=0.1, method="boot", type="bca", R=1999, na.rm=TRUE)

mailto:andri@signorell.net


MeanCIn 337

# Getting the MeanCI for more than 1 column
round(t(sapply(d.pizza[, 1:4], MeanCI, na.rm=TRUE)), 3)

MeanCIn Sample Size for a Given Width of a Confidence Interval for a Mean

Description

Returns the required sample size to obtain a given width of a confidence interval for the sample
mean. The function uses uniroot() to find a numeric solution. The t distribution is used.

Usage

MeanCIn(ci, sd, interval = c(2, 100000), conf.level = 0.95,
norm = FALSE, tol = .Machine$double.eps^0.5)

Arguments

ci the left and right bound of the interval, which is presumed to be symmetric.
sd the standard deviation of the sample.
interval the interval for the sample size to be searched into, (default is c(2, 100000)).
conf.level confidence level, defaults to 0.95.
norm logical, determining if the t- or normaldistribution should be used.
tol the desired accuracy (convergence tolerance).

Details

The required sample sizes for a specific width of confidence interval for the mean depends recur-
sively on the sample size, as the samplesize defines the degrees of freedom in the t-distribution.
Although in most practical cases it will be sufficient to use the normal distribution, we might be
interested in exact results.

Value

a numeric value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

BinomCIn()

Examples

MeanCIn(ci=c(25, 27), sd=5)



338 MeanDiffCI

MeanDiffCI Confidence Interval For Difference of Means

Description

Calculates the confidence interval for the difference of two means either the classical way or with
the bootstrap approach.

Usage

MeanDiffCI(x, ...)

## Default S3 method:
MeanDiffCI(x, y, method = c("classic", "norm", "basic", "stud", "perc", "bca"),

conf.level = 0.95, sides = c("two.sided", "left", "right"), paired = FALSE,
na.rm = FALSE, R = 999, ...)

## S3 method for class 'formula'
MeanDiffCI(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.

y a (non-empty) numeric vector of data values.

method a vector of character strings representing the type of intervals required. The
value should be any subset of the values "classic", "norm", "basic", "stud",
"perc", "bca". See boot.ci.

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

paired a logical indicating whether you want confidence intervals for a paired design.
Defaults to FALSE.

na.rm logical. Should missing values be removed? Defaults to FALSE.

R the number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights. See boot.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).



MeanDiffCI 339

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further argument to be passed to or from methods.

Details

This function collects code from two sources. The classical confidence interval is calculated by
means of t.test. The bootstrap intervals are strongly based on the example in boot.

Value

a numeric vector with 3 elements:

meandiff the difference: mean(x) - mean(y)

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

See Also

MeanCI, VarCI, MedianCI, boot.ci

Examples

x <- d.pizza$price[d.pizza$driver=="Carter"]
y <- d.pizza$price[d.pizza$driver=="Miller"]

MeanDiffCI(x, y, na.rm=TRUE)
MeanDiffCI(x, y, conf.level=0.99, na.rm=TRUE)

# the different types of bootstrap confints
MeanDiffCI(x, y, method="norm", na.rm=TRUE)
MeanDiffCI(x, y, method="basic", na.rm=TRUE)
# MeanDiffCI(x, y, method="stud", na.rm=TRUE)
MeanDiffCI(x, y, method="perc", na.rm=TRUE)
MeanDiffCI(x, y, method="bca", na.rm=TRUE)

# the formula interface
MeanDiffCI(price ~ driver, data=d.pizza, subset=driver %in% c("Carter","Miller"))



340 MeanSE

MeanSE Standard Error of Mean

Description

Calculates the standard error of mean.

Usage

MeanSE(x, sd = NULL, na.rm = FALSE)

Arguments

x a (non-empty) numeric vector of data values.

sd the standard deviation of x. If provided it’s interpreted as sd of the population.
If left to NULL (default) the sample sd(x) will be used.

na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

MeanSE calculates the standard error of the mean defined as:

σ√
n

σ being standard deviation of x and n the length of x.

Value

the standard error as numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

MeanCI

Examples

data(d.pizza)

MeanSE(d.pizza$price, na.rm=TRUE)

# evaluate data.frame
sapply(d.pizza[,1:4], MeanSE, na.rm=TRUE)



Measures of Accuracy 341

Measures of Accuracy Measures of Accuracy

Description

Some measures of model accuracy like mean absolute error (MAE), mean absolute percentage error
(MAPE), symmetric mean absolute percentage error (SMAPE), mean squared error (MSE) and root
mean squared error (RMSE).

Usage

MAE(x, ...)
## Default S3 method:
MAE(x, ref, na.rm = FALSE, ...)
## S3 method for class 'lm'
MAE(x, ...)

MAPE(x, ...)
## Default S3 method:
MAPE(x, ref, na.rm = FALSE, ...)
## S3 method for class 'lm'
MAPE(x, ...)

SMAPE(x, ...)
## Default S3 method:
SMAPE(x, ref, na.rm = FALSE, ...)
## S3 method for class 'lm'
SMAPE(x, ...)

MSE(x, ...)
## Default S3 method:
MSE(x, ref, na.rm = FALSE, ...)
## S3 method for class 'lm'
MSE(x, ...)

RMSE(x, ...)
## Default S3 method:
RMSE(x, ref, na.rm = FALSE, ...)
## S3 method for class 'lm'
RMSE(x, ...)

NMAE(x, ref, train.y)
NMSE(x, ref, train.y)



342 Measures of Accuracy

Arguments

x the predicted values of a model or a model-object itself.

ref the observed true values.

train.y the observed true values in a train dataset.

na.rm a logical value indicating whether or not missing values should be removed.
Defaults to FALSE.

... further arguments

Details

The function will remove NA values first (if requested).
MAE calculates the mean absolute error:

1

n
·

n∑
i=1

|refi − xi|

MAPE calculates the mean absolute percentage error:

1

n
·

n∑
i=1

∣∣∣∣refi − xi

refi

∣∣∣∣
SMAPE calculates the symmetric mean absolute percentage error:

1

n
·

n∑
i=1

2 · |refi − xi|
|refi|+ |xi|

MSE calculates mean squared error:

1

n
·

n∑
i=1

(refi − xi)
2

RMSE calculates the root mean squared error:√√√√ 1

n
·

n∑
i=1

(refi − xi)
2

Value

the specific numeric value



Measures of Shape 343

Author(s)

Andri Signorell <andri@signorell.net>

References

Armstrong, J. S. (1985) Long-range Forecasting: From Crystal Ball to Computer, 2nd. ed. Wiley.
ISBN 978-0-471-82260-8
https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error

Torgo, L. (2010) Data Mining with R: Learning with Case Studies, Chapman and Hall/CRC Press

See Also

lm, resid

Examples

r.lm <- lm(Fertility ~ ., data=swiss)

MAE(r.lm)

# the same as:
MAE(predict(r.lm), swiss$Fertility)

MAPE(r.lm)
MSE(r.lm)
RMSE(r.lm)

Measures of Shape Skewness and Kurtosis

Description

Skew computes the skewness, Kurt the excess kurtosis of the values in x.

Usage

Skew(x, weights = NULL, na.rm = FALSE, method = 3, conf.level = NA,
ci.type = "bca", R = 1000, ...)

Kurt(x, weights = NULL, na.rm = FALSE, method = 3, conf.level = NA,
ci.type = "bca", R = 1000, ...)

https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error


344 Measures of Shape

Arguments

x a numeric vector. An object which is not a vector is coerced (if possible) by
as.vector.

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. Defaults to FALSE.

method integer out of 1, 2 or 3 (default). See Details.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

ci.type The type of confidence interval required. The value should be any subset of the
values "classic", "norm", "basic", "stud", "perc" or "bca" ("all" which
would compute all five types of intervals, is not supported).

R The number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights.

... the dots are passed to the function boot, when confidence intervalls are calcu-
lated.

Details

Kurt() returns the excess kurtosis, therefore the kurtosis calculates as Kurt(x) + 3 if required.

If na.rm is TRUE then missing values are removed before computation proceeds.

The methods for calculating the skewness can either be:
method = 1: g_1 = m_3 / m_2^(3/2)
method = 2: G_1 = g_1 * sqrt(n(n-1)) / (n-2)
method = 3: b_1 = m_3 / s^3 = g_1 ((n-1)/n)^(3/2)

and the ones for the kurtosis:
method = 1: g_2 = m_4 / m_2^2 - 3
method = 2: G_2 = ((n+1) g_2 + 6) * (n-1) / ((n-2)(n-3))
method = 3: b_2 = m_4 / s^4 - 3 = (g_2 + 3) (1 - 1/n)^2 - 3

method = 1 is the typical definition used in Stata and in many older textbooks.
method = 2 is used in SAS and SPSS.
method = 3 is used in MINITAB and BMDP.

Cramer et al. (1997) mention the asymptotic standard error of the skewness, resp. kurtosis:

ASE.skew = sqrt( 6n(n-1)/((n-2)(n+1)(n+3)) )
ASE.kurt = sqrt( (n^2 - 1)/((n-3)(n+5)) )



Measures of Shape 345

to be used for calculating the confidence intervals. This is implemented here with ci.type="classic".
However, Joanes and Gill (1998) advise against this approach, pointing out that the normal assump-
tions would virtually always be violated. They suggest using the bootstrap method. That’s why the
default method for the confidence interval type is set to "bca".

This implementation of the two functions is comparably fast, as the expensive sums are coded in C.

Value

If conf.level is set to NA then the result will be

a single numeric value

and if a conf.level is provided, a named numeric vector with 3 elements:

skew, kurt the specific estimate, either skewness or kurtosis

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>, David Meyer <david.meyer@r-project.org> (method = 3)

References

Cramer, D. (1997): Basic Statistics for Social Research Routledge.

Joanes, D. N., Gill, C. A. (1998): Comparing measures of sample skewness and kurtosis. The
Statistician, 47, 183-189.

See Also

mean, sd, similar code in library(e1071)

Examples

Skew(d.pizza$price, na.rm=TRUE)
Kurt(d.pizza$price, na.rm=TRUE)

# use sapply to calculate skewness for a data.frame
sapply(d.pizza[,c("temperature","price","delivery_min")], Skew, na.rm=TRUE)

# or apply to do that columnwise with a matrix
apply(as.matrix(d.pizza[,c("temperature","price","delivery_min")]), 2, Skew, na.rm=TRUE)



346 Median

Median (Weighted) Median Value

Description

Compute the sample median. The function basically wraps the function Quantile(), which offers
the option to define weights.
For grouped data the median can be estimated by linear interpolation within the class containing the
median, which is implemented in the interface for Freq-objects.

Usage

Median(x, ...)

## S3 method for class 'factor'
Median(x, na.rm = FALSE, ...)

## S3 method for class 'Freq'
Median(x, breaks, ...)

## Default S3 method:
Median(x, weights = NULL, na.rm = FALSE, ...)

Arguments

x an object for which a method has been defined, or a numeric vector containing
the values whose median is to be computed.

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

breaks breaks for calculating the mean for classified data as composed by Freq.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

... further arguments passed to or from other methods.

Details

This is a generic function for which methods can be written. However, the default method makes
use of is.na, sort and mean from package base all of which are generic, and so the default method
will work for most classes (e.g., "Date") for which a median is a reasonable concept.

Calculating the median for ordered factors is not implemented in standard R, as it’s not well defined
(it is not clear what to do if the median sits between two levels in factors of even length). This
function returns the high median and prints a warning if the low median would be different (which
is supposed to be a rare event). There’s a vivid discussion between experts going on whether this
should be defined or not. We’ll wait for definitive results and enjoy the function’s comfort so far...

Note that there are alternative approaches for calculating weighted median (e.g. matrixstats::weightedMedian).



Median 347

Value

The default method returns a length-one object of the same type as x, except when x is integer of
even length, when the result will be double.

If there are no values or if na.rm = FALSE and there are NA values the result is NA of the same type
as x (or more generally the result of x[FALSE][NA]).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

quantile for general quantiles. https://stat.ethz.ch/pipermail/r-help/2003-November/
042684.html

https://stackoverflow.com/questions/7925102/idiomatic-method-of-finding-the-median-of-an-ordinal

Examples

Median(1:4) # = 2.5 [even number]
Median(c(1:3, 100, 1000)) # = 3 [odd, robust]

# Approximation for classified data
breaks <- seq(10,70, 10)
Median(

Freq(cut(d.pizza$temperature, breaks=breaks)),
breaks=breaks)

# compared to
Median(d.pizza$temperature)

# starting from a classified table
# from to income
# 0 4000 20
# 4000 6000 42
# 6000 8000 31
# 8000 10000 12

# Freq(as.table(c(20,42,31,12)))
# level freq perc cumfreq cumperc
# 1 A 20 19.0% 20 19.0%
# 2 B 42 40.0% 62 59.0%
# 3 C 31 29.5% 93 88.6%
# 4 D 12 11.4% 105 100.0%

Median(Freq(as.table(c(20,42,31,12))), breaks=c(0,4000,6000,8000,10000))

# use weights
x <- sample(20, 30, replace = TRUE)
z <- as.numeric(names(w <- table(x)))

https://stat.ethz.ch/pipermail/r-help/2003-November/042684.html
https://stat.ethz.ch/pipermail/r-help/2003-November/042684.html
https://stackoverflow.com/questions/7925102/idiomatic-method-of-finding-the-median-of-an-ordinal


348 MedianCI

(m1 <- Median(z, weights=w))
(m2 <- Median(x))
stopifnot(identical(m1, m2))

MedianCI Confidence Interval for the Median

Description

Calculate the confidence interval for the median.

Usage

MedianCI(
x,
conf.level = 0.95,
sides = c("two.sided", "left", "right"),
method = c("exact", "boot"),
na.rm = FALSE,
...

)

Arguments

x a (non-empty) numeric vector of data values.
conf.level confidence level of the interval
sides a character string specifying the side of the confidence interval, must be one

of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method defining the type of interval that should be calculated (one out of "exact",
"boot"). Default is "exact". See Details.

na.rm logical. Should missing values be removed? Defaults to FALSE.
... the dots are passed on to boot.ci. In particular, the type of bootstrap confidence

interval can be defined via this. The defaults are R=999 and type="perc".

Details

The "exact" method is the way SAS is said to calculate the confidence interval. This is also
implemented in SignTest. The boot confidence interval type is calculated by means of boot.ci
with default type "perc".
Use sapply, resp.apply, to get the confidence intervals from a data.frame or from a matrix.

Value

a numeric vector with 3 elements:

median median
lwr.ci lower bound of the confidence interval
upr.ci upper bound of the confidence interval



Mgsub 349

Author(s)

Andri Signorell andri@signorell.net

See Also

wilcox.test, MeanCI, median, HodgesLehmann

Examples

MedianCI(d.pizza$price, na.rm=TRUE)
MedianCI(d.pizza$price, conf.level=0.99, na.rm=TRUE)

t(round(sapply(d.pizza[,c("delivery_min","temperature","price")], MedianCI, na.rm=TRUE), 3))

MedianCI(d.pizza$price, na.rm=TRUE, method="exact")
MedianCI(d.pizza$price, na.rm=TRUE, method="boot")

x <- runif(100)

set.seed(448)
MedianCI(x, method="boot")

# ... the same as
set.seed(448)
MedianCI(x, method="boot", type="bca")

MedianCI(x, method="boot", type="basic")
MedianCI(x, method="boot", type="perc")
MedianCI(x, method="boot", type="norm", R=499)
# not supported:
MedianCI(x, method="boot", type="stud")

MedianCI(x, method="boot", sides="right")

Mgsub Multiple Gsub

Description

Performs multiple substitions in (a) string(s).

Usage

Mgsub(pattern, replacement, x, ...)

mailto:andri@signorell.net


350 MHChisqTest

Arguments

pattern character string containing a regular expression (or character string for fixed =
TRUE) to be matched in the given character vector. Coerced by as.character to
a character string if possible.

replacement a replacement for matched pattern as in sub and gsub. See there for more infor-
mation.

x a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector. Long vectors are supported.

... all dots are passed on to gsub.

Value

a character vector of the same length and with the same attributes as x (after possible coercion to
character).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

gsub

Examples

x <- c("ABC", "BCD", "CDE")
Mgsub(pattern=c("B", "C"), replacement=c("X","Y"), x)

MHChisqTest Mantel-Haenszel Chi-Square Test

Description

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is a linear asso-
ciation between the row variable and the column variable. Both variables must lie on an ordinal
scale.

Usage

MHChisqTest(x, srow = 1:nrow(x), scol = 1:ncol(x))

Arguments

x a frequency table or a matrix.

srow scores for the row variable, defaults to 1:nrow.

scol scores for the colummn variable, defaults to 1:ncol.



MHChisqTest 351

Details

The statistic is computed as QMH = (n − 1) · r2, where r2 is the Pearson correlation between
the row variable and the column variable. The Mantel-Haenszel chi-square statistic use the scores
specified by srow and scol. Under the null hypothesis of no association, QMH has an asymptotic
chi-square distribution with one degree of freedom.

Value

A list with class "htest" containing the following components:

statistic the value the Mantel-Haenszel chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value for the test.

method a character string indicating the type of test performed.

data.name a character string giving the name(s) of the data.

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp 86 ff.

See Also

chisq.test, for calculating correlation of a table: corr

Examples

## A r x c table Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,

dimnames = list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS"))

)

MHChisqTest(Job, srow=c(7.5,20,32.5,60))



352 Midx

Midx Find the Midpoints of a Numeric Vector

Description

Calculate the midpoints of a sequence of numbers. This is e.g. useful for labelling stacked barplots.

Usage

Midx(x, incl.zero = FALSE, cumulate = FALSE)

Arguments

x the numeric vector

incl.zero should zero be appended to x before proceeding? If TRUE the first value will be
one half of the first value of x. Default is FALSE.

cumulate should the result be calculated as cumulative sum? Default is FALSE.

Value

numeric vector with the calculated midpoins

Author(s)

Andri Signorell <andri@signorell.net>

See Also

MoveAvg

Examples

x <- c(1, 3, 6, 7)

Midx(x)
Midx(x, incl.zero = TRUE)
Midx(x, incl.zero = TRUE, cumulate = TRUE)

# an alternative to
head(MoveAvg(c(0, x), order = 2, align = "l"), n = -1)

tab <- matrix(c(401,216,221,254,259,169), nrow=2, byrow=TRUE)
b <- barplot(tab, beside = FALSE, horiz=TRUE)

x <- t(apply(tab, 2, Midx, incl.zero=TRUE, cumulate=TRUE))
text(tab, x=x, y=b, col="red")



MixColor 353

MixColor Compute the Convex Combination of Two Colors

Description

This function can be used to compute the result of color mixing (it assumes additive mixing).

Usage

MixColor(col1, col2, amount1 = 0.5)

Arguments

col1 the first color.

col2 the second color.

amount1 the amount of color1. The amount of color2 results in (1-amount1).

Value

The mixed color as hexstring

Author(s)

Andri Signorell <andri@signorell.net>

See Also

colorRamp, rgb

Examples

# a mix between red and yellow with rates 3:7
MixColor("red", "yellow", 0.3)

Mode Mode, Most Frequent Value(s)

Description

Calculate the mode, the most frequent value, of a numeric or character vector x.

Usage

Mode(x, na.rm = FALSE)



354 Mode

Arguments

x a (non-empty) numeric vector of data values.

na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

The mode is usually useful for qualitative data, sometimes still for an integer vector. For numer-
ical vectors, it is not so much the central tendency property of the mode that is interesting as the
information about conspicuous accumulation points, which sometimes can indicate data errors. In
Desc() it is integrated in the numeric description to draw the analyst’s attention to strikingly high
frequencies of a single value as soon as they exceed a certain treshold. (In a numeric vector we
would in general rather expect low numbers of tied values, or we should be aware of the process
properties that generates them.)

The handling of NA values follows the standards of the package. As soon as a single NA value
occurs, NA is returned as result. This approach can sometimes be conservative when calculating
the mode. The mode could be determined unambiguously in cases where the number of missing
values is small enough that - regardless of what value they have - they cannot alter the sample mode.
The modal frequency could then be determined within a lower and upper range. In the example of
x=c(1,1,1,1,2,2,NA) we know that the mode of x is 1 regardless of what the true value is for the
one missing value; and we know that the modal frequency must be between 4 and 5. However this
is not implemented in the function and further considerations in this direction are left to the user
here.

The mode is elsewhere often calculated in a crude and wasteful way by tabulating the frequency for
all elements of the vector and returning the most frequent one. This function uses a sophisticated
data structure in C++ and is limited to determining the most frequent element only. Therefore it
is orders of magnitude faster than other implementations, especially for large numeric vectors with
large numbers of distinct values.

You might furthermore consider using density(x)$x[which.max(density(x)$y)] for quantita-
tive data or alternatively use hist().
Another interesting idea for a more robust estimation of the mode:

peak <- optimize(function(x, model) predict(model, data.frame(x = x)),
c(min(x), max(x)),
maximum = TRUE,
model = y.loess)

points(peak$maximum, peak$objective, pch=FILLED.CIRCLE <- 19)

Value

The most frequent value as number or character, depending of class(x). If there is more than one,
all are returned in a vector.
The modal frequency is attached as attribute named "freq".

Author(s)

Andri Signorell <andri@signorell.net>, great Rcpp part by Joseph Wood and Ralf Stubner



MosesTest 355

References

https://stackoverflow.com/questions/55212746/rcpp-fast-statistical-mode-function-with-vector-input-
of-any-type/ https://stackoverflow.com/a/55213471/8416610

See Also

Mean, Median

Examples

# normal mode
Mode(c(0:5, 5))

Mode(5)
Mode(NA)
Mode(c(NA, NA))
Mode(c(NA, 0:5))
Mode(c(NA, 0:5), na.rm=TRUE)
Mode(c(NA, 0:5, 5), na.rm=TRUE)

# returns all encountered modes, if several exist
Mode(c(0:5, 4, 5, 6))

Mode(d.pizza$driver)
Mode(d.pizza$driver, na.rm=TRUE)
Mode(as.character(d.pizza$driver), na.rm=TRUE)

# use sapply for evaluating data.frames (resp. apply for matrices)
sapply(d.pizza[,c("driver", "temperature", "date")], Mode, na.rm=TRUE)

MosesTest Moses Test of Extreme Reactions

Description

Perform Moses test of extreme reactions, which is a distribution-free non-parametric test for the
difference between two independent groups in the extremity of scores (in both directions) that the
groups contain. Scores from both groups are pooled and converted to ranks, and the test statistic is
the span of scores (the range plus 1) in one of the groups chosen arbitrarily. An exact probability
is computed for the span and then recomputed after dropping a specified number of extreme scores
from each end of its range. The exact one-tailed probability is calculated.

Usage

MosesTest(x, ...)

## Default S3 method:
MosesTest(x, y, extreme = NULL, ...)



356 MosesTest

## S3 method for class 'formula'
MosesTest(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. x will be treated as control group. Non-finite
(e.g. infinite or missing) values will be omitted.

y numeric vector of data values. y will be treated as experiment group. Non-finite
(e.g. infinite or missing) values will be omitted.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

extreme integer, defines the number of extreme values to be dropped from the control
group before calculating the span. Default (NULL) is the integer part of 0.05 *
length(x) or 1, whichever is greater. If extreme is too large, it will be cut down
to floor(length(x)-2)/2.

... further arguments to be passed to or from methods.

Details

For two independent samples from a continuous field, this tests whether extreme values are equally
likely in both populations or if they are more likely to occur in the population from which the sample
with the larger range was drawn.

Note that the ranks are calculated in decreasing mode.

Value

A list with class “htest” containing the following components:

statistic the value of the Moses Test statistic.

p.value the p-value for the test.

method the character string “Moses Test of Extreme Reactions”.

data.name a character string giving the name(s) of the data.

Author(s)

Andri Signorell <andri@signorell.net>



MoveAvg 357

References

Moses, L.E. (1952) A Two-Sample Test, Psychometrika, 17, 239-247.

See Also

wilcox.test, ks.test

Examples

x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)

MosesTest(x, y)

set.seed(1479)
x <- sample(1:20, 10, replace=TRUE)
y <- sample(5:25, 6, replace=TRUE)

MosesTest(x, y)

MoveAvg Moving Average

Description

Compute a simple moving average (running mean).

Usage

MoveAvg(x, order, align = c("center", "left", "right"),
endrule = c("NA", "keep", "constant"))

Arguments

x univariate time series.

order order of moving average.

align specifies whether result should be centered (default), left-aligned or right-aligned.

endrule character string indicating how the values at the beginning and the end (of the
data) should be treated.

"keep" keeps the first and last k2 values at both ends, where k2 is the half-
bandwidth k2 = k %/% 2, i.e., y[j] = x[j] for j ∈ {1, . . . , k2;n − k2 +
1, . . . , n};

"constant" fill the ends with first and last calculated value in output array
(out[1:k2] = out[k2+1])

"NA" the default, leaves the values to NA, as they are returned by filter.



358 MultinomCI

Details

The implementation is using the function filter to calculate the moving average.

Value

Returns a vector of the same size and same class as x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

There’s a faster implementation of running mean in the package caTools runmean() and a slower
one in forecast ma(). There’s similar code in Midx().

Examples

MoveAvg(AirPassengers, order=5)

MultinomCI Confidence Intervals for Multinomial Proportions

Description

Confidence intervals for multinomial proportions are often approximated by single binomial confi-
dence intervals, which might in practice often yield satisfying results, but is properly speaking not
correct. This function calculates simultaneous confidence intervals for multinomial proportions ei-
ther according to the methods of Sison and Glaz, Goodman, Wald, Wald with continuity correction
or Wilson.

Usage

MultinomCI(x, conf.level = 0.95, sides = c("two.sided", "left", "right"),
method = c("sisonglaz", "cplus1", "goodman", "wald", "waldcc",

"wilson", "qh", "fs"))

Arguments

x A vector of positive integers representing the number of occurrences of each
class. The total number of samples equals the sum of such elements.

conf.level confidence level, defaults to 0.95.
sides a character string specifying the side of the confidence interval, must be one

of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method character string specifing which method to use; can be one out of "sisonglaz",
"cplus1", "goodman", "wald", "waldcc", "wilson", "qh", "fs". Method can
be abbreviated. See details. Defaults to "sisonglaz".



MultinomCI 359

Details

Given a vector of observations with the number of samples falling in each class of a multinomial
distribution, builds the simultaneous confidence intervals for the multinomial probabilities accord-
ing to the method proposed by the mentioned authors. The R code for Sison and Glaz (1995) has
been translated from thes SAS code written by May and Johnson (2000). See the references for the
other methods (qh = Quesensberry-Hurst, fs = Fitzpatrick-Scott).
Some approaches for the confidence intervals can potentially yield negative results or values beyond
1. These would be reset such as not to exceed the range of [0, 1].

Value

A matrix with 3 columns:

est estimate

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

The number of rows correspond to the dimension of x.

Author(s)

Pablo J. Villacorta Iglesias <pjvi@decsai.ugr.es>
Department of Computer Science and Artificial Intelligence, University of Granada (Spain) (Sison-
Glaz)

Andri Signorell <andri@signorell.net> (Goodman, Wald, Wilson, Fitzpatrick-Scott, Quesensberry-
Hurst)

References

Fitzpatrick, S. and Scott, A. (1987). Quick simultaneous confidence interval for multinomial pro-
portions. Journal of American Statistical Association 82(399): 875-878.

Glaz, J., Sison, C.P. (1999) Simultaneous confidence intervals for multinomial proportions. Journal
of Statistical Planning and Inference 82:251-262.

Goodman, L. A. (1965) On Simultaneous Confidence Intervals for Multinomial Proportions Tech-
nometrics, 7, 247-254.

May, W.L., Johnson, W.D.(2000) Constructing two-sided simultaneous confidence intervals for
multinomial proportions for small counts in a large number of cells. Journal of Statistical Soft-
ware 5(6) . Paper and code available at https://www.jstatsoft.org/v05/i06.

Quesensberry, C.P. and Hurst, D.C. (1964). Large Sample Simultaneous Confidence Intervals for
Multinational Proportions. Technometrics, 6: 191-195.

Sangeetha, U., Subbiah, M., Srinivasan, M. R. (2013) Mathematical Analysis of propensity of
aberration on the methods for interval estimation of the multinomial proportions. IOSR Journal
of Mathematics, e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 4 (Jul. - Aug. 2013), PP
23-28

Sison, C.P and Glaz, J. (1995) Simultaneous confidence intervals and sample size determination for
multinomial proportions. Journal of the American Statistical Association, 90:366-369.

https://www.jstatsoft.org/v05/i06


360 MultMerge

Wald, A. Tests of statistical hypotheses concerning several parameters when the number of obser-
vations is large, Trans. Am. Math. Soc. 54 (1943) 426-482.

Wilson, E. B. Probable inference, the law of succession and statistical inference, J.Am. Stat. Assoc.
22 (1927) 209-212.

Examples

# Multinomial distribution with 3 classes, from which a sample of 79 elements
# were drawn: 23 of them belong to the first class, 12 to the
# second class and 44 to the third class. Punctual estimations
# of the probabilities from this sample would be 23/79, 12/79
# and 44/79 but we want to build 95% simultaneous confidence intervals
# for the true probabilities

MultinomCI(c(23, 12, 44), conf.level=0.95)

# single sided
MultinomCI(c(23, 12, 44), conf.level=0.95, sides="left")
MultinomCI(c(23, 12, 44), conf.level=0.95, sides="right")

x <- c(35, 74, 22, 69)

MultinomCI(x, method="goodman")
MultinomCI(x, method="sisonglaz")
MultinomCI(x, method="cplus1")
MultinomCI(x, method="wald")
MultinomCI(x, method="waldcc")
MultinomCI(x, method="wilson")

# compare to
BinomCI(x, n=sum(x))

# example in Goodman (1965)
MultinomCI(x = c(91,49,37,43),conf.level = 0.95,method="goodman")

# example from Sison, Glaz (1999) in Sangeetha (2013) - Table 2
x <- c(56, 72, 73, 59, 62, 87, 58)
do.call(cbind, lapply(c("wald", "waldcc", "wilson",

"qh", "goodman", "fs", "sisonglaz"),
function(m) round(MultinomCI(x, method=m)[,-1], 3)))

MultMerge Merge Multiple Data Frames

Description

Merge multiple data frames by row names, or do other versions of database join operations.



MultMerge 361

Usage

MultMerge(..., all.x = TRUE, all.y = TRUE, by = NULL)

Arguments

... data frames to be coerced to one.

all.x logical; if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. These rows will have NAs in those columns
that are usually filled with values from y. The default is FALSE, so that only rows
with data from both x and y are included in the output.

all.y logical; analogous to all.x.

by column used for merging, if this is not defined rownames will be used by default.
The column must be included in all the provided data frames.

Value

A data frame. The rows are sorted according to the appearance of previously unobserved rownames.
So the rownames appearing in the first data frame are first, then the rownames in the second data
frame, which have no corespondence in the first data frame and so on. The columns are the remain-
ing columns in x1 and then those in x2 and then those in x3. The result has the row names resulting
from the merge.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

merge

Examples

x1 <- SetNames(data.frame(v=letters[1:6], w=1:6),
rownames=c("A", "B", "C", "D", "E", "F"))

x2 <- SetNames(data.frame(v=letters[1:3], ww=11:13),
rownames=c("B", "C", "D"))

x3 <- SetNames(data.frame(v=letters[12:16], wwww=22:26),
rownames=c("A", "C", "E", "G", "J"))

# default is "merge by rownames"
MultMerge(x1, x2, x3)
# ... which does not really make sense here

# merge by column v
MultMerge(x1, x2, x3, by="v")



362 NemenyiTest

NALevel Replace NAs in a Factor by a Given Level

Description

In order to replace the NAs in a factor an additional level has to be defined first. This function does
this and replaces the NAs by the given level.

Usage

NALevel(x, level)

Arguments

x a vector which will be turned into a factor.

level the name for the new level

Value

the vector x with the NAs replaced by level

Author(s)

Andri Signorell <andri@signorell.net>

See Also

factor, levels

Examples

x <- c(LETTERS[1:5], NA)
table(NALevel(x, "something else"))

NemenyiTest Nemenyi Test

Description

Performs Nemenyi’s test of multiple comparisons.



NemenyiTest 363

Usage

NemenyiTest(x, ...)

## Default S3 method:
NemenyiTest(x, g, dist = c("tukey", "chisq"), out.list = TRUE, ...)

## S3 method for class 'formula'
NemenyiTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

dist the distribution used for the test. Can be tukey (default) or chisq.

out.list logical, defining if the output should be organized in listform.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

Nemenyi proposed a test based on rank sums and the application of the family-wise error method to
control Type I error inflation, if multiple comparisons are done. The Tukey and Kramer approach
uses mean rank sums and can be employed for equally as well as unequally sized samples without
ties.

Value

A list of class htest, containing the following components:

statistic Nemenyi test

p.value the p-value for the test

null.value is the value of the median specified by the null hypothesis. This equals the input
argument mu.

alternative a character string describing the alternative hypothesis.

method the type of test applied

data.name a character string giving the names of the data.



364 NemenyiTest

Author(s)

Andri Signorell <andri@signorell.net>

References

Nemenyi, P. B. (1963) Distribution-Free Multiple Comparisons New York, State University of New
York, Downstate Medical Center

Hollander, M., Wolfe, D.A. (1999) Nonparametric Statistical Methods New York, Wiley, pp. 787

Friedman, M. (1937) The use of ranks to avoid the assumption of normality implicit in the analysis
of variance Journal of the American Statistical Association, 32:675-701

Friedman, M. (1940) A comparison of alternative tests of significance for the problem of m rankings
Annals of Mathematical Statistics, 11:86-92

See Also

DunnTest, ConoverTest

Examples

## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

NemenyiTest(list(x, y, z))

## Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

NemenyiTest(x, g)

## Formula interface.
boxplot(Ozone ~ Month, data = airquality)
NemenyiTest(Ozone ~ Month, data = airquality)

# Hedderich & Sachs, 2012, p. 555
d.frm <- data.frame(x=c(28,30,33,35,38,41, 36,39,40,43,45,50, 44,45,47,49,53,54),

g=c(rep(LETTERS[1:3], each=6)), stringsAsFactors=TRUE)

NemenyiTest(x~g, d.frm)



Nf 365

Nf As Numeric Factor

Description

Encode a vector x to a factor and then to a numeric value. It’s a simple shortcut for as.numeric(factor(x,
...))

Usage

Nf(x, ...)

Arguments

x a vector of data, usually taking a small number of distinct values.

... the dots are passed on to factor

Value

numeric vector

Author(s)

Andri Signorell <andri@signorell.net>

See Also

N

Examples

x <- LETTERS[10:15]
Nf(x)

# same as ..
as.numeric(factor(x))



366 NPV

NPV Short Selection of Financial Mathematical Functions

Description

Calculate the one period returns, the net present value (NPV()), the internal rate of return (IRR())
of a sequence of payments. NPVFixBond() returns the netpresent value for a fixed-rate bond, YTM()
the yield to maturity for a bond.

Usage

OPR(K, D = NULL, log = FALSE)
NPV(i, cf, t = seq(along = cf) - 1)
IRR(cf, t = seq(along = cf) - 1, interval = c(-1.5, 1.5), ...)

NPVFixBond(i, Co, RV, n)
YTM(Co, PP, RV, n)

Arguments

i the interest rate

cf numeric vector with the payments

t periods

K the capital at time t

D dividend at time t

log logical, determining if the simple returns (default) or log returns are to be calcu-
lated.

interval a vector containing the end-points of the interval to be searched for the root in
the function IRR.

Co coupon payments of a fixed-rate bond

PP purchase price for a fixed-rate bond

RV redemption value

n the term of the bond, total number of periods

... the dots are passed to the UnirootAll function in IRR

Details

The one period returns are calculated as

rt =
Dt +Kt −Kt − 1

Kt − 1

Value

a numeric value



NZ 367

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Gmean

Examples

# one root
IRR(cf <- c(-900, -250+450-90, 460-100, 500-120, 550-140))
# several IRR solutions
IRR(cf = c(-100, 500, -600))
# no solution
IRR(cf = c(-100, 400, -600))
# negative and huge solution
IRR(cf = c(-100, 1000, -600), interval = c(-1.5, 1000))

NZ Non Zero Elements

Description

Return a vector with all zero elements removed.

Usage

NZ(x)

Arguments

x numeric vector

Value

numerich vector

Author(s)

Andri Signorell <andri@signorell.net>

Examples

x <- c(1,2,0,3)
NZ(x)



368 OddsRatio

OddsRatio Odds Ratio Estimation and Confidence Intervals

Description

Calculates odds ratio by unconditional maximum likelihood estimation (wald), conditional maxi-
mum likelihood estimation (mle) or median-unbiased estimation (midp). Confidence intervals are
calculated using normal approximation (wald) and exact methods (midp, mle).

Usage

OddsRatio(x, conf.level = NULL, ...)

## S3 method for class 'glm'
OddsRatio(x, conf.level = NULL, digits = 3, use.profile = FALSE, ...)

## S3 method for class 'multinom'
OddsRatio(x, conf.level = NULL, digits = 3, ...)

## S3 method for class 'zeroinfl'
OddsRatio(x, conf.level = NULL, digits = 3, ...)

## Default S3 method:
OddsRatio(x, conf.level = NULL, y = NULL, method = c("wald", "mle", "midp"),

interval = c(0, 1000), ...)

Arguments

x a vector or a 2× 2 numeric matrix, resp. table.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) will be calculated.

digits the number of fixed digits to be used for printing the odds ratios.

method method for calculating odds ratio and confidence intervals. Can be one out of
"wald", "mle", "midp". Default is "wald" (not because it is the best, but because
it is the most commonly used.)

conf.level confidence level. Default is NA for tables and numeric vectors, meaning no con-
fidence intervals will be reported. 0.95 is used as default for models.

interval interval for the function uniroot that finds the odds ratio median-unbiased esti-
mate and midp exact confidence interval.

use.profile logical. Defines if profile approach should be used, which normally is a good
choice. Calculating profile can however take ages for large datasets and not be
necessary there. So we can fallback to normal confidence intervals.

... further arguments are passed to the function table, allowing i.e. to set useNA.
This refers only to the vector interface.



OddsRatio 369

Details

If a 2× 2 table is provided the following table structure is preferred:

disease=1 disease=0
exposed=1 n11 n10
exposed=0 n01 n00

however, for odds ratios the following table is equivalent:

disease=0 disease=1
exposed=0 (ref) n00 n01
exposed=1 n10 n11

If the table to be provided to this function is not in the preferred form, the function Rev() can be
used to "reverse" the table rows, resp. -columns. Reversing columns or rows (but not both) will
lead to the inverse of the odds ratio.

In case of zero entries, 0.5 will be added to the table.

Value

a single numeric value if conf.level is set to NA
a numeric vector with 3 elements for estimate, lower and upper confidence interval if conf.level is
provided

Author(s)

Andri Signorell <andri@signorell.net>, strongly based on code from Tomas Aragon, <aragon@berkeley.edu>

References

Kenneth J. Rothman and Sander Greenland (1998): Modern Epidemiology, Lippincott-Raven Pub-
lishers

Kenneth J. Rothman (2002): Epidemiology: An Introduction, Oxford University Press

Nicolas P. Jewell (2004): Statistics for Epidemiology, 1st Edition, 2004, Chapman & Hall, pp.
73-81

Agresti, Alan (2013) Categorical Data Analysis. NY: John Wiley and Sons, Chapt. 3.1.1

See Also

RelRisk



370 Order

Examples

# Case-control study assessing whether exposure to tap water
# is associated with cryptosporidiosis among AIDS patients

tab <- matrix(c(2, 29, 35, 64, 12, 6), 3, 2, byrow=TRUE)
dimnames(tab) <- list("Tap water exposure" = c("Lowest", "Intermediate", "Highest"),

"Outcome" = c("Case", "Control"))
tab <- Rev(tab, margin=2)

OddsRatio(tab[1:2,])
OddsRatio(tab[c(1,3),])

OddsRatio(tab[1:2,], method="mle")
OddsRatio(tab[1:2,], method="midp")
OddsRatio(tab[1:2,], method="wald", conf.level=0.95)

# in case of zeros consider using glm for calculating OR
dp <- data.frame (a=c(20, 7, 0, 0), b=c(0, 0, 0, 12), t=c(1, 0, 1, 0))
fit <- glm(cbind(a, b) ~ t, data=dp, family=binomial)

exp(coef(fit))

# calculation of log oddsratios in a 2x2xk table
migraine <- xtabs(freq ~ .,

cbind(expand.grid(treatment=c("active","placebo"),
response=c("better","same"),
gender=c("female","male")),

freq=c(16,5,11,20,12,7,16,19))
)

log(apply(migraine, 3, OddsRatio))

# OddsRatio table for logistic regression models
r.glm <- glm(type ~ ., data=MASS::Pima.tr2, family=binomial)
OddsRatio(r.glm)

plot(OddsRatio(r.glm), xlim=c(0.5, 2), main="OddsRatio - glm", pch=NA,
lblcolor=DescTools::hred, args.errbars=list(col=DescTools::horange, pch=21,
col.pch=DescTools::hblue,
bg.pch=DescTools::hyellow, cex.pch=1.5))

Order Distributions of Order Statistics

Description

Density function, distribution function and random generation for a selected Order statistic of a
given number of independent variables from a specified distribution.



Order 371

Usage

dOrder(x, densfun, distnfun, ..., distn, mlen = 1, j = 1,
largest = TRUE, log = FALSE)

pOrder(q, distnfun, ..., distn, mlen = 1, j = 1, largest = TRUE,
lower.tail = TRUE)

rOrder(n, quantfun, ..., distn, mlen = 1, j = 1, largest = TRUE)

Arguments

x, q Vector of quantiles.
n Number of observations.
densfun, distnfun, quantfun

Density, distribution and quantile function of the specified distribution. The
density function must have a log argument (a simple wrapper can always be
constructed to achieve this).

... Parameters of the specified distribution.
distn A character string, optionally specified as an alternative to densfun, distnfun

and quantfun such that the density, distribution and quantile functions are formed
upon the addition of the prefixes d, p and q respectively.

mlen The number of independent variables.
j The Order statistic, taken as the jth largest (default) or smallest of mlen, accord-

ing to the value of largest.
largest Logical; if TRUE (default) use the jth largest Order statistic, otherwise use the

jth smallest.
log Logical; if TRUE, the log density is returned.
lower.tail Logical; if TRUE (default) probabilities are P[X <= x], otherwise P[X > x].

Value

dOrder gives the density function, pOrder gives the distribution function and qOrder gives the
quantile function of a selected Order statistic from a sample of size mlen, from a specified distibu-
tion. rOrder generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

rExtrVal, rGenExtrVal

Examples

dOrder(2:4, dnorm, pnorm, mean = 0.5, sd = 1.2, mlen = 5, j = 2)
dOrder(2:4, distn = "norm", mean = 0.5, sd = 1.2, mlen = 5, j = 2)
dOrder(2:4, distn = "exp", mlen = 2, j = 2)
pOrder(2:4, distn = "exp", rate = 1.2, mlen = 2, j = 2)
rOrder(5, qgamma, shape = 1, mlen = 10, j = 2)



372 ORToRelRisk

ORToRelRisk Transform Odds Ratio to Relative Risk

Description

The odds ratio is a common measure when comparing two groups in terms of an outcome that is
either present or absent. As the odds ratio is in general poorly understood, odds ratios are often
discussed in terms of risks, relying on the approximation, that odds ratio and relative risk are about
the same when the outcome is rare. However the relative risk also depends on the risk of the baseline
group and if the outcome is not rare there can be large differences between both measures and the
odds ratio may substantially overestimate the relative risk. In fact, the same odds ratio could imply
a very different relative risk for subgroups of the population with different baseline risks.

The present function transforms a given odds-ratio (OR) to the respective relative risk (RR) either
for simple odds ratios but also for odds ratios resulting from a logistic model.

Usage

ORToRelRisk(...)

## S3 method for class 'OddsRatio'
ORToRelRisk(x, ... )
## Default S3 method:
ORToRelRisk(or, p0, ...)

Arguments

x the odds ratios of a logistic model as returned by OddsRatio()

or numeric vector, containing odds-ratios.

p0 numeric vector, incidence of the outcome of interest in the nonexposed group
("baseline risk").

... further arguments, are not used here.

Details

The function transforms a given odds-ratio (or) to the respective relative risk (rr). It can also be
used to transform the limits of confidence intervals.

The formula for converting an odds ratio to a relative risk is

rr =
or

1− p0 + p0 · or

where p0 is the baseline risk.

For transformation of odds ratios resulting from a logit model, we use the formula of Zhang and Yu
(1998).



ORToRelRisk 373

Value

relative risk.

Author(s)

Matthias Kohl <matthias.kohl@stamats.de>

References

Zhang, J. and Yu, K. F. (1998). What’s the relative risk? A method of correcting the odds ratio in
cohort studies of common outcomes. JAMA, 280(19):1690-1691.

Grant, R. L. (2014) Converting an odds ratio to a range of plausible relative risks for better commu-
nication of research findings. BMJ 2014;348:f7450 doi: 10.1136/bmj.f7450

Examples

(heart <- as.table(matrix(c(11, 2, 4, 6), nrow=2,
dimnames = list(Exposure = c("High", "Low"),

Response = c("Yes", "No")))))
RelRisk(heart)
# calculated as (11/15)/(2/8)

OddsRatio(heart)
# calculated as (11/4)/(2/6)

ORToRelRisk(OddsRatio(heart), p0 = 2/8)
# Relative risk = odds ratio / (1 - p0 + (p0 * odds ratio))
# where p0 is the baseline risk

## single OR to RR
ORToRelRisk(14.1, 0.05)

## OR and 95% confidence interval
ORToRelRisk(c(14.1, 7.8, 27.5), 0.05)

## Logistic OR and 95% confidence interval
logisticOR <- rbind(c(14.1, 7.8, 27.5),

c(8.7, 5.5, 14.3),
c(27.4, 17.2, 45.8),
c(4.5, 2.7, 7.8),
c(0.25, 0.17, 0.37),
c(0.09, 0.05, 0.14))

colnames(logisticOR) <- c("OR", "2.5%", "97.5%")
rownames(logisticOR) <- c("7.4", "4.2", "3.0", "2.0", "0.37", "0.14")
logisticOR

## p0
p0 <- c(0.05, 0.12, 0.32, 0.27, 0.40, 0.40)

## Compute corrected RR



374 Outlier

## helper function
ORToRelRisk.mat <- function(or, p0){

res <- matrix(NA, nrow = nrow(or), ncol = ncol(or))
for(i in seq_len(nrow(or)))
res[i,] <- ORToRelRisk(or[i,], p0[i])

dimnames(res) <- dimnames(or)
res

}
RR <- ORToRelRisk.mat(logisticOR, p0)
round(RR, 2)

## Results are not completely identical to Zhang and Yu (1998)
## what probably is caused by the fact that the logistic OR values
## provided in the table are rounded and not true values.

Outlier Outlier

Description

Return outliers following Tukey’s boxplot and Hampel’s median/mad definition.

Usage

Outlier(x, method = c("boxplot", "hampel"), value = TRUE,na.rm = FALSE)

Arguments

x a (non-empty) numeric vector of data values.

method the method to be used. So far Tukey’s boxplot and Hampel’s rule are imple-
mented.

value logical. If FALSE, a vector containing the (integer) indices of the outliers is
returned, and if TRUE (default), a vector containing the matching elements them-
selves is returned.

na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

Outlier detection is a tricky problem and should be handled with care. We implement Tukey’s
boxplot rule as a rough idea of spotting extreme values.

Hampel considers values outside of median +/- 3 * (median absolute deviation) to be outliers.

Value

the values of x lying outside the whiskers in a boxplot
or the indices of them



PageTest 375

Author(s)

Andri Signorell <andri@signorell.net>

References

Hampel F. R. (1974) The influence curve and its role in robust estimation, Journal of the American
Statistical Association, 69, 382-393

See Also

boxplot

Examples

Outlier(d.pizza$temperature, na.rm=TRUE)

# it's the same as the result from boxplot
sort(d.pizza$temperature[Outlier(d.pizza$temperature, value=FALSE, na.rm=TRUE)])
b <- boxplot(d.pizza$temperature, plot=FALSE)
sort(b$out)

# nice to find the corresponding rows
d.pizza[Outlier(d.pizza$temperature, value=FALSE, na.rm=TRUE), ]

# compare to Hampel's rule
Outlier(d.pizza$temperature, method="hampel", na.rm=TRUE)

# outliers for the each driver
tapply(d.pizza$temperature, d.pizza$driver, Outlier, na.rm=TRUE)

# the same as:
boxplot(temperature ~ driver, d.pizza)$out

PageTest Exact Page Test for Ordered Alternatives

Description

Performs a Page test for ordered alternatives using an exact algorithm by Stefan Wellek (1989) with
unreplicated blocked data.

Usage

PageTest(y, ...)

## Default S3 method:
PageTest(y, groups, blocks, ...)



376 PageTest

## S3 method for class 'formula'
PageTest(formula, data, subset, na.action, ...)

Arguments

y either a numeric vector of data values, or a data matrix.
groups a vector giving the group for the corresponding elements of y if this is a vector;

ignored if y is a matrix. If not a factor object, it is coerced to one.
blocks a vector giving the block for the corresponding elements of y if this is a vector;

ignored if y is a matrix. If not a factor object, it is coerced to one.
formula a formula of the form a ~ b | c, where a, b and c give the data values and corre-

sponding groups and blocks, respectively.
data an optional matrix or data frame (or similar: see model.frame) containing

the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-

faults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

PageTest can be used for analyzing unreplicated complete block designs (i.e., there is exactly
one observation in y for each combination of levels of groups and blocks) where the normality
assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same
in each of the groups.
The implemented alternative is, that the location parameter will be monotonly greater along the
groups,
HA : θ1 ≤ θ2 ≤ θ3 ... (where at least one inequality is strict).
If the other direction is required, the order of the groups has to be reversed.

The Page test for ordered alternatives is slightly more powerful than the Friedman analysis of vari-
ance by ranks.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively.
NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks are removed.

For small values of k (methods) or N (data objects), ‘PageTest’ will calculate the exact p-values.
For ‘k, N > 15, Inf’, a normal approximation is returned. Only one of these values will be returned.

Value

A list with class "htest" containing the following components:

statistic the L-statistic with names attribute “L”.
p.value the p-value of the test.
method the character string "Page test for ordered alternatives".
data.name a character string giving the names of the data.



PageTest 377

Note

Special thanks to Prof. S. Wellek for porting old GAUSS code to R.

Author(s)

Stefan Wellek <stefan.wellek@zi-mannheim.de> (exact p-values), Andri Signorell <andri@signorell.net>
(interface) (strongly based on R-Core code)

References

Page, E. (1963): Ordered hypotheses for multiple treatments: A significance test for linear ranks.
Journal of the American Statistical Association, 58, 216-230.

Siegel, S. & Castellan, N. J. Jr. (1988): Nonparametric statistics for the behavioral sciences.
Boston, MA: McGraw-Hill.

Wellek, S. (1989): Computing exact p-values in Page’s nonparametric test against trend. Biometrie
und Informatik in Medizin und Biologie 20, 163-170

See Also

friedman.test

Examples

# Craig's data from Siegel & Castellan, p 186
soa.mat <- matrix(c(.797,.873,.888,.923,.942,.956,
.794,.772,.908,.982,.946,.913,
.838,.801,.853,.951,.883,.837,
.815,.801,.747,.859,.887,.902), nrow=4, byrow=TRUE)
PageTest(soa.mat)

# Duller, pg. 236
pers <- matrix(c(
1, 72, 72, 71.5, 69, 70, 69.5, 68, 68, 67, 68,
2, 83, 81, 81, 82, 82.5, 81, 79, 80.5, 80, 81,
3, 95, 92, 91.5, 89, 89, 90.5, 89, 89, 88, 88,
4, 71, 72, 71, 70.5, 70, 71, 71, 70, 69.5, 69,
5, 79, 79, 78.5, 77, 77.5, 78, 77.5, 76, 76.5, 76,
6, 80, 78.5, 78, 77, 77.5, 77, 76, 76, 75.5, 75.5
), nrow=6, byrow=TRUE)

colnames(pers) <- c("person", paste("week",1:10))

# Alternative: week10 < week9 < week8 ...
PageTest(pers[, 11:2])

# Sachs, pg. 464

pers <- matrix(c(



378 PairApply

3,2,1,4,
4,2,3,1,
4,1,2,3,
4,2,3,1,
3,2,1,4,
4,1,2,3,
4,3,2,1,
3,1,2,4,
3,1,4,2),
nrow=9, byrow=TRUE, dimnames=list(1:9, LETTERS[1:4]))

# Alternative: B < C < D < A
PageTest(pers[, c("B","C","D","A")])

# long shape and formula interface
plng <- data.frame(expand.grid(1:9, c("B","C","D","A")),

as.vector(pers[, c("B","C","D","A")]))
colnames(plng) <- c("block","group","x")

PageTest(plng$x, plng$group, plng$block)

PageTest(x ~ group | block, data = plng)

score <- matrix(c(
3,4,6,9,
4,3,7,8,
3,4,4,6,
5,6,8,9,
4,4,9,9,
6,7,11,10
), nrow=6, byrow=TRUE)

PageTest(score)

PairApply Pairwise Calculations

Description

Implements a logic to run pairwise calculations on the columns of a data.frame or a matrix.

Usage

PairApply(x, FUN = NULL, ..., symmetric = FALSE)



PairApply 379

Arguments

x a list, a data.frame or a matrix with columns to be processed pairwise.

FUN a function to be calculated. It is assumed, that the first 2 arguments denominate
x and y.

... the dots are passed to FUN.

symmetric logical. Does the function yield the same result for FUN(x, y) and FUN(y, x)?
If TRUE just the lower triangular matrix is calculated and transposed. Default is
FALSE.

Details

This code is based on the logic of cor() and extended for asymmetric functions.

Value

a matrix with the results of FUN.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

outer, CombPairs, pairwise.table

Examples

PairApply(d.diamonds[,c("colour","clarity","cut","polish")], FUN = CramerV,
symmetric=TRUE)

# user defined functions are ok as well
PairApply(d.diamonds[,c("clarity","cut","polish","symmetry")],
FUN = function(x,y) wilcox.test(as.numeric(x), as.numeric(y))$p.value, symmetric=TRUE)

# asymetric measure
PairApply(d.diamonds[,c("colour", "clarity", "cut", "polish")],

FUN = Lambda, direction = "row")

# ... compare to:
Lambda(x=d.diamonds$colour, y=d.diamonds$clarity, direction="row")
Lambda(x=d.diamonds$colour, y=d.diamonds$clarity, direction="column")

# the data.frame
dfrm <- d.diamonds[, c("colour","clarity","cut","polish")]
PairApply(dfrm, FUN = CramerV, symmetric=TRUE)

# the same as matrix (columnwise)
m <- as.matrix(dfrm)
PairApply(m, FUN = CramerV, symmetric=TRUE)



380 ParseFormula

# ... and the list interface
lst <- as.list(dfrm)
PairApply(lst, FUN = CramerV, symmetric=TRUE)

ParseFormula Parse a Formula and Create a Model Frame

Description

Create a model frame for a formula object, by handling the left hand side the same way the right
hand side is handled in model.frame. Especially variables separated by + are interpreted as separate
variables.

Usage

ParseFormula(formula, data = parent.frame(), drop = TRUE)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description for the variables to be described.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

drop if drop is TRUE, unused factor levels are dropped from the result when creating
interaction terms. The default is to drop all unused factor levels.

Details

This is used by Desc.formula for describing data by groups while remaining flexible for using
I(...) constructions, functions or interaction terms.

Value

a list of 3 elements

formula the formula which had to be parsed
lhs a list of 3 elements:

mf: data.frame, the model.frame of the left hand side of the formula
mf.eval: data.frame, the evaluated model.frame of the left hand side of the for-
mula
vars: the names of the evaluated model.frame

rhs a list of 3 elements:
mf: data.frame, the model.frame of the right hand side of the formula
mf.eval: data.frame, the evaluated model.frame of the right hand side of the
formula
vars: the names of the evaluated model.frame



ParseSASDatalines 381

Author(s)

Andri Signorell <andri@signorell.net>

See Also

The functions used to handle formulas: model.frame, terms, formula
Used in: Desc.formula

Examples

set.seed(17)
piz <- d.pizza[sample(nrow(d.pizza),10), c("temperature","price","driver","weekday")]

f1 <- formula(. ~ driver)
f2 <- formula(temperature ~ .)
f3 <- formula(temperature + price ~ .)
f4 <- formula(temperature ~ . - driver)
f5 <- formula(temperature + price ~ driver)
f6 <- formula(temperature + price ~ driver * weekday)
f7 <- formula(I(temperature^2) + sqrt(price) ~ driver + weekday)
f8 <- formula(temperature + price ~ 1)
f9 <- formula(temperature + price ~ driver * weekday - price)

ParseFormula(f1, data=piz)
ParseFormula(f2, data=piz)
ParseFormula(f3, data=piz)
ParseFormula(f4, data=piz)
ParseFormula(f5, data=piz)
ParseFormula(f6, data=piz)
ParseFormula(f7, data=piz)
ParseFormula(f8, data=piz)

ParseSASDatalines Parse a SAS Dataline Command

Description

A parser for simple SAS dataline command texts. A data.frame is being built with the column-
names listed in the input section. The data object will be created in the given environment.

Usage

ParseSASDatalines(x, env = .GlobalEnv, overwrite = FALSE)

Arguments

x the SAS text

env environment in which the dataset should be created.



382 ParseSASDatalines

overwrite logical. If set to TRUE, the function will silently overwrite a potentially existing
object in env with the same name as declared in the SAS DATA section. If set to
FALSE (default) an error will be raised if there already exists an object with the
same name.

Details

The SAS function DATA is designed for quickly creating a dataset from scratch. The whole step
normally consists out of the DATA part defining the name of the dataset, an INPUT line declaring the
variables and a DATALINES command followed by the values.
The default delimiter used to separate the different variables is a space (thus each variable should
be one word). The $ after the variable name indicates that the variable preceding contain character
values and not numeric values. Without specific instructions, SAS assumes that variables are nu-
meric. The function will fail, if it encounters a character in the place of an expected numeric value.
Each new row in datalines will create a corresponding unique row in the dataset. Notice that a ; is
not needed after every row, rather it is included at the end of the entire data step.
More complex command structures, i.e. other delimiters (dlm), in the INPUT-section are not (yet)
supported.

Value

a data.frame

Author(s)

Andri Signorell <andri@signorell.net>

See Also

scan

Examples

txt <- "
DATA asurvey;
INPUT id sex $ age inc r1 r2 r3 ;
DATALINES;
1 F 35 17 7 2 2
17 M 50 14 5 5 3
33 F 45 6 7 2 7
49 M 24 14 7 5 7
65 F 52 9 4 7 7
81 M 44 11 7 7 7
2 F 34 17 6 5 3
18 M 40 14 7 5 2
34 F 47 6 6 5 6
50 M 35 17 5 7 5
;
"

(d.frm <- ParseSASDatalines(txt))



PasswordDlg 383

PasswordDlg Password Dialog

Description

Brings up a tcltk dialog centered on the screen, designed for entering passwords while displaying
only ****.

Usage

PasswordDlg(option_txt = NULL)

Arguments

option_txt an optional text, if it is defined, there will be a checkbox added to the dialog
with the label being set with option_txt.

Value

the entered password
the status of the optional checkbox will be returned as attribute: attr(pw, "option")

Author(s)

Markus Naepflin <markus@naepfl.in>

Examples

## Not run:
pw <- PasswordDlg()
pw
## End(Not run)

PDFManual Get PDF Manual of a Package From CRAN

Description

PDF versions of the manual are usually not included as vignettes in R packages. Still this format is
convenient for reading and doing full text search.
This function creates the appropriate link to the pdf file on CRAN and opens the pdf manual in a
browser window.

Usage

PDFManual(package)



384 PearsonTest

Arguments

package name of the package.

Author(s)

Andri Signorell <andri@signorell.net>

Examples

## Not run:
PDFManual(DescTools)

## End(Not run)

PearsonTest Pearson Chi-Square Test for Normality

Description

Performs the Pearson chi-square test for the composite hypothesis of normality.

Usage

PearsonTest(x, n.classes = ceiling(2 * (n^(2/5))), adjust = TRUE)

Arguments

x a numeric vector of data values. Missing values are allowed.

n.classes The number of classes. The default is due to Moore (1986).

adjust logical; if TRUE (default), the p-value is computed from a chi-square distribution
with n.classes-3 degrees of freedom, otherwise from a chi-square distribution
with n.classes-1 degrees of freedom.

Details

The Pearson test statistic is P =
∑

(Ci − Ei)
2/Ei, where Ci is the number of counted and Ei

is the number of expected observations (under the hypothesis) in class i. The classes are build is
such a way that they are equiprobable under the hypothesis of normality. The p-value is computed
from a chi-square distribution with n.classes-3 degrees of freedom if adjust is TRUE and from a
chi-square distribution with n.classes-1 degrees of freedom otherwise. In both cases this is not
(!) the correct p-value, lying somewhere between the two, see also Moore (1986).



PearsonTest 385

Value

A list of class htest, containing the following components:

statistic the value of the Pearson chi-square statistic.

p.value the p-value for the test.

method the character string “Pearson chi-square normality test”.

data.name a character string giving the name(s) of the data.

n.classes the number of classes used for the test.

df the degress of freedom of the chi-square distribution used to compute the p-
value.

Note

The Pearson chi-square test is usually not recommended for testing the composite hypothesis of
normality due to its inferior power properties compared to other tests. It is common practice to
compute the p-value from the chi-square distribution with n.classes - 3 degrees of freedom, in
order to adjust for the additional estimation of two parameters. (For the simple hypothesis of nor-
mality (mean and variance known) the test statistic is asymptotically chi-square distributed with
n.classes - 1 degrees of freedom.) This is, however, not correct as long as the parameters are
estimated by mean(x) and var(x) (or sd(x)), as it is usually done, see Moore (1986) for details.
Since the true p-value is somewhere between the two, it is suggested to run PearsonTest twice,
with adjust = TRUE (default) and with adjust = FALSE. It is also suggested to slightly change the
default number of classes, in order to see the effect on the p-value. Eventually, it is suggested not
to rely upon the result of the test.

The function call PearsonTest(x) essentially produces the same result as the S-PLUS function
call chisq.gof((x-mean(x))/sqrt(var(x)), n.param.est=2).

Author(s)

Juergen Gross <gross@statistik.uni-dortmund.de>

References

Moore, D.S., (1986) Tests of the chi-squared type. In: D’Agostino, R.B. and Stephens, M.A., eds.:
Goodness-of-Fit Techniques. Marcel Dekker, New York.

Thode Jr., H.C., (2002) Testing for Normality. Marcel Dekker, New York. Sec. 5.2

See Also

shapiro.test for performing the Shapiro-Wilk test for normality. AndersonDarlingTest, CramerVonMisesTest,
LillieTest, ShapiroFranciaTest for performing further tests for normality. qqnorm for produc-
ing a normal quantile-quantile plot.

Examples

PearsonTest(rnorm(100, mean = 5, sd = 3))
PearsonTest(runif(100, min = 2, max = 4))



386 PercentRank

PercentRank Percent Ranks

Description

PercentRank() takes a vector x and returns the percentile that elements of x correspond to.

Usage

PercentRank(x)

Arguments

x a numeric, complex, character or logical vector.

Value

A numeric vector of the same length as x with names copied from x (unless na.last = NA, when
missing values are removed). The vector is of integer type unless x is a long vector.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Rank, rank, factor, order, sort

Examples

(r1 <- rank(x1 <- c(3, 1, 4, 15, 92)))

x2 <- c(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5)
names(x2) <- letters[1:11]
(r2 <- rank(x2)) # ties are averaged

PercentRank(x2)



PercTable 387

PercTable Percentage Table

Description

Prints a 2-way contingency table along with percentages, marginal, and conditional distributions.
All the frequencies are nested into one single table.

Usage

## Default S3 method:
PercTable(x, y = NULL, ...)

## S3 method for class 'table'
PercTable(tab, row.vars = NULL, col.vars = NULL, justify = "right",

freq = TRUE, rfrq = "100", expected = FALSE, residuals = FALSE,
stdres = FALSE, margins = NULL, digits = NULL, ...)

## S3 method for class 'formula'
PercTable(formula, data, subset, na.action, ...)

## S3 method for class 'PercTable'
print(x, vsep = NULL, ...)

Margins(tab, ...)

Arguments

x, y objects which can be interpreted as factors (including character strings). x and
y will be tabulated via table(x, y).
If x is a matrix, it will be coerced to a table via as.table(x).

tab a r x c-contingency table

row.vars a vector of row variables (see Details).

col.vars a vector of column variables (see Details). If this is left to NULL the table struc-
ture will be preserved.

justify either "left" or "right" for defining the alignment of the table cells.

freq boolean. Should absolute frequencies be included? Defaults to TRUE.

rfrq a string with 3 characters, each of them being 1 or 0. The first position means
total percentages, the second means row percentages and the third column per-
centages. "011" produces a table output with row and column percentages.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, (observed - expected) / sqrt(expected).

stdres standardized residuals, (observed - expected) / sqrt(V), where V is the residual
cell variance (for the case where x is a matrix, n * p * (1 - p) otherwise).



388 PercTable

margins a vector, consisting out of 1 and/or 2. Defines the margin sums to be included. 1
stands for row margins, 2 for column margins, c(1,2) for both. Default is NULL
(none).

digits integer. With how many digits shoud the relative frequencies be formatted?
Default can be set by DescToolsOptions(digits=x).

formula a formula of the form lhs ~ rhs where lhs will be tabled versus rhs (table(lhs,
rhs)).

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-

faults to getOption("na.action").
vsep logical, defining if an empty row should be introduced between the table rows.

Default is FALSE, if only a table with one single description (either frequencies
or percents) should be returned and TRUE in any other case.

... the dots are passed from PercTable.default() to PercTable.table() and
from Margins to the function Freq.

Details

PercTable prints a 2-dimensional table. The absolute and relative frequencies are nested into one
flat table by means of ftable. row.vars, resp. col.vars can be used to define the structure of the
table. row.vars can either be the names of the dimensions (included percentages are named "idx")
or numbers (1:3, where 1 is the first dimension of the table, 2 the second and 3 the percentages).
Use Sort() if you want to have your table sorted by rows.

The style in which numbers are formatted is selected by Fmt() from the DescTools options. Abso-
lute frequencies will use Fmt("abs") and Fmt("per") will do it for the percentages. The options
can be changed with Fmt(abs=as.fmt(...)) which is basically a "fmt"-object containing any
format information used in Format.

Margins() returns a list containing all the one dimensional margin tables of a n-dimensional table
along the given dimensions. It uses margin.table() for all the dimensions and adds the appropriate
percentages.

Value

Returns an object of class "ftable".

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, Alan (2007) Introduction to categorical data analysis. NY: John Wiley and Sons, Section
2.4.5



PercTable 389

See Also

Freq, table, ftable, prop.table, addmargins, DescToolsOptions, Fmt
There are similar functions in package sfsmisc printTable2 and package vcd table2d_summary,
both lacking some of the flexibility we needed here.

Examples

tab <- table(driver=d.pizza$driver, area=d.pizza$area)

PercTable(tab=tab, col.vars=2)

PercTable(tab=tab, col.vars=2, margins=c(1,2))
PercTable(tab=tab, col.vars=2, margins=2)
PercTable(tab=tab, col.vars=2, margins=1)
PercTable(tab=tab, col.vars=2, margins=NULL)

PercTable(tab=tab, col.vars=2, rfrq="000")

# just the percentages without absolute values
PercTable(tab=tab, col.vars=2, rfrq="110", freq=FALSE)

# just the row percentages in percent format (pfmt = TRUE)
PercTable(tab, freq= FALSE, rfrq="010", pfmt=TRUE, digits=1)

# just the expected frequencies and the standard residuals
PercTable(tab=tab, rfrq="000", expected = TRUE, stdres = TRUE)

# rearrange output such that freq are inserted as columns instead of rows
PercTable(tab=tab, col.vars=c(3,2), rfrq="111")

# putting the areas in rows
PercTable(tab=tab, col.vars=c(3,1), rfrq="100", margins=c(1,2))

# formula interface with subset
PercTable(driver ~ area, data=d.pizza, subset=wine_delivered==0)

# sort the table by rows, order first column (Zurich), then third, then row.names (0)
PercTable(tab=Sort(tab, ord=c(1,3,0)))

# reverse the row variables, so that absolute frequencies and percents
# are not nested together
PercTable(tab, row.vars=c(3, 1))

# the vector interface
PercTable(x=d.pizza$driver, y=d.pizza$area)
PercTable(x=d.pizza$driver, y=d.pizza$area, margins=c(1,2), rfrq="000", useNA="ifany")

# one dimensional x falls back to the function Freq()
PercTable(x=d.pizza$driver)



390 Permn

# the margin tables
Margins(Titanic)

Permn Number and Samples for Permutations or Combinations of a Set

Description

Return the set of permutations for a given set of values. The values can be numeric values, characters
or factors. CombN computes the number of combinations with and without replacement and order,
whereas CombSet returns the value sets.

Usage

Permn(x, sort = FALSE)

CombN(n, m, repl = FALSE, ord = FALSE)
CombSet(x, m, repl = FALSE, ord = FALSE, as.list = FALSE)

Arguments

x a vector of numeric values or characters. Characters need not be unique.

n number of elements from which to choose.

m number of elements to choose. For CombSet can m be a numeric vector too.

repl logical. Should repetition of the same element be allowed? Defaults to FALSE

ord logical. Does the order matter? Default is FALSE.

sort logical, defining if the result set should be sorted. Default is FALSE.

as.list logical, defining if the results should be returned in a flat list, say every sample
is a single element of the resulting list. Default is FALSE.

Details

The vector x need not contain unique values. The permutations will automatically be filtered for
unique sets, if the same element is given twice or more.

Value

a matrix with all possible permutations or combinations of the values in x for Permn and CombSet
if m contains more than one element the result will be a list of matrices or a flat list if as.list is
set to TRUE
an integer value for CombN



Phrase 391

Author(s)

Friederich Leisch <Friedrich.Leisch@boku.ac.at>
Andri Signorell <andri@signorell.net> (CombSet, CombN)

See Also

combn, choose, factorial, CombPairs
vignette("Combinatorics")

Examples

Permn(letters[2:5])
Permn(2:5)

# containing the same element more than once
Permn(c("a", "b", "c", "a"))

# only combinations of 2, but in every possible order
x <- letters[1:4]
n <- length(x)
m <- 2

# the samples
CombSet(x, m, repl=TRUE, ord=FALSE)
CombSet(x, m, repl=TRUE, ord=TRUE)
CombSet(x, m, repl=FALSE, ord=TRUE)
CombSet(x, m, repl=FALSE, ord=FALSE)

# the number of the samples
CombN(n, m, repl=TRUE, ord=FALSE)
CombN(n, m, repl=TRUE, ord=TRUE)
CombN(n, m, repl=FALSE, ord=TRUE)
CombN(n, m, repl=FALSE, ord=FALSE)

# build all subsets of length 1, 3 and 5 and return a flat list
x <- letters[1:5]
CombSet(x=x, m=c(1, 3, 5), as.list=TRUE)

Phrase Phrasing Results of t-Test

Description

Formulating the results of a comparison of means is quite common. This function assembles a
descriptive text about the results of a t-test, describing group sizes, means, p-values and confidence
intervals.



392 PlotACF

Usage

Phrase(x, g, glabels = NULL, xname = NULL, unit = NULL, lang = "engl", na.rm = FALSE)

Arguments

x a (non-empty) numeric vector of data values.

g a vector or factor object giving the group for the corresponding elements of x.
The number of levels must equal 2.

glabels the labels of the two groups, if left to NULL, the levels will be used.

xname the name of the variable to be used in the text.

unit an optional unit for be appended to the numeric results.

lang the language to be used. Only english (default) and german implemented (so
far).

na.rm logical, should NAs be omitted? Defaults to FALSE.

Value

a text

Author(s)

Andri Signorell <andri@signorell.net>

See Also

t.test

Examples

data("cats", package = "MASS")
cat(Phrase(cats$Bwt, cats$Sex, xname="weight", unit="grams", glabels=c("female", "male")))

# oder auf deutsch
cat(Phrase(cats$Bwt, cats$Sex, xname="Geburtsgewicht",

glabels=c("weiblich", "maennlich"), lang="german"))

PlotACF Combined Plot of a Time Series and Its ACF and PACF

Description

Combined plot of a time Series and its autocorrelation and partial autocorrelation



PlotArea 393

Usage

PlotACF(series, lag.max = 10 * log10(length(series)), main = NULL, cex = NULL, ...)
PlotGACF(series, lag.max = 10 * log10(length(series)), type = "cor", ylab = NULL, ...)

Arguments

series univariate time series.

lag.max integer. Defines the number of lags to be displayed. The default is 10 * log10(length(series)).

main an overall title for the plot

cex numerical value giving the amount by which plotting text and symbols should
be magnified relative to the default.

type character string giving the type of acf to be computed. Allowed values are "cor"
(the default), "cov" or "part" for autocorrelation, covariance or partial correla-
tion.

ylab a title for the y axis: see title.

... the dots are passed to the plot command.

Details

PlotACF plots a combination of the time series and its autocorrelation and partial autocorrelation.
PlotGACF is used as subfunction to produce the acf- and pacf-plots.

Author(s)

Markus Huerzeler (ETH Zurich), some minor modifications Andri Signorell <andri@signorell.net>

See Also

ts

Examples

PlotACF(AirPassengers)

PlotArea Create an Area Plot

Description

Produce a stacked area plot, or add polygons to an existing plot.



394 PlotArea

Usage

## Default S3 method:
PlotArea(x, y = NULL, prop = FALSE, add = FALSE, xlab = NULL,

ylab = NULL, col = NULL, frame.plot = FALSE, ...)

## S3 method for class 'formula'
PlotArea(formula, data, subset, na.action, ...)

Arguments

x numeric vector of x values, or if y=NULL a numeric vector of y values. Can
also be a 1-dimensional table (x values in names, y values in array), matrix or 2-
dimensional table (x values in row names and y values in columns), a data frame
(x values in first column and y values in subsequent columns), or a time-series
object of class ts/mts.

y numeric vector of y values, or a matrix containing y values in columns.

prop whether data should be plotted as proportions, so stacked areas equal 1.

add whether polygons should be added to an existing plot.

xlab label for x axis.

ylab label for y axis.

col fill color of polygon(s). The default is a vector of gray colors.

frame.plot a logical indicating whether a box should be drawn around the plot.

formula a formula, such as y ~ x or cbind(y1, y2) ~ x, specifying x and y values. A
dot on the left-hand side, formula = . ~ x, means all variables except the one
specified on the right-hand side.

data a data frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NA values.
Defaults to getOption("na.action").

... further arguments are passed to matplot and polygon.

Value

Matrix of cumulative sums that was used for plotting.

Author(s)

Arni Magnusson <thisisarni@gmail.com>

See Also

barplot, polygon, areaplot



PlotBag 395

Examples

# PlotArea with stapled areas
tab <- table( d.pizza$date, d.pizza$driver )
PlotArea(x=as.Date(rownames(tab)), y=tab, xaxt="n", xlab="Date", ylab="Pizzas delivered" )

# add x-axis and some text labels
xrng <- pretty(range(as.Date(rownames(tab))))
axis(side=1, at=xrng, labels=xrng)
text( x=min(d.pizza$date + .5, na.rm=TRUE), y=cumsum(tab[2,])-2.5, label=levels(d.pizza$driver),

adj=c(0,0.5), col=TextContrastColor(gray.colors(7)))

# formula
PlotArea(Armed.Forces~Year, data=longley)
PlotArea(cbind(Armed.Forces,Unemployed)~Year, data=longley)

# add=TRUE
plot(1940:1970, 500*runif(31), ylim=c(0,500))
PlotArea(Armed.Forces~Year, data=longley, add=TRUE)

# matrix
PlotArea(WorldPhones)
PlotArea(WorldPhones, prop=TRUE, col=rainbow(10))

# table
PlotArea(table(d.pizza$weekday))
PlotArea(table(d.pizza$weekday, d.pizza$driver))

# ts/mts
PlotArea(austres)
PlotArea(Seatbelts[,c("drivers","front","rear")],

ylab="Killed or seriously injured")
abline(v=1983+1/12, lty=3)

PlotBag Bivariate Boxplot

Description

PlotBag() creates a twodimensional boxplot called "bagplot" based on two numerical variables x
and y. plot.PlotBag() is the plotting routine for a bagplot object. compute.PlotBag() contains
the computation logic the object.

Usage

PlotBag(x, y, factor = 3, na.rm = FALSE, approx.limit = 300,
show.outlier = TRUE, show.whiskers = TRUE,
show.looppoints = TRUE, show.bagpoints = TRUE,
show.loophull = TRUE, show.baghull = TRUE,



396 PlotBag

create.plot = TRUE, add = FALSE, pch = 16, cex = 0.4,
dkmethod = 2, precision = 1, verbose = FALSE,
debug.plots = "no", col.loophull = "#aaccff",
col.looppoints = "#3355ff", col.baghull = "#7799ff",
col.bagpoints = "#000088", transparency = FALSE, ...

)
PlotBagPairs(dm, trim = 0.0, main, numeric.only = TRUE,

factor = 3, approx.limit = 300, pch = 16,
cex = 0.8, precision = 1, col.loophull = "#aaccff",
col.looppoints = "#3355ff", col.baghull = "#7799ff",
col.bagpoints = "#000088", ...)

compute.bagplot(x, y, factor = 3, na.rm = FALSE, approx.limit = 300,
dkmethod = 2, precision = 1, verbose = FALSE, debug.plots = "no" )

## S3 method for class 'bagplot'
plot(x, show.outlier = TRUE, show.whiskers = TRUE,

show.looppoints = TRUE, show.bagpoints = TRUE,
show.loophull = TRUE, show.baghull = TRUE, add = FALSE,
pch = 16, cex = .4, verbose = FALSE, col.loophull = "#aaccff",
col.looppoints = "#3355ff", col.baghull = "#7799ff",
col.bagpoints = "#000088", transparency = FALSE,...)

Arguments

x x values of a data set; in PlotBag: an object of class PlotBag computed by
compute.PlotBag

y y values of the data set

factor factor defining the loop

na.rm if TRUE ’NA’ values are removed otherwise exchanged by median

approx.limit if the number of data points exceeds approx.limit a sample is used to compute
some of the quantities; default: 300

show.outlier if TRUE outlier are shown

show.whiskers if TRUE whiskers are shown
show.looppoints

if TRUE loop points are plottet

show.bagpoints if TRUE bag points are plottet

show.loophull if TRUE the loop is plotted

show.baghull if TRUE the bag is plotted

create.plot if FALSE no plot is created

add if TRUE the bagplot is added to an existing plot

pch sets the plotting character

cex sets characters size



PlotBag 397

dkmethod 1 or 2, there are two method of approximating the bag, method 1 is very rough
(only based on observations

precision precision of approximation, default: 1
verbose automatic commenting of calculations
debug.plots if TRUE additional plots describing intermediate results are constructed
col.loophull color of loop hull
col.looppoints color of the points of the loop
col.baghull color of bag hull
col.bagpoints color of the points of the bag
transparency see section details
dm x
trim x
main x
numeric.only x
... additional graphical parameters

Details

A bagplot is a bivariate generalization of the well known boxplot. It has been proposed by Rousseeuw,
Ruts, and Tukey. In the bivariate case the box of the boxplot changes to a convex polygon, the bag
of bagplot. In the bag are 50 percent of all points. The fence separates points within the fence from
points outside. It is computed by increasing the the bag. The loop is defined as the convex hull
containing all points inside the fence. If all points are on a straight line you get a classical boxplot.
PlotBag() plots bagplots that are very similar to the one described in Rousseeuw et al. Remarks:
The two dimensional median is approximated. For large data sets the error will be very small. On
the other hand it is not very wise to make a (graphical) summary of e.g. 10 bivariate data points.
In case you want to plot multiple (overlapping) bagplots, you may want plots that are semi-transparent.
For this you can use the transparency flag. If transparency==TRUE the alpha layer is set to ’99’
(hex). This causes the bagplots to appear semi-transparent, but ONLY if the output device is PDF
and opened using: pdf(file="filename.pdf", version="1.4"). For this reason, the default is
transparency==FALSE. This feature as well as the arguments to specify different colors has been
proposed by Wouter Meuleman.

Value

compute.bagplot returns an object of class bagplot that could be plotted by plot.bagplot().
An object of the bagplot class is a list with the following elements: center is a two dimensional
vector with the coordinates of the center. hull.center is a two column matrix, the rows are the
coordinates of the corners of the center region. hull.bag and hull.loop contain the coordinates
of the hull of the bag and the hull of the loop. pxy.bag shows you the coordinates of the points of
the bag. pxy.outer is the two column matrix of the points that are within the fence. pxy.outlier
represent the outliers. The vector hdepths shows the depths of data points. is.one.dim is TRUE if
the data set is (nearly) one dimensional. The dimensionality is decided by analysing the result of
prcomp which is stored in the element prdata. xy shows you the data that are used for the bagplot.
In the case of very large data sets subsets of the data are used for constructing the bagplot. A data set
is very large if there are more data points than approx.limit. xydata are the input data structured
in a two column matrix.



398 PlotBag

Note

Version of bagplot: 10/2012

Author(s)

Hans Peter Wolf <pwolf@wiwi.uni-bielefeld.de>

References

P. J. Rousseeuw, I. Ruts, J. W. Tukey (1999): The bagplot: a bivariate boxplot, The American
Statistician, vol. 53, no. 4, 382–387

See Also

boxplot

Examples

# example: 100 random points and one outlier
dat <- cbind(rnorm(100) + 100, rnorm(100) + 300)
dat <- rbind(dat, c(105,295))

PlotBag(dat,factor=2.5,create.plot=TRUE,approx.limit=300,
show.outlier=TRUE,show.looppoints=TRUE,
show.bagpoints=TRUE,dkmethod=2,
show.whiskers=TRUE,show.loophull=TRUE,
show.baghull=TRUE,verbose=FALSE)

# example of Rousseeuw et al., see R-package rpart
cardata <- structure(as.integer( c(2560,2345,1845,2260,2440,
2285, 2275, 2350, 2295, 1900, 2390, 2075, 2330, 3320, 2885,
3310, 2695, 2170, 2710, 2775, 2840, 2485, 2670, 2640, 2655,
3065, 2750, 2920, 2780, 2745, 3110, 2920, 2645, 2575, 2935,
2920, 2985, 3265, 2880, 2975, 3450, 3145, 3190, 3610, 2885,
3480, 3200, 2765, 3220, 3480, 3325, 3855, 3850, 3195, 3735,
3665, 3735, 3415, 3185, 3690, 97, 114, 81, 91, 113, 97, 97,
98, 109, 73, 97, 89, 109, 305, 153, 302, 133, 97, 125, 146,
107, 109, 121, 151, 133, 181, 141, 132, 133, 122, 181, 146,
151, 116, 135, 122, 141, 163, 151, 153, 202, 180, 182, 232,
143, 180, 180, 151, 189, 180, 231, 305, 302, 151, 202, 182,
181, 143, 146, 146)), .Dim = as.integer(c(60, 2)),
.Dimnames = list(NULL, c("Weight", "Disp.")))

PlotBag(cardata,factor=3,show.baghull=TRUE,
show.loophull=TRUE,precision=1, dkmethod=2)

title("car data Chambers/Hastie 1992")

# points of y=x*x
PlotBag(x=1:30,y=(1:30)^2,verbose=FALSE,dkmethod=2)

# one dimensional subspace



PlotBubble 399

PlotBag(x=1:50,y=1:50)

# pairwise bagplots
par(las=1)
PlotBagPairs(swiss[, 1:2],

main="Swiss Fertility and Socioeconomic Indicators (1888) Data")

PlotBubble Draw a Bubble Plot

Description

Draw a bubble plot, defined by a pair of coordinates x, y to place the bubbles, an area definition
configuring the dimension and a color vector setting the color of the bubbles. The legitimation to
define a new function instead of just using plot(symbols(...)) is the automated calculation of
the axis limits, ensuring that all bubbles will be fully visible.

Usage

PlotBubble(x, ...)

## Default S3 method:
PlotBubble(x, y, area, col = NA, cex = 1, border = par("fg"),

xlim = NULL, ylim = NULL, na.rm = FALSE, ...)

## S3 method for class 'formula'
PlotBubble(formula, data = parent.frame(), ..., subset, ylab = varnames[response])

Arguments

x, y the x and y co-ordinates for the centres of the bubbles. They can be specified in
any way which is accepted by xy.coords.

area a vector giving the area of the bubbles.

col colors for the bubbles, passed to symbol. The default NA (or also NULL) means
do not fill, i.e., draw transparent bubbles.

cex extension factor for the area.

border the border color fot the bubbles. The default means par("fg"). Use border =
NA to omit borders.

xlim, ylim axes limits.

na.rm logical, should NAs be omitted? Defaults to FALSE.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).



400 PlotBubble

subset an optional vector specifying a subset of observations to be used.

ylab the y-label for the plot used in the formula interface.

... the dots are passed to the plot function.

Details

Argument inches controls the sizes of the symbols. If TRUE (the default), the symbols are scaled
so that the largest dimension of any symbol is one inch. If a positive number is given the symbols
are scaled to make largest dimension this size in inches (so TRUE and 1 are equivalent). If inches
is FALSE, the units are taken to be those of the appropriate axes. This behaviour is the same as in
symbols.

Note

A legend can be added with BubbleLegend.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

BubbleLegend, symbols, sunflowerplot

Examples

PlotBubble(latitude ~ longitude, area=(smoky+1)*2e8,
col=SetAlpha(1, 0.5), data=d.whisky)

cols <- c("olivedrab1","orange","green","mediumturquoise","mediumorchid2","firebrick1")
PlotBubble(x = state.x77[,"Income"], y = state.x77[,"Life Exp"], cex=.00004,

area = state.x77[,"Population"], col = cols[state.region], border="grey50",
panel.first=grid(), xlab="Income", ylab="Life Exp.", las=1

)

BubbleLegend(x = "topright", area = c(20000, 10000, 1000), cex=.00004, frame=NA,
cols=cols[1:3], labels = c(20000, 10000, 1000), cex.names=0.7)

legend(x="bottomright", fill=cols[1:4], legend=levels(state.region))



PlotCandlestick 401

PlotCandlestick Plot Candlestick Chart

Description

Plot a candlestick chart. This is used primarily to describe price movements of a security, derivative,
or currency over time. Candlestick charts are a visual aid for decision making in stock, foreign
exchange, commodity, and option trading.

Usage

PlotCandlestick(x, y, vol = NA, xlim = NULL, ylim = NULL,
col = c("springgreen4","firebrick"),
border = NA, args.bar = NULL, args.grid = NULL, ...)

Arguments

x a numeric vector for the x-values. Usually a date.

y the y-values in a matrix (or a data.frame that can be coerced to a matrix) with 4
columns, whereas the first column contains the open price, the second the high,
the third the lowest and the 4th the close price of daily stock prices.

vol the volume, if it should be included in the plot as separate part.

xlim the x limits (x1, x2) of the plot. The default value, NULL, indicates that the range
of the finite values to be plotted should be used.

ylim the y limits of the plot.

col color for the body. To better highlight price movements, modern candlestick
charts often replace the black or white of the candlestick body with colors such
as red for a lower closing and blue or green for a higher closing.

border the border color of the rectangles. Default is NA, meaning no border will be
plotted.

args.grid the arguments of a potential grid. Default is NULL, which will have a grid plotted.
If arguments are provided, they have to be organized as list with the names of
the arguments. (For example: ..., args.grid = list(col="red"))

args.bar optional additional arguments for the volume barplot.

... the dots are passed to plot() command

Details

Candlesticks are usually composed of the body (black or white), and an upper and a lower shadow
(wick): the area between the open and the close is called the real body, price excursions above and
below the real body are called shadows. The wick illustrates the highest and lowest traded prices
of a security during the time interval represented. The body illustrates the opening and closing
trades. If the security closed higher than it opened, the body is white or unfilled, with the opening



402 PlotCashFlow

price at the bottom of the body and the closing price at the top. If the security closed lower than it
opened, the body is black, with the opening price at the top and the closing price at the bottom. A
candlestick need not have either a body or a wick.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotBubble, stars

Examples

nov <- rbind(
"2013-05-28"= c(70.99,71.82,70.49,71.49),
"2013-05-29"= c(71.13,71.90,70.81,71.57),
"2013-05-30"= c(71.25,71.53,70.90,71.01),
"2013-05-31"= c(70.86,70.92,70.30,70.30),
"2013-06-03"= c(70.56,70.89,70.05,70.74),
"2013-06-04"= c(70.37,71.11,69.67,69.90),
"2013-06-05"= c(69.76,69.76,68.92,68.99),
"2013-06-06"= c(69.13,70.02,68.56,70.02),
"2013-06-07"= c(70.45,70.52,69.51,70.20),
"2013-06-10"= c(70.53,70.75,70.05,70.20),
"2013-06-11"= c(69.36,69.66,69.01,69.17),
"2013-06-12"= c(69.65,70.03,68.85,69.21),
"2013-06-13"= c(69.21,70.18,69.13,70.10),
"2013-06-14"= c(70.17,70.48,69.30,69.58),
"2013-06-17"= c(70.14,70.96,69.98,70.44),
"2013-06-18"= c(70.55,71.97,70.55,71.49),
"2013-06-19"= c(71.33,72.00,70.89,70.97),
"2013-06-20"= c(70.04,70.06,68.40,68.55),
"2013-06-21"= c(69.15,69.27,67.68,68.21)

)
colnames(nov) <- c("open","high","low","close")

PlotCandlestick(x=as.Date(rownames(nov)), y=nov, border=NA, las=1, ylab="")

# include some volume information
v <- c(213,108,310,762,70,46,411,652,887,704,289,579,934,619,860,35,215,211,8)
PlotCandlestick(x=as.Date(rownames(nov)), y=nov, vol=v,

border=NA, las=1, ylab="")

PlotCashFlow Cash Flow Plot



PlotCashFlow 403

Description

A cash flow plot is a plot used in finance and allows you to graphically depict the timing of the cash
flows as well as their nature as either inflows or outflows. An "up" arrow represents money received
and a "down" arrow money paid out.

Usage

PlotCashFlow(x, y, xlim = NULL, labels = y, mar = NULL,
cex.per = par("cex"), cex.tck = par("cex") * 0.8,
cex.cash = par("cex"))

Arguments

x time period of the cashflows (in and out)

y amount of the cashflows

xlim range of the x-axis, defaults to range(x).

labels the labels of the cashflows will be printed outside the arrows.

mar a vector with 4 elements, defining the margins for the plot

cex.per the character extension for the period labels

cex.tck character extension for the ticklabels, tipically years

cex.cash the character extension for the labels of the cashflows

Author(s)

Andri Signorell <andri@signorell.net>

See Also

NPV

Examples

PlotCashFlow(x=c(6:9, 13:15), y=-c(rep(40, 4), rep(50,3)),
xlim=c(6,17), labels=c(rep(40, 4), rep(50,3)))

PlotCashFlow(x=c(6,8,9,12,17), y=c(10,30,40,50,70))



404 PlotCirc

PlotCirc Plot Circular Plot

Description

This visualising scheme represents the unidirectional relationship between the rows and the columns
of a contingency table.

Usage

PlotCirc(tab, acol = rainbow(sum(dim(tab))), aborder = "darkgrey",
rcol = SetAlpha(acol[1:nrow(tab)], 0.5), rborder = "darkgrey",
gap = 5, main = "", labels = NULL, cex.lab = 1.0, las = 1,
adj = NULL, dist = 2)

Arguments

tab a table to be visualised.

acol the colors for the peripheral annuli.

aborder the border colors for the peripheral annuli.

rcol the colors for the ribbons.

rborder the border colors for the ribbons.

gap the gap between the entities in degrees.

main the main title, defaults to "".

labels the labels. Defaults to the column names and rownames of the table.

las alignment of the labels, 1 means horizontal, 2 radial and 3 vertical.

adj adjustments for the labels. (Left: 0, Right: 1, Mid: 0.5)

dist gives the distance of the labels from the outer circle. Default is 2.

cex.lab the character extension for the labels.

Details

The visual scheme of representing relationships can be applied to a table, given the observation that
a table cell is a relationship (with a value) between a row and column. By representing the row
and columns as segments along the circle, the information in the corresponding cell can be encoded
as a link between the segments. In general, the cell represents a unidirectional relationship (e.g.
row->column) - in this relationship the role of the segments is not interchangeable (e.g. (row,col)
and (col,row) are different cells). To identify the role of the segment, as a row or column, the ribbon
is made to terminate at the row segment but slightly away from the column segment. In this way,
for a given ribbon, it is easy to identify which segment is the row and which is the column.

Value

the calculated points for the labels, which can be used to place userdefined labels.



PlotConDens 405

Author(s)

Andri Signorell <andri@signorell.net>

References

Inspired by https://circos.ca/presentations/articles/vis_tables1/

See Also

PlotPolar

Examples

tab <- matrix(c(2,5,8,3,10,12,5,7,15), nrow=3, byrow=FALSE)
dimnames(tab) <- list(c("A","B","C"), c("D","E","F"))
tab

PlotCirc( tab,
acol = c("dodgerblue","seagreen2","limegreen","olivedrab2","goldenrod2","tomato2"),
rcol = SetAlpha(c("red","orange","olivedrab1"), 0.5)

)

tab <- table(d.pizza$weekday, d.pizza$operator)
par(mfrow=c(1,2))
PlotCirc(tab, main="weekday ~ operator")
PlotCirc(t(tab), main="operator ~ weekday")

PlotConDens Plot Conditional Densities

Description

Plot conditional densities by group. For describing how the conditional distribution of a categorical
variable y changes over a numerical variable x we have the function cdplot. But if we want to
compare multiple densities much work is required. PlotConDens allows to easily enter a grouping
variable.

Usage

PlotConDens(formula, data, col = NULL, lwd = 2, lty = 1, xlim = NULL, rev = TRUE,
args.dens = NULL, ...)

https://circos.ca/presentations/articles/vis_tables1/


406 PlotConDens

Arguments

formula a "formula" of type y ~ x | g with a single dependent factor, a single numer-
ical explanatory variable and a grouping factor g.

data a data frame containing values for any variables in the formula. By default the
environment where PlotConDens was called from is used.

col a vector of colors to be used to plot the lines. If too short, the values are recycled.

lwd a vector of linewidths to be used to plot the lines. If too short, the values are
recycled.

lty a vector of linetypes to be used to plot the lines. If too short, the values are
recycled.

xlim the range for the x axis.

rev logical, should the values of the response variable be reversed? Default is TRUE.

args.dens additional arguments for the densitiy curves.

... the dots are passed on to plot().

Details

Especially when we’re modelling binary response variables we might want to know, how the binary
variable behaves along some numeric predictors.

Value

the functions for the curves

Author(s)

Andri Signorell <andri@signorell.net>

See Also

cdplot, spineplot, density, PlotMultiDens

Examples

data(Pima.tr2, package="MASS")
PlotConDens (type ~ age | I((npreg > 0)*1L),

data=Pima.tr2, col=c(DescTools::hblue, DescTools::hred), rev=FALSE,
panel.first=quote(grid()))



PlotCorr 407

PlotCorr Plot a Correlation Matrix

Description

This function produces a graphical display of a correlation matrix. The cells of the matrix can be
shaded or colored to show the correlation value.

Usage

PlotCorr(x, cols = colorRampPalette(c(Pal()[2], "white",
Pal()[1]), space = "rgb")(20),

breaks = seq(-1, 1, length = length(cols) + 1),
border = "grey", lwd = 1,
args.colorlegend = NULL, xaxt = par("xaxt"), yaxt = par("yaxt"),
cex.axis = 0.8, las = 2, mar = c(3, 8, 8, 8), mincor = 0,
main = "", clust = FALSE, ...)

Arguments

x x is a correlation matrix to be visualized.
cols the colors for shading the matrix. Uses the package’s option "col1" and "col2"

as default.
breaks a set of breakpoints for the colours: must give one more breakpoint than colour.

These are passed to image() function. If breaks is specified then the algorithm
used follows cut, so intervals are closed on the right and open on the left except
for the lowest interval.

border color for borders. The default is grey. Set this argument to NA if borders should
be omitted.

lwd line width for borders. Default is 1.
args.colorlegend

list of arguments for the ColorLegend. Use NA if no color legend should be
painted.

xaxt parameter to define, whether to draw an x-axis, defaults to "n".
yaxt parameter to define, whether to draw an y-axis, defaults to "n".
cex.axis character extension for the axis labels.
las the style of axis labels.
mar sets the margins, defaults to mar = c(3, 8, 8, 8) as we need a bit more room on

the right.
mincor numeric value between 0 and 1, defining the smallest correlation that is to be

displayed. If this is >0 then all correlations with a lower value are suppressed.
main character, the main title.
clust logical. If set to TRUE, the correlations will be clustered in order to aggregate

similar values.
... the dots are passed to the function image, which produces the plot.



408 PlotCorr

Value

no values returned.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

image, ColorLegend, corrgram(), PlotWeb()

Examples

m <- cor(d.pizza[,sapply(d.pizza, IsNumeric, na.rm=TRUE)], use="pairwise.complete.obs")

PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb")(20))
PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb")(20),

args.colorlegend=NA)

m <- PairApply(d.diamonds[, sapply(d.diamonds, is.factor)], CramerV, symmetric=TRUE)
PlotCorr(m, cols = colorRampPalette(c("white", "steelblue"), space = "rgb")(20),

breaks=seq(0, 1, length=21), border="black",
args.colorlegend = list(labels=sprintf("%.1f", seq(0, 1, length = 11)), frame=TRUE)

)
title(main="Cramer's V", line=2)
text(x=rep(1:ncol(m),ncol(m)), y=rep(1:ncol(m),each=ncol(m)),

label=sprintf("%0.2f", m[,ncol(m):1]), cex=0.8, xpd=TRUE)

# Spearman correlation on ordinal factors
csp <- cor(data.frame(lapply(d.diamonds[,c("carat", "clarity", "cut", "polish",

"symmetry", "price")], as.numeric)), method="spearman")
PlotCorr(csp)

m <- cor(mtcars)
PlotCorr(m, col=Pal("RedWhiteBlue1", 100), border="grey",

args.colorlegend=list(labels=Format(seq(-1,1,.25), digits=2), frame="grey"))

# display only correlation with a value > 0.7
PlotCorr(m, mincor = 0.7)
x <- matrix(rep(1:ncol(m),each=ncol(m)), ncol=ncol(m))
y <- matrix(rep(ncol(m):1,ncol(m)), ncol=ncol(m))
txt <- Format(m, digits=3, ldigits=0)
idx <- upper.tri(matrix(x, ncol=ncol(m)), diag=FALSE)

# place the text on the upper triagonal matrix
text(x=x[idx], y=y[idx], label=txt[idx], cex=0.8, xpd=TRUE)

# or let's get rid of all non significant correlations
p <- PairApply(mtcars, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)
# or somewhat more complex with outer
p0 <- outer(1:ncol(m), 1:ncol(m),

function(a, b)



PlotCorr 409

mapply(
function(x, y) cor.test(mtcars[, x], mtcars[, y])$p.value,
a, b))

# ok, got all the p-values, now replace > 0.05 with NAs
m[p > 0.05] <- NA
PlotCorr(m)

# the text
n <- ncol(m)
text(x=rep(seq(n), times=n),

y=rep(rev(seq(n)), rep.int(n, n)),
labels=Format(m, digits=2, na.form=""),
cex=0.8, xpd=TRUE)

# the text could also be set with outer, but this function returns an error,
# based on the fact that text() does not return some kind of result
# outer(X = 1:nrow(m), Y = ncol(m):1,
# FUN = "text", labels = Format(m, digits=2, na.form = ""),
# cex=0.8, xpd=TRUE)

# put similiar correlations together
PlotCorr(m, clust=TRUE)

# same as
idx <- order.dendrogram(as.dendrogram(

hclust(dist(m), method = "mcquitty")
))

PlotCorr(m[idx, idx])

# plot only upper triangular matrix and move legend to bottom
m <- cor(mtcars)
m[lower.tri(m, diag=TRUE)] <- NA

p <- PairApply(mtcars, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)
m[p > 0.05] <- NA

PlotCorr(m, mar=c(8,8,8,8), yaxt="n",
args.colorlegend = list(x="bottom", inset=-.15, horiz=TRUE,

height=abs(LineToUser(line = 2.5, side = 1)),
width=ncol(m)))

mtext(text = rev(rownames(m)), side = 4, at=1:ncol(m), las=1, line = -5, cex=0.8)

text(1:ncol(m), ncol(m):1, colnames(m), xpd=NA, cex=0.8, font=2)

n <- ncol(m)
text(x=rep(seq(n), times=n),

y=rep(rev(seq(n)), rep.int(n, n)),
labels=Format(t(m), digits=2, na.form=""),
cex=0.8, xpd=TRUE)



410 PlotDot

PlotDot Cleveland’s Dot Plots

Description

Draw a Cleveland dot plot. This is an extended version of dotchart with an added option for error
bars, an add argument and several more options. PlotCI() is a small helpfunction to facilitate
ci-plots of several models.

Usage

PlotDot(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = 21, bg = par("bg"),

color = par("fg"), gcolor = par("fg"), lcolor = "gray", lblcolor = par("fg"),
xlim = NULL, main = NULL, xlab = NULL, ylab = NULL,
xaxt = NULL, yaxt = NULL, add = FALSE, args.errbars = NULL,
cex.axis = par("cex.axis"), cex.pch = 1.2, cex.gpch = 1.2,
gshift = 2, automar = TRUE, ...)

PlotDotCI(..., grp = 1, cex = par("cex"),
pch = 21, gpch = 21, bg = par("bg"), color = par("fg"), gcolor = par("fg"),
lcolor = "gray", lblcolor = par("fg"), xlim = NULL, main = NULL,
xlab = NULL, ylab = NULL, xaxt = NULL, yaxt = NULL,
cex.axis = par("cex.axis"), cex.pch = 1.2, cex.gpch = 1.2,
gshift = 2, automar = TRUE)

Arguments

x either a vector or matrix of numeric values (NAs are allowed). If x is a matrix
the overall plot consists of juxtaposed dotplots for each row. Inputs which sat-
isfy is.numeric(x) but not is.vector(x) || is.matrix(x) are coerced by
as.numeric, with a warning.

labels a vector of labels for each point. For vectors the default is to use names(x) and
for matrices the row labels dimnames(x)[[1]].

groups an optional factor indicating how the elements of x are grouped. If x is a matrix,
groups will default to the columns of x.

gdata data values for the groups. This is typically a summary such as the median or
mean of each group.

cex the character size to be used. Setting cex to a value smaller than one can be a
useful way of avoiding label overlap. Unlike many other graphics functions, this
sets the actual size, not a multiple of par("cex").

pch the plotting character or symbol to be used. Default is 21.

gpch the plotting character or symbol to be used for group values.



PlotDot 411

bg the background color of plotting characters or symbols to be used; use par(bg=
*) to set the background color of the whole plot.

color the color(s) to be used for points and labels.

gcolor the single color to be used for group labels and values.

lcolor the color(s) to be used for the horizontal lines.

lblcolor the color(s) to be used for labels.

xlim horizontal range for the plot, see plot.window, e.g.

main overall title for the plot, see title.

xlab, ylab axis annotations as in title.

xaxt a character which specifies the x axis type. Specifying "n" suppresses plotting
of the axis.

yaxt a character which specifies the y axis type. Specifying "n" suppresses plotting
of the axis.

add logical specifying if bars should be added to an already existing plot; defaults to
FALSE.

args.errbars optional arguments for adding error bars. All arguments for ErrBars can be
supplied. If left to NULL (default), no error bars will be plotted.

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex.

cex.pch The magnification to be used for plot symbols relative to the current setting of
cex.

cex.gpch The magnification to be used for group symbols relative to the current setting of
cex.

gshift the number of characters, for which the grouplabels should be shift to the left
compared to the sublabels.

automar logical (default TRUE), defining if the left margin should be set according to the
width of the given labels, resp. grouplabels. If set to FALSE the margins are
taken from par("mar").

... graphical parameters can also be specified as arguments.

grp an integer, defining if the the coefficients should be grouped along the first or
the second dimension (default is 1).

Details

Dot plots are a reasonable substitute for bar plots. This function is invoked to produce dotplots as
described in Cleveland (1985).

For PlotDotCI() the dots are a list of matrices with 3 columns, whereas the first is the coefficent,
the second the lower and the third the upper end of the confidence interval.

Value

Return the y-values used for plotting.



412 PlotDot

Author(s)

R-Core with some extensions by Andri Signorell <andri@signorell.net>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

dotchart, PlotDotCI

Examples

PlotDot(VADeaths, main = "Death Rates in Virginia - 1940")
op <- par(xaxs = "i") # 0 -- 100%
PlotDot(t(VADeaths), xlim = c(0,100),

main = "Death Rates in Virginia - 1940")
par(op)

# add some error bars
PlotDot(VADeaths, main="Death Rates in Virginia - 1940", col="red", pch=21,

args.errbars = list(from=VADeaths-2, to=VADeaths+2, mid=VADeaths,
cex=1.4))

# add some other values
PlotDot(VADeaths+3, pch=15, col="blue", add=TRUE)

# same as PlotDotCI
xci <- do.call(rbind, tapply( d.pizza$delivery_min, d.pizza$driver,

MeanCI, conf.level=0.99, na.rm=TRUE))

PlotDot(xci[,1], main="delivery_min ~ driver", pch=21, bg="grey80", col="black",
args.errbars = list(from=xci[,2], to=xci[,3], mid=xci[,1], lwd=2, col="grey40", cex=1.5),

xlim=c(15,35), panel.before=grid())

# with group data
x <- with(d.pizza, tapply(temperature, list(area, driver), mean, na.rm=TRUE))

PlotDot(x, gdata = tapply(d.pizza$temperature, d.pizza$driver, mean, na.rm=TRUE),
gpch = 15)

# special format
par(lend=1)

PlotDot(VADeaths, main="Death Rates in Virginia - 1940", pch="|",
lcolor = DescTools::hecru, col=DescTools::hred,
args.errbars = list(from=VADeaths-2, to=VADeaths+2, mid=VADeaths,

cex=1.3, lwd=8, code=0, col=DescTools::hgreen))



PlotECDF 413

# Error bars for binomial confidence intervals
tab <- table(d.pizza$driver, d.pizza$wine_delivered)
xci <- SetNames(BinomCI(tab[,1], rowSums(tab)), rownames=rownames(tab))
PlotDot(xci[,1], main="wine delivered ~ driver ", xlim=c(0,1),

args.errbars=list(from=xci[,-1], mid=xci[,1], pch=21))

# Error bars for confidence intervals for means
xci <- do.call(rbind, tapply(d.pizza$delivery_min, d.pizza$driver,

MeanCI, conf.level=0.99, na.rm=TRUE))

PlotDot(xci[, 1], main="delivery_min ~ driver", args.errbars=list(from=xci))

# Setting the colours
# define some error bars first
lci <- sweep(x = VADeaths, MARGIN = 2, FUN = "-", 1:4)
uci <- sweep(x = VADeaths, MARGIN = 1, FUN = "+", 1:5)

PlotDot(VADeaths, main="This should only show how to set the colours, not be pretty",
pch=21, col=c("blue","grey"), bg=c("red", "yellow"),
gcolor = c("green", "blue", "orange", "magenta"), gdata=c(10,20,30,40),
gpch = c(15:18), lcolor = "orange",
args.errbars = list(from=lci, to=uci, mid=VADeaths, cex=1.4))

PlotECDF Empirical Cumulative Distribution Function

Description

Faster alternative for plotting the empirical cumulative distribution function (ecdf). The function
offers the option to construct the ecdf on the base of a histogram, which makes sense, when x is
large. So the plot process is much faster, without loosing much precision in the details.

Usage

PlotECDF(x, breaks = NULL, col = Pal()[1], ylab = "",
lwd = 2, xlab = NULL, ...)

Arguments

x numeric vector of the observations for ecdf.
breaks will be passed directly to hist. If left to NULL, no histogram will be used.
col color of the line.
ylab label for the y-axis.
lwd line width.
xlab label for the x-axis.
... arguments to be passed to subsequent functions.



414 PlotFaces

Details

The stats function plot.ecdf is fine for vectors that are not too large. However for n ~ 1e7 we would
observe a dramatic performance breakdown (possibly in combination with the use of do.call).

PlotECDF is designed as alternative for quicker plotting the ecdf for larger vectors. If breaks are
provided as argument, a histogram with that number of breaks will be calculated and the ecdf will
use those frequencies instead of respecting every single point.
Note that a plot will rarely need more than ~1’000 points on x to have a sufficient resolution on
usual terms. PlotFdist will also use this number of breaks by default.

Value

no value returned, use plot.ecdf if any results are required.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

plot.ecdf, PlotFdist

Examples

PlotECDF(d.pizza$temperature)

# make large vector
x <- rnorm(n=1e7)

# plot only 1000 points instead of 1e7
PlotECDF(x, breaks=1000)

PlotFaces Chernoff Faces

Description

Plot Chernoff faces. The rows of a data matrix represent cases and the columns the variables.

Usage

PlotFaces(xy, which.row, fill = FALSE, nr, nc,
scale = TRUE, byrow = FALSE, main, labels, col = "white")



PlotFaces 415

Arguments

xy xy data matrix, rows represent individuals and columns attributes.

which.row defines a permutation of the rows of the input matrix.

fill logic. If set to TRUE, only the first nc attributes of the faces are transformed, nc
is the number of columns of x.

nr number of columns of faces on graphics device

nc number of rows of faces

scale logic. If set to TRUE, attributes will be normalized.

byrow if(byrow==TRUE), x will be transposed.

main title.

labels character strings to use as names for the faces.

col a vector of colors used for the parts of the faces. Colors are recycled in the
order: "nose", "eyes", "hair", "face", "lips", "ears". Default is NA, which will
omit colors.

Details

The features paramters of this implementation are:

• 1 height of face

• 2 width of face

• 3 shape of face

• 4 height of mouth

• 5 width of mouth

• 6 curve of smile

• 7 height of eyes

• 8 width of eyes

• 9 height of hair

• 10 width of hair

• 11 styling of hair

• 12 height of nose

• 13 width of nose

• 14 width of ears

• 15 height of ears



416 PlotFaces

For details look at the literate program of faces

Value

information about usage of variables for face elements is returned invisibly

Note

based on version 12/2009

Author(s)

H. P. Wolf, some changes Andri Signorell <andri@signorell.net>

References

Chernoff, H. (1973) The use of faces to represent statistiscal assoziation, JASA, 68, pp 361–368.

The smooth curves are computed by an algorithm found in:
Ralston, A. and Rabinowitz, P. (1985) A first course in numerical analysis, McGraw-Hill, pp 76ff.

Examples

PlotFaces(rbind(1:3,5:3,3:5,5:7))

data(longley)
PlotFaces(longley[1:9,])

set.seed(17)
PlotFaces(matrix(sample(1:1000,128,), 16, 8), main="random faces")



PlotFdist 417

means <- lapply(iris[,-5], tapply, iris$Species, mean)
m <- t(do.call(rbind, means))
m <- cbind(m, matrix(rep(1, 11*3), nrow=3))

# define the colors, first for all faces the same
col <- replicate(3, c("orchid1", "olivedrab", "goldenrod4",

"peachpuff", "darksalmon", "peachpuff3"))
rownames(col) <- c("nose","eyes","hair","face","lips","ears")
# change haircolor individually for each face
col[3, ] <- c("lightgoldenrod", "coral3", "sienna4")

z <- PlotFaces(m, nr=1, nc=3, col=col)

# print the used coding
print(z$info, right=FALSE)

PlotFdist Frequency Distribution Plot

Description

This function is designed to give a univariate graphic representation of a numeric vectors frequency
distribution. It combines a histogram, a density curve, a boxplot and the empirical cumulative
distribution function (ecdf) in one single plot. A rug as well as a model distribution curve (e.g.
a normal curve) can optionally be superposed. This results in a dense and informative picture of
the facts. Still the function remains flexible as all possible arguments can be passed to the single
components (hist, boxplot etc.) as a list (see examples).

Usage

PlotFdist(x, main = deparse(substitute(x)), xlab = "", xlim = NULL,
args.hist = NULL, args.rug = NA, args.dens = NULL,
args.curve = NA, args.boxplot = NULL, args.ecdf = NULL,
args.curve.ecdf = NA, heights = NULL, pdist = NULL,
na.rm = FALSE, cex.axis = NULL, cex.main = NULL, mar = NULL, las = 1)

Arguments

x the numerical variable, whose distribution is to be plotted.

main main title of the plot.

xlab label of the x-axis, defaults to "". (The name of the variable is typically placed
in the main title and would be redundant here.)

xlim range of the x-axis, defaults to a pretty range(x, na.rm = TRUE).

args.hist list of additional arguments to be passed to the histogram hist(). The defaults
chosen when setting args.hist = NULL are more or less the same as in hist.
The argument type defines, whether a histogram ("hist") or a plot with type =
"h" (for ’histogram’ like vertical lines for mass representation) should be used.



418 PlotFdist

The arguments for a "h-plot"" will be col, lwd, pch.col, pch, pch.bg for the
line and for an optional point character on top. The default type used will be
chosen on the structure of x. If x is an integer with up to 12 unique values there
will be a "h-plot" and else a histogram!

args.rug list of additional arguments to be passed to the function rug(). Use args.rug
= NA if no rug should be added. This is the default. Use args.rug = NULL to add
rug with reasonable default values.

args.dens list of additional arguments to be passed to density. Use args.dens = NA if no
density curve should be drawn. The defaults are taken from density.

args.curve list of additional arguments to be passed to curve. This argument allows to add
a fitted distribution curve to the histogram. By default no curve will be added
(args.curve = NA). If the argument is set to NULL, a normal curve with mean(x)
and sd(x) will be drawn. See examples for more details.

args.boxplot list of additional arguments to be passed to the boxplot boxplot(). The de-
faults are pretty much the same as in boxplot. The two additional arguments
pch.mean (default 23) and col.meanci (default "grey80") control, if the mean
is displayed within the boxplot. Setting those arguments to NA will prevent them
from being displayed.

args.ecdf list of additional arguments to be passed to ecdf(). Use args.ecdf = NA if no
empirical cumulation function should be included in the plot. The defaults are
taken from plot.ecdf.

args.curve.ecdf

list of additional arguments to be passed to curve. This argument allows to add
a fitted distribution curve to the cumulative distribution function. By default no
curve will be added (args.curve.ecdf = NA). If the argument is set to NULL, a
normal curve with mean(x) and sd(x) will be drawn. See examples for more
details.

heights heights of the plotparts, defaults to c(2,0.5,1.4) for the histogram, the box-
plot and the empirical cumulative distribution function, resp. to c(2,1.5) for a
histogram and a boxplot only.

pdist distances of the plotparts, defaults to c(0, 0), say there will be no distance
between the histogram, the boxplot and the ecdf-plot. This can be useful for
instance in case that the x-axis has to be added to the histogram.

na.rm logical, should NAs be omitted? Histogram and boxplot could do without this
option, but the density-function refuses to plot with missings. Defaults to FALSE.

cex.axis character extension factor for the axes.

cex.main character extension factor for the main title. Must be set in dependence of the
plot parts in order to get a harmonic view.

mar A numerical vector of the form c(bottom, left, top, right) which gives the
number of lines of outer margin to be specified on the four sides of the plot. The
default is c(0, 0, 3, 0).

las numeric in c(0,1,2,3); the orientation of axis labels. See par.



PlotFdist 419

Details

Performance has been significantly improved, but if x is growing large (n > 1e7) the function will
take its time to complete. Especially the density curve and the ecdf, but as well as the boxplot (due
to the chosen alpha channel) will take their time to calculate and plot.
In such cases consider taking a sample, i.e. PlotFdist(x[sample(length(x), size=5000)]), the
big picture of the distribution won’t usually change much. .

Author(s)

Andri Signorell <andri@signorell.net>

See Also

hist, boxplot, ecdf, density, rug, layout

Examples

PlotFdist(x=d.pizza$delivery_min, na.rm=TRUE)

# define additional arguments for hist, dens and boxplot
# do not display the mean and its CI on the boxplot
PlotFdist(d.pizza$delivery_min, args.hist=list(breaks=50),

args.dens=list(col="olivedrab4"), na.rm=TRUE,
args.boxplot=list(col="olivedrab2", pch.mean=NA, col.meanci=NA))

# do a "h"-plot instead of a histogram for integers
x <- sample(runif(10), 100, replace = TRUE)
PlotFdist(x, args.hist=list(type="mass"))

pp <- rpois(n = 100, lambda = 3)
PlotFdist(pp, args.hist = list(type="mass", pch=21, col=DescTools::horange,

cex.pch=2.5, col.pch=DescTools::hred, lwd=3, bg.pch="white"),
args.boxplot = NULL, args.ecdf = NA, main="Probability mass function")

# special arguments for hist, density and ecdf
PlotFdist(x=faithful$eruptions,

args.hist=list(breaks=20), args.dens=list(bw=.1),
args.ecdf=list(cex=1.2, pch=16, lwd=1), args.rug=TRUE)

# no density curve, no ecdf but add rug instead, make boxplot a bit higher
PlotFdist(x=d.pizza$delivery_min, na.rm=TRUE, args.dens=NA, args.ecdf=NA,

args.hist=list(xaxt="s"), # display x-axis on the histogram
args.rug=TRUE, heights=c(3, 2.5), pdist=2.5, main="Delivery time")

# alpha channel on rug is cool, but takes its time for being drawn...
PlotFdist(x=d.pizza$temperature, args.rug=list(col=SetAlpha("black", 0.1)), na.rm=TRUE)

# plot a normal density curve, but no boxplot nor ecdf
x <- rnorm(1000)
PlotFdist(x, args.curve = NULL, args.boxplot=NA, args.ecdf=NA)



420 PlotFun

# compare with a t-distribution
PlotFdist(x, args.curve = list(expr="dt(x, df=2)", col="darkgreen"),

args.boxplot=NA, args.ecdf=NA)
legend(x="topright", legend=c("kernel density", "t-distribution (df=2)"),

fill=c(getOption("col1", DescTools::hred), "darkgreen"), xpd=NA)

# add a gamma distribution curve to both, histogram and ecdf
ozone <- airquality$Ozone; m <- mean(ozone, na.rm = TRUE); v <- var(ozone, na.rm = TRUE)
PlotFdist(ozone, args.hist = list(breaks=15),
args.curve = list(expr="dgamma(x, shape = m^2/v, scale = v/m)", col=DescTools::hecru),
args.curve.ecdf = list(expr="pgamma(x, shape = m^2/v, scale = v/m)", col=DescTools::hecru),
na.rm = TRUE, main = "Airquality - Ozone")

legend(x="topright", xpd=NA,
legend=c(expression(plain("gamma: ") * Gamma * " " * bgroup("(", k * " = " *

over(bar(x)^2, s^2) * " , " * theta * plain(" = ") * over(s^2, bar(x)), ")") ),
"kernel density"),

fill=c(DescTools::hecru, getOption("col1", DescTools::hred)), text.width = 0.25)

PlotFun Plot a Function

Description

Plots mathematical expressions in one variable using the formula syntax.

Usage

PlotFun(FUN, args = NULL, from = NULL, to = NULL, by = NULL,
xlim = NULL, ylim = NULL, polar = FALSE, type = "l",
col = par("col"), lwd = par("lwd"), lty = par("lty"),
pch = NA, mar = NULL, add = FALSE, ...)

Arguments

FUN a mathematical expression defined using the formula syntax: f(x) ~ x. x and y
can as well be functions of a parameter t: y(t) ~ x(t) (see examples).

args a list of additional parameters defined in the expression besides the independent
variable.

from, to the range over which the function will be plotted.

by number: increment of the sequence.

xlim, ylim NULL or a numeric vector of length 2; if non-NULL it provides the defaults
for c(from, to) and, unless add=TRUE, selects the x-limits of the plot - see
plot.window.

polar logical. Should polar coordinates be used? Defaults to FALSE.

type plot type: see plot.default



PlotFun 421

col colors of the lines.

lwd line widths for the lines.

lty line type of the lines.

pch plotting ’character’, i.e., symbol to use.

mar A numerical vector of the form c(bottom, left, top, right) which gives the
number of lines of margin to be specified on the four sides of the plot. The
default is c(3,3,3,3).

add logical; if TRUE add to an already existing plot; if NA start a new plot taking the
defaults for the limits and log-scaling of the x-axis from the previous plot. Taken
as FALSE (with a warning if a different value is supplied) if no graphics device
is open.

... the dots are passed to the plot, resp. lines function.

Details

A function can be plotted with curve. This function here adds some more features, one enabling
to use a formula for defining the function to plot. This enables as well a parametric equation to be
entered straight forward. Parameters of a function can be set separatedly. The aspect ratio y/x will
be set to 1 by default. (See plot.window for details.)

If the argument axes (given in the dots) is not set to FALSE centered axis at a horizontal and vertical
position of 0 will be drawn, containing major and minor ticks.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

curve

Examples

# simple quadratic function y = x^2
PlotFun(x^2 ~ x)

par(mfrow=c(3,4))

# Cartesian leaf
PlotFun(3*a*z^2 /(z^3+1) ~ 3*a*z /(z^3+1+b), args=list(a=2, b=.1), from=-10, to=10, by=0.1,

xlim=c(-5,5), ylim=c(-5,5), col="magenta", asp=1, lwd=2 )

# family of functions
PlotFun(a*exp(-x/5)*sin(n*x) ~ x, args=list(n=4, a=3), from=0, to=10, by=0.01,

col="green")

PlotFun(a*exp(-x/5)*sin(n*x) ~ x, args=list(n=6, a=3), from=0, to=10, by=0.01,
col="darkgreen", add=TRUE)

# cardioid



422 PlotLinesA

PlotFun(a*(1+cos(t)) ~ t, args=list(a=2), polar=TRUE, from=0, to=2*pi+0.1, by=0.01, asp=1)

PlotFun(13*cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t) ~ 16*sin(t)^3,
from=0, to=2*pi, by=0.01, asp=1, xlim=c(-20,20), col="red", lwd=2)

PlotFun(a*sin(2*t)*cos(2*t) ~ t, args=list(a=6), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,
col="orange")

# astroid
PlotFun(a*sin(t)^3 ~ a*cos(t)^3, args=list(a=2), from=0, to=2*pi+0.1, lwd=3, by=0.01,

col="red")

# lemniscate of Bernoulli
PlotFun((2*a^2*cos(2*t))^2 ~ t, args=list(a=1), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,

col="darkblue")

# Cycloid
PlotFun(a*(1-cos(t)) ~ a*(t-sin(t)), args=list(a=0.5), from=0, to=30, by=0.01,

col="orange")

# Kreisevolvente
PlotFun(a*(sin(t) - t*cos(t)) ~ a*(cos(t) + t*sin(t)), args=list(a=0.2), from=0, to=50, by=0.01,

col="brown")

PlotFun(sin(2*t) ~ sin(t), from=0, to=2*pi, by=0.01, col="blue", lwd=2)

# multiple values for one parameter
sapply(1:3, function(a) PlotFun(sin(a*x) ~ x,

args=list(a=a), from=0, to=2*pi, by=0.01,
add=(a!=1), col=a))

PlotFun(sin(3*x) ~ x, polar=TRUE, from=0, to=pi, by=0.001, col=DescTools::hred, lwd=2)

PlotFun(1 + 1/10 * sin(10*x) ~ x, polar=TRUE, from=0, to=2*pi, by=0.001,
col=DescTools::hred)

PlotFun(sin(x) ~ cos(x), polar=FALSE, from=0, to=2*pi, by=0.01, add=TRUE, col="blue")

PlotLinesA Plot Lines

Description

Plot the columns of one matrix against the columns of another. Adds a legend on the right at the
endpoints of lines.



PlotLinesA 423

Usage

PlotLinesA(x, y, col = 1:5, lty = 1, lwd = 1, lend = par("lend"),
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, xaxt = NULL, yaxt = NULL,

cex = 1, args.legend = NULL, main = NULL, grid = TRUE, mar = NULL,
pch = NA, pch.col = par("fg"), pch.bg = par("bg"), pch.cex = 1, ...)

Arguments

x, y vectors or matrices of data for plotting. The number of rows should match. If
one of them are missing, the other is taken as y and an x vector of 1:n is used.
Missing values (NAs) are allowed.

col vector of colors. Colors are used cyclically.

lty, lwd, lend vector of line types, widths, and end styles. The first element is for the first
column, the second element for the second column, etc., even if lines are not
plotted for all columns. Line types will be used cyclically until all plots are
drawn.

xlab, ylab titles for x and y axes, as in plot.

xlim, ylim ranges of x and y axes, as in plot.

xaxt, yaxt a character which specifies the x axis type. Specifying "n" suppresses plotting
of the axis. The standard value is "s", any value other than "n" implies plotting.

cex character expansion factor relative to current par("cex").

args.legend list of additional arguments for the legend; names of the list are used as argument
names. If set to NA, the legend will be suppressed. See details.

main an overall title for the plot.

grid logical adds an nx by ny rectangular grid to an existing plot.

mar the margins of the plot.

pch character string or vector of 1-characters or integers for plotting characters, see
points. The first character is the plotting-character for the first plot, the second
for the second, etc. The default is the digits (1 through 9, 0) then the lowercase
and uppercase letters. If no points should be drawn set this argument to NA (this
is the default).

pch.col vector of colors for the points. Colors are used cyclically. Ignored if pch = NA.

pch.bg vector of background (fill) colors for the open plot symbols given by pch =
21:25 as in points. The default is set to par("bg"). Ignored if pch = NA.

pch.cex vector of character expansion sizes, used cyclically. This works as a multiple of
par("cex"). Default is 1.0. Ignored if pch = NA.

... the dots are sent to matplot

.

Details

This function is rather a template, than a function. It wraps matplot to generate a lines plot and
adds a rather sophisticated legend on the right side, while calculating appropriate margins. A grid
option is included (as panel.first does not work in matplot).



424 PlotLog

As in matplot, the first column of x is plotted against the first column of y, the second column of
x against the second column of y, etc. If one matrix has fewer columns, plotting will cycle back
through the columns again. (In particular, either x or y may be a vector, against which all columns
of the other argument will be plotted.)

The legend can be controlled by following arguments:

list(line = c(1, 1), width = 1, y = SpreadOut(unlist(last),
mindist = 1.2 * strheight("M") * par("cex")),
labels = names(last), cex = par("cex"), col = col[ord],
lwd = lwd[ord], lty = lty[ord])

All arguments are recycled.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

matplot, par

Examples

m <- matrix(c(3,4,5,1,5,4,2,6,2), nrow = 3,
dimnames = list(dose = c("A","B","C"),

age = c("2010","2011","2012")))

PlotLinesA(m, col=c(Pal("Helsana")), main="Dose ~ age_grp", lwd=3, ylim=c(1, 10))

# example from MASS
shoes <- list(

A = c(13.2, 8.2, 10.9, 14.3, 10.7, 6.6, 9.5, 10.8, 8.8, 13.3),
B = c(14, 8.8, 11.2, 14.2, 11.8, 6.4, 9.8, 11.3, 9.3, 13.6))

PlotLinesA(do.call(rbind, shoes), xlim=c(0.75,2.25), col=1, main="shoes",
pch=21, pch.bg="white", pch.col=1, pch.cex=1.5)

# let's define some arbitrary x-coordinates
PlotLinesA(x=c(1,2,6,8,15), y=VADeaths)

PlotLog Logarithmic Plot

Description

The base function grid() does not support logarithmic scales very well. Especially when more
lines are required, grids have to be created manually. PlotLog creates a plot with at least one
logarithmic axis and places a logarithmic grid in the background of the data.



PlotMarDens 425

Usage

PlotLog(x, ..., args.grid = NULL, log = "xy")

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting structure,
function or any R object with a plot method can be provided.

... the dots are passed on to the function plot().

args.grid a list of arguments for the grid. This contains line type, line width and line color,
separately for major gridlines and for minor gridlines.
args.grid=list(lwd=1, lty=3, col="grey85", col.min="grey60") are used
as default. If the argument is set to NA, no grid will be plotted.

log a character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

axis

Examples

PlotLog(brain ~ body, data=MASS::Animals, log="xy",
xlim=c(.01, 1e5), ylim=c(.1, 1e4), main="Animal brain/body size",
pch=21, bg="grey", cex=1.5)

PlotMarDens Scatterplot With Marginal Densities

Description

Draw a scatter plot with marginal densities on the x- and y-axis. Groups can be defined by grp.

Usage

PlotMarDens(x, y, grp = 1, xlim = NULL, ylim = NULL,
col = rainbow(nlevels(factor(grp))),
mardens = c("all","x","y"), pch = 1, pch.cex = 1,
main = "", na.rm = FALSE, args.legend = NULL,
args.dens = NULL, ...)



426 PlotMarDens

Arguments

x numeric vector of x values.
y numeric vector of y values (of same length as x).
grp grouping variable(s), typically factor(s), all of the same length as x.
xlim the x limits of the plot.
ylim the y limits of the plot.
col the colors for lines and points. Uses rainbow() colors by default.
mardens which marginal densities to plot. Can be set to either just x or y, or both ("all",

latter being the default).
pch a vector of plotting characters or symbols.
pch.cex magnification to be used for plotting characters relative to the current setting of

cex.
main a main title for the plot, see also title.
na.rm logical, should NAs be omitted? Defaults to FALSE.
args.legend list of additional arguments for the legend. args.legend set to NA prevents a

legend from being drawn.
args.dens list of additional arguments to be passed to density. Use args.dens = NA if no

density curve should be drawn. The defaults are taken from density.
... further arguments are passed to the function plot().

Author(s)

Andri Signorell <andri@signorell.net>

See Also

plot, points, density, layout

Examples

# best seen with: x11(7.5, 4.7)

# just one variable with marginal densities
PlotMarDens( y=d.pizza$temperature, x=d.pizza$delivery_min, grp=1

, xlab="delivery_min", ylab="temperature", col=SetAlpha("brown", 0.4)
, pch=15, lwd=3
, panel.first= grid(), args.legend=NA
, main="Temp ~ delivery"

)

# use a group variable
PlotMarDens( y=d.pizza$temperature, x=d.pizza$delivery_min, grp=d.pizza$area

, xlab="delivery_min", ylab="temperature", col=c("brown","orange","lightsteelblue")
, panel.first=list( grid() )
, main = "temperature ~ delivery_min | area"

)
# reset layout
par(mfrow=c(1,1))



PlotMiss 427

PlotMiss Plot Missing Data

Description

Takes a data frame and displays the location of missing data. The missings can be clustered and be
displayed together.

Usage

PlotMiss(x, col = DescTools::hred, bg = SetAlpha(DescTools::hecru, 0.3),
clust = FALSE, main = NULL, ...)

Arguments

x a data.frame to be analysed.

col the colour of the missings.

bg the background colour of the plot.

clust logical, defining if the missings should be clustered. Default is FALSE.

main the main title.

... the dots are passed to plot.

Details

A graphical display of the position of the missings can be help to detect dependencies or patterns
within the missings.

Value

if clust is set to TRUE, the new order will be returned invisibly.

Author(s)

Andri Signorell <andri@signorell.net>, following an idea of Henk Harmsen <henk@carbonmetrics.com>

See Also

hclust, CountCompCases

Examples

PlotMiss(d.pizza, main="Missing pizza data")



428 PlotMonth

PlotMonth Cycle Plot for Seasonal Effects of an Univariate Time Series

Description

Plot seasonal effects of a univariate time series following Cleveland’s definition for cycle plots.

Usage

PlotMonth(x, type = "l", labels, xlab = "", ylab = deparse(substitute(x)), ...)

Arguments

x univariate time series

type one out of "l" (line) or "h" (histogram), defines the plot type of the year com-
ponents

labels the labels for the cyclic component to be displayed on the x-axis

xlab a title for the x axis: see title.

ylab a title for the y axis: see title.

... the dots are passed to the plot command.

Details

A cycle plot is a graphical method invented to study teh behaviour of a seasonal time series. The
seasonal component of a univariate series is graphed. First the January values are graphed for
successive years, then the February values and so forth. For each monthly subseries the mean of the
values is portrayed by a horizontal line.

Author(s)

Markus Huerzeler (ETH Zurich), slight changes Andri Signorell <andri@signorell.net>

References

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

See Also

ts

Examples

PlotMonth(AirPassengers)



PlotMosaic 429

PlotMosaic Mosaic Plots

Description

Plots a mosaic on the current graphics device.

Usage

PlotMosaic(x, main = deparse(substitute(x)), horiz = TRUE, cols = NULL,
off = 0.02, mar = NULL, xlab = NULL, ylab = NULL,
cex = par("cex"), las = 2, ...)

Arguments

x a contingency table in array form, with optional category labels specified in the
dimnames(x) attribute. The table is best created by the table() command. So far
only 2-way tables are allowed.

main character string for the mosaic title.

horiz logical, defining the orientation of the mosaicplot. TRUE (default) makes a hori-
zontal plot.

cols the colors of the plot.

off the offset between the rectangles. Default is 0.02.

mar the margin for the plot.

xlab, ylab x- and y-axis labels used for the plot; by default, the first and second element of
names(dimnames(X)) (i.e., the name of the first and second variable in X).

cex numeric character expansion factor; multiplied by par("cex") yields the final
character size. NULL and NA are equivalent to 1.0.

las the style of axis labels. 0 - parallel to the axis, 1 - horizontal, 2 - perpendicular,
3 - vertical.

... additional arguments are passed to the text function.

Details

The reason for this function to exist are the unsatisfying labels in base mosaicplot.

Value

list with the midpoints of the rectangles

Author(s)

Andri Signorell <andri@signorell.net>



430 PlotMultiDens

References

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the American
Statistical Association, 89, 190-200.

See Also

mosaicplot

Examples

PlotMosaic(HairEyeColor[,,1])

PlotMultiDens Plot Multiple Density Curves

Description

Multiple density curves are plotted on the same plot. The function plots the density curves in the
defined colors and linetypes, after having calculated the globally appropriate xlim- and ylim-values.
A legend can directly be included.

Usage

PlotMultiDens(x, ...)

## Default S3 method:
PlotMultiDens(x, xlim = NULL, ylim = NULL, col = Pal(), lty = "solid",

lwd = 2, fill = NA, xlab = "x", ylab = "density", args.dens = NULL,
args.legend = NULL, na.rm = FALSE, flipxy = FALSE, ...)

## S3 method for class 'formula'
PlotMultiDens(formula, data, subset, na.action, ...)

Arguments

x a list of vectors whose densities are to be plotted. Use split to separate a vector
by groups. (See examples)

xlim, ylim xlim, ylim of the plot.

col colors of the lines, defaults to Pal(), returning the default palette.

lty line type of the lines.

lwd line widths for the lines.

fill colors for fill the area under the density curve. If set to NA (default) there will be
no color.

xlab, ylab a title for the x, resp. y axis. Defaults to "x" and "density".



PlotMultiDens 431

args.dens list of additional arguments to be passed to the density function.
If set to NULL the defaults will be used. Those are n = 4096 (2^12) and kernel
= "epanechnikov".

args.legend list of additional arguments to be passed to the legend function. Use args.legend
= NA if no legend should be added.

na.rm should NAs be omitted? Defaults to FALSE.

flipxy logical, should x- and y-axis be flipped? Defaults to FALSE.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... the dots are passed to plot(...).

Details

All style arguments, density arguments and data list elements will be recycled if necessary.
The argument flipxy leads to exchanged x- and y-values. This option can be used to plot density
curves with a vertical orientation for displaying marginal densities.

Value

data.frame with 3 columns, containing the bw, n and kernel parameters used for the list elements.
The number of rows correspond to the length of the list x.

Note

Consider using:

library(lattice)
densityplot( ~ delivery_min | driver, data=d.pizza)

as alternative when not all curves should be plotted in the same plot.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotViolin, density



432 PlotPairs

Examples

x <- rnorm(1000,0,1)
y <- rnorm(1000,0,2)
z <- rnorm(1000,2,1.5)

# the input of the following function MUST be a numeric list
PlotMultiDens(list(x=x,y=y,z=z))

# use area fill
PlotMultiDens(list(x=x,y=y,z=z), fill=SetAlpha(c("red","green","blue"), 0.4))

PlotMultiDens( x=split(d.pizza$delivery_min, d.pizza$driver), na.rm=TRUE
, main="delivery time ~ driver", xlab="delivery time [min]", ylab="density"
, lwd=1:7, lty=1:7
, panel.first=grid())

# this example demonstrates the definition of different line types and -colors
# an is NOT thought as recommendation for good plotting practice... :-)

# the formula interface
PlotMultiDens(delivery_min ~ driver, data=d.pizza)

# recyling of the density parameters
res <- PlotMultiDens(x=split(d.pizza$temperature, d.pizza$driver),

args.dens = list(bw=c(5,2), kernel=c("rect","epanechnikov")), na.rm=TRUE)
res

# compare bandwidths
PlotMultiDens(x=split(d.pizza$temperature, d.pizza$driver)[1],

args.dens = list(bw=c(1:5)), na.rm=TRUE,
args.legend=NA, main="Compare bw")

legend(x="topright", legend=gettextf("bw = %s", 1:5), fill=rainbow(5))

PlotPairs Extended Scatterplot Matrices

Description

A matrix of scatterplots is produced.The upper triangular matrices contain nothing else than the cor-
relation coefficient. The diagonal displays a histogram of the variable. The lower triangular matrix
displays a scatterplot superposed by a smoother. It’s possible to define groups to be differntiated by
color and also by individual smoothers. The used code is not much more than the pairs() code
and some examples, but condenses it to a practical amount.

Usage

PlotPairs(x, g = NULL, col = 1, pch = 19, col.smooth = 1, main = "",
upper = FALSE, ...)



PlotPolar 433

Arguments

x the coordinates of points given as numeric columns of a matrix or data frame.
Logical and factor columns are converted to numeric in the same way that
data.matrix does. Will directly be passed on to pairs.

g a group variable

col color for pointcharacter

pch point character

col.smooth color for the smoother(s)

main the main title

upper logical, determines if the correlation coefficients should be displayed in the up-
per triangular matrix (default) or in the lower one.

... additional arguments passed to pairs function.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

pairs

Examples

PlotPairs(iris[1:4], g=iris$Species, main = "Anderson's Iris Data -- 3 species",
col=c(DescTools::hred, DescTools::hblue, DescTools::hgreen),
col.smooth=c("black", DescTools::hred, DescTools::hblue, DescTools::hgreen))

PlotPolar Plot Values on a Circular Grid

Description

PlotPolar creates a polar coordinate plot of the radius r in function of the angle theta. 0 degrees is
drawn at the 3 o’clock position and angular values increase in a counterclockwise direction.

Usage

PlotPolar(r, theta = NULL, type = "p", rlim = NULL, main = "", lwd = par("lwd"),
lty = par("lty"), col = par("col"), pch = par("pch"), fill = NA,
cex = par("cex"), mar = c(2, 2, 5, 2), add = FALSE, ...)



434 PlotPolar

Arguments

r a vector of radial data.

theta a vector of angular data specified in radians.

type one out of c("p","l","h"), the plot type, defined following the definition in
plot type. "p" means points, "l" will connect the points with lines and "h" is
used to plot radial lines from the center to the points.
Default is "p".

rlim the r limits (r1, r2) of the plot

main a main title for the plot, see also title.

lwd a vector of line widths, see par.

lty a vector of line types, see par.

col The colors for lines and points. Multiple colors can be specified so that each
point can be given its own color. If there are fewer colors than points they are
recycled in the standard fashion. Lines will all be plotted in the first colour
specified.

pch a vector of plotting characters or symbols: see points.

fill fill color, defaults to NA (none).

cex a numerical vector giving the amount by which plotting characters and symbols
should be scaled relative to the default. This works as a multiple of par("cex").
NULL and NA are equivalent to 1.0.

mar A numerical vector of the form c(bottom, left, top, right) which gives the number
of lines of margin to be specified on the four sides of the plot.

add defines whether points should be added to an existing plot.

... further arguments are passed to the plot command.

Details

The function is rather flexible and can produce quite a lot of of different plots. So is it also possible
to create spider webs or radar plots.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PolarGrid

Examples

testlen <- c(sin(seq(0, 1.98*pi, length=100))+2+rnorm(100)/10)
testpos <- seq(0, 1.98*pi, length=100)

PlotPolar(testlen, testpos, type="l", main="Test Polygon", col="blue")
PolarGrid(ntheta=9, col="grey", lty="solid", lblradians=TRUE)



PlotPolar 435

# start at 12 o'clock and plot clockwise
PlotPolar(testlen, -(testpos - pi/2), type="p", main="Test Polygon",

col="green", pch=16)

PolarGrid(ntheta = rev(seq(0, 2*pi, by=2*pi/9) + pi/2),
alabels=Format(seq(0, 2*pi, by=2*pi/9), digits=2)[-10], col="grey",
lty="solid", lblradians=TRUE)

# just because of it's beauty
t <- seq(0,2*pi,0.01)
PlotPolar( r=sin(2*t)*cos(2*t), theta=t, type="l", lty="dashed", col="red" )
PolarGrid()

# use some filled polygons
ions <- c(3.2,5,1,3.1,2.1,5)
ion.names <- c("Na","Ca","Mg","Cl","HCO3","SO4")

PlotPolar(r = ions, type="l", fill="yellow")

# the same, but let's have a grid first
PlotPolar(r = ions, type="l", lwd=2, col="blue", main="Ions",

panel.first=PolarGrid(nr=seq(0, 6, 1)) )

# leave the radial grid out
PlotPolar(r = ions, type="l", fill="yellow")
PolarGrid(nr = NA, ntheta = length(ions), alabels = ion.names,

col = "grey", lty = "solid" )

# display radial lines
PlotPolar(r = ions, type="h", col="blue", lwd=3)
# add some points
PlotPolar(r = ions, type="p", pch=16, add=TRUE, col="red", cex=1.5)

# spiderweb (not really recommended...)
posmat <- matrix(sample(2:9,30,TRUE),nrow=3)
PlotPolar(posmat, type="l", main="Spiderweb plot", col=2:4, lwd=1:3)
PolarGrid(nr=NA, ntheta=ncol(posmat), alabels=paste("X", 1:ncol(posmat), sep=""),

col="grey", lty="solid" )

# example from: The grammar of graphics (L. Wilkinson)
data("UKgas")
m <- matrix(UKgas, ncol=4, byrow=TRUE)
cols <- c(SetAlpha(rep("green", 10), seq(0,1,0.1)),

SetAlpha(rep("blue", 10), seq(0,1,0.1)),
SetAlpha(rep("orange", 10), seq(0,1,0.1)))

PlotPolar(r=m, type="l", col=cols, lwd=2 )
PolarGrid(ntheta=4, alabels=c("Winter","Spring","Summer","Autumn"), lty="solid")
legend(x="topright", legend=c(1960,1970,1980), fill=c("green","blue","orange"))



436 PlotProbDist

# radarplot (same here, consider alternatives...)
data(mtcars)
d.car <- scale(mtcars[1:6,1:7], center=FALSE)

# let's have a palette with transparent colors (alpha = 32)
cols <- SetAlpha(colorRampPalette(c("red","yellow","blue"), space = "rgb")(6), 0.25)
PlotPolar(d.car, type="l", fill=cols, main="Cars in radar")
PolarGrid(nr=NA, ntheta=ncol(d.car), alabels=colnames(d.car), lty="solid", col="black")

# a polar barplot
x <- c(4,8,2,8,2,6,5,7,3,3,5,3)
theta <- (0:12) * pi / 6
PlotPolar(x, type = "n", main="Some data")
PolarGrid(nr = 0:9, ntheta = 24, col="grey", lty=1, rlabels = NA, alabels = NA)
DrawCircle(x=0, y=0, r.in=0, r.out=x,

theta.1 = theta[-length(theta)], theta.2 = theta[-1],
col=SetAlpha(rainbow(12), 0.7), border=NA)

segments(x0 = -10:10, y0 = -.2, y1=0.2)
segments(x0=-10, x1=10, y0 = 0)

segments(y0 = -10:10, x0 = -.2, x1=0.2)
segments(y0=-10, y1=10, x0 = 0)

BoxedText(x=0, y=c(0,3,6,9), labels = c(0,3,6,9), xpad = .3, ypad=.3, border="grey35")

# USJudgeRatings
PlotPolar(USJudgeRatings[1,], type="l", col=DescTools::hblue, lwd=2, cex=0.8,

panel.first=PolarGrid(ntheta=ncol(USJudgeRatings), col="grey", lty="solid",
las=1, alabels=colnames(USJudgeRatings), lblradians=TRUE))

PlotPolar(USJudgeRatings[2,], type="l", col=DescTools::hred, lwd=2, add=TRUE)
PlotPolar(USJudgeRatings[5,], type="l", col=DescTools::horange, lwd=2, add=TRUE)

legend(x="topright", inset=-0.18,
col = c(DescTools::hblue, DescTools::hred, DescTools::horange), lwd=2,
legend=rownames(USJudgeRatings)[c(1, 2, 5)])

PlotProbDist Plot Probability Distribution

Description

Produce a plot from a probability distribution with shaded areas. This is often needed in theory
texts for classes in statistics.

Usage

PlotProbDist(breaks, FUN,



PlotProbDist 437

blab = NULL, main = "", xlim = NULL, col = NULL, density = 7,
alab = LETTERS[1:(length(breaks) - 1)],
alab_x = NULL, alab_y = NULL, ylab = "density", ...)

Arguments

breaks a numeric vector containing the breaks of different areas. The start and end must
not be infinity.

FUN the (typically) distribution function

blab text for labelling the breaks

main main title for the plot

xlim the x-limits for the plot

col the color for the shaded areas

density the density for the shaded areas

alab the labels for areas

alab_x the x-coord for the area labels

alab_y the y-coord for the area labels, if left to default they will be placed in the middle
of the plot

ylab the label for they y-axis

... further parameters passed to internally used function curve()

Details

The function sets up a two-step plot procedure based on curve() and Shade() with additional la-
belling for convenience.

Value

nothing returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Shade, curve, polygon

Examples

# plot t-distribution
PlotProbDist(breaks=c(-6, -2.3, 1.5, 6),

function(x) dt(x, df=8),
blab=c("A","B"), xlim=c(-4,4), alab=NA,
main="t-Distribution (df=8)",
col=c(DescTools::hred, DescTools::hblue, DescTools::horange),
density=c(20, 7))



438 PlotPyramid

# Normal
PlotProbDist(breaks=c(-10, -1, 12),

function(x) dnorm(x, mean=2, sd=2),
blab="A", xlim=c(-7,10),
main="Normal-Distribution N(2,2)",
col=c(DescTools::hred, DescTools::hblue), density=c(20, 7))

# same for Chi-square
PlotProbDist(breaks=c(0, 15, 35),

function(x) dchisq(x, df=8),
blab="B", xlim=c(0, 30),
main=expression(paste(chi^2-Distribution, " (df=8)")),
col=c(DescTools::hblue, DescTools::hred), density=c(0, 20))

PlotPyramid Draw a Back To Back Pyramid Plot

Description

Pyramid plots are a common way to display the distribution of age groups.

Usage

PlotPyramid(lx, rx = NA, ylab = "", ylab.x = 0,
col = c("red", "blue"), border = par("fg"),
main = "", lxlab = "", rxlab = "",
xlim = NULL, gapwidth = NULL,
xaxt = TRUE, args.grid = NULL, cex.axis = par("cex.axis"),
cex.lab = par("cex.axis"), cex.names = par("cex.axis"),
adj = 0.5, rev = FALSE, ...)

Arguments

lx either a vector or matrix of values describing the bars which make up the plot.
If lx is a vector, it will be used to construct the left barplot. If lx is a matrix the
first column will be plotted to the left side and the second to the right side. Other
columsn are ignored.

rx a vector with the values used to build the right barplot. lx and rx should be of
equal length.

ylab a vector of names to be plotted either in the middle or at the left side of the plot.
If this argument is omitted, then the names are taken from the names attribute of
lx if this is a vector.

ylab.x the x-position of the y-labels.

col the color(s) of the bars. If there are more than one the colors will be recycled.

border the border color of the bars. Set this to NA if no border is to be plotted.



PlotPyramid 439

main overall title for the plot.

lxlab a label for the left x axis.

rxlab a label for the right x axis.

xlim limits for the x axis. The first value will determine the limit on the left, the
second the one on the right.

gapwidth the width of a gap in the middle of the plot. If set to 0, no gap will be plotted.
Default is NULL which will make the gap as wide, as it is necessary to plot the
longest ylab.

xaxt a character which specifies the x axis type. Specifying "n" suppresses plotting
of the axis.

args.grid list of additional arguments for the grid. Set this argument to NA if no grid should
be drawn.

cex.axis expansion factor for numeric axis labels.

cex.lab expansion factor for numeric variable labels.

cex.names expansion factor for y labels (names).

adj one or two values in [0, 1] which specify the x (and optionally y) adjustment of
the labels.

rev logical, if set to TRUE the order of data series and names will be reversed.

... the dots are passed to the barplot function.

Details

Pyramid plots are a common way to display the distribution of age groups in a human population.
The percentages of people within a given age category are arranged in a barplot, typically back to
back. Such displays can be used to distinguish males vs. females, differences between two different
countries or the distribution of age at different timepoints. The plot type can also be used to display
other types of opposed bar charts with suitable modification of the arguments.

Value

A numeric vector giving the coordinates of all the bar midpoints drawn, useful for adding to the
graph.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

barplot



440 PlotQQ

Examples

d.sda <- data.frame(
kt_x = c("ZH","BL","ZG","SG","LU","AR","SO","GL","SZ",

"NW","TG","UR","AI","OW","GR","BE","SH","AG",
"BS","FR","GE","JU","NE","TI","VD","VS"),

apo_n = c(18,16,13,11,9,12,11,8,9,8,11,9,7,9,24,19,
19,20,43,27,41,31,37,62,38,39),

sda_n = c(235,209,200,169,166,164,162,146,128,127,
125,121,121,110,48,34,33,0,0,0,0,0,0,0,0,0)

)

PlotPyramid(lx=d.sda[,c("apo_n","sda_n")], ylab=d.sda$kt_x,
col=c("lightslategray", "orange2"), border = NA, ylab.x=0,
xlim=c(-110,250),
gapwidth = NULL, cex.lab = 0.8, cex.axis=0.8, xaxt = TRUE,
lxlab="Drugstores", rxlab="General practitioners",
main="Density of general practitioners and drugstores in CH (2010)",
space=0.5, args.grid=list(lty=1))

par(mfrow=c(1,3))

m.pop<-c(3.2,3.5,3.6,3.6,3.5,3.5,3.9,3.7,3.9,3.5,
3.2,2.8,2.2,1.8,1.5,1.3,0.7,0.4)

f.pop<-c(3.2,3.4,3.5,3.5,3.5,3.7,4,3.8,3.9,3.6,3.2,
2.5,2,1.7,1.5,1.3,1,0.8)

age <- c("0-4","5-9","10-14","15-19","20-24","25-29",
"30-34","35-39","40-44","45-49","50-54",
"55-59","60-64","65-69","70-74","75-79","80-44","85+")

PlotPyramid(m.pop, f.pop,
ylab = age, space = 0, col = c("cornflowerblue", "indianred"),
main="Age distribution at baseline of HELP study",
lxlab="male", rxlab="female" )

PlotPyramid(m.pop, f.pop,
ylab = age, space = 0, col = c("cornflowerblue", "indianred"),
xlim=c(-5,5),
main="Age distribution at baseline of HELP study",
lxlab="male", rxlab="female", gapwidth=0, ylab.x=-5 )

PlotPyramid(c(1,3,5,2,0.5), c(2,4,6,1,0),
ylab = LETTERS[1:5], space = 0.3, col = rep(rainbow(5), each=2),
xlim=c(-10,10), args.grid=NA, cex.names=1.5, adj=1,
lxlab="Group A", rxlab="Group B", gapwidth=0, ylab.x=-8, xaxt="n")

PlotQQ QQ-Plot for Any Distribution



PlotQQ 441

Description

Create a QQ-plot for a variable of any distribution. The assumed underlying distribution can be
defined as a function of f(p), including all required parameters. Confidence bands are provided by
default.

Usage

PlotQQ(x, qdist=qnorm, main = NULL, xlab = NULL, ylab = NULL, datax = FALSE, add = FALSE,
args.qqline = NULL, conf.level = 0.95, args.cband = NULL, ...)

Arguments

x the data sample

qdist the quantile function of the assumed distribution. Can either be given as simple
function name or defined as own function using the required arguments. Default
is qnorm(). See examples.

main the main title for the plot. This will be "Q-Q-Plot" by default

xlab the xlab for the plot

ylab the ylab for the plot

datax logical. Should data values be on the x-axis? Default is FALSE.

add logical specifying if the points should be added to an already existing plot; de-
faults to FALSE.

args.qqline arguments for the qqline. This will be estimated as a line through the 25% and
75% quantiles by default, which is the same procedure as qqline() does for
normal distribution (instead of set it to abline(a = 0, b = 1)). The quantiles
can however be overwritten by setting the argument probs to some user defined
values. Also the method for calculating the quantiles can be defined (default is 7,
see quantile). The line defaults are set to col = par("fg"), lwd = par("lwd")
and lty = par("lty"). No line will be plotted if args.qqline is set to NA.

conf.level confidence level for the confidence interval. Set this to NA, if no confidence
band should be plotted. Default is 0.95. The confidence intervals are calculated
pointwise method based on a Kolmogorov-Smirnov distribution.

args.cband list of arguments for the confidence band, such as color or border (see DrawBand).

... the dots are passed to the plot function.

Details

The function generates a sequence of points between 0 and 1 and transforms those into quantiles by
means of the defined assumed distribution.

Note

The code is inspired by the tip 10.22 "Creating other Quantile-Quantile plots" from R Cookbook
and based on R-Core code from the function qqline. The calculation of confidence bands are
rewritten based on an algorithm published in the package BoutrosLab.plotting.general.



442 PlotTernary

Author(s)

Andri Signorell <andri@signorell.net>, Ying Wu <Ying.Wu@stevens.edu>

References

Teetor, P. (2011) R Cookbook. O’Reilly, pp. 254-255.

See Also

qqnorm, qqline, qqplot

Examples

y <- rexp(100, 1/10)
PlotQQ(y, function(p) qexp(p, rate=1/10))

w <- rweibull(100, shape=2)
PlotQQ(w, qdist = function(p) qweibull(p, shape=4))

z <- rchisq(100, df=5)
PlotQQ(z, function(p) qchisq(p, df=5),

args.qqline=list(col=2, probs=c(0.1, 0.6)),
main=expression("Q-Q plot for" ~~ {chi^2}[nu == 3]))

abline(0,1)

# add 5 random sets
for(i in 1:5){

z <- rchisq(100, df=5)
PlotQQ(z, function(p) qchisq(p, df=5), add=TRUE, args.qqline = NA,

col="grey", lty="dotted")
}

PlotTernary Ternary or Triangular Plots

Description

PlotTernary plots in a triangle the values of three variables. Useful for mixtures (chemistry etc.).

Usage

PlotTernary(x, y = NULL, z = NULL, args.grid = NULL, lbl = NULL, main = "",...)

Arguments

x vector of first variable. Will be placed on top of the triangle.

y vector of second variable (the right corner).

z vector of third variable (on the left corner).



PlotTreemap 443

args.grid list of additional arguments for the grid. Set this argument to NA if no grid should
be drawn. The usual color and linetype will be used.

main overall title for the plot.

lbl the labels for the corner points. Default to the names of x, y, z.

... the dots are sent to points

Author(s)

Andri Signorell <andri@signorell.net> based on example code by W. N. Venables and B. D. Ripley
mentioned

References

J. Aitchison (1986) The Statistical Analysis of Compositional Data. Chapman and Hall, p.360.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

example in Skye

Examples

# some random data in three variables
c1 <- runif(25)
c2 <- runif(25)
c3 <- runif(25)

# basic plot
par(mfrow=c(1, 2))
PlotTernary(c1, c2, c3, args.grid=NA)

## Not run:
# plot with different symbols and a grid using a dataset from MASS
data(Skye, package="MASS")

PlotTernary(Skye[c(1,3,2)], pch=15, col=DescTools::hred, main="Skye",
lbl=c("A Sodium", "F Iron", "M Magnesium"))

## End(Not run)

PlotTreemap Create a Treemap

Description

Creates a treemap where rectangular regions of different size, color, and groupings visualize the
elements.



444 PlotTreemap

Usage

PlotTreemap(x, grp = NULL, labels = NULL, cex = 1, text.col = "black",
col = rainbow(length(x)), labels.grp = NULL, cex.grp = 3,
text.col.grp = "black", border.grp = "grey50",
lwd.grp = 5, main = "")

Arguments

x a vector storing the values to be used to calculate the areas of rectangles.

grp a vector specifying the group (i.e. country, sector, etc.) to which each element
belongs.

labels a vector specifying the labels.

cex the character extension for the area labels. Default is 1.

text.col the text color of the area labels. Default is "black".

col a vector storing the values to be used to calculate the color of rectangles.

labels.grp a character vector specifying the labels for the groups.

cex.grp the character extension for the group labels. Default is 3.

text.col.grp the text color of the group labels. Default is "black".

border.grp the border color for the group rectangles. Default is "grey50". Set this to NA if
no special border is desired.

lwd.grp the linewidth of the group borders. Default is 5.

main a title for the plot.

Details

A treemap is a two-dimensional visualization for quickly analyzing large, hierarchical data sets.
Treemaps are unique among visualizations because they provide users with the ability to see both a
high level overview of data as well as fine-grained details. Users can find outliers, notice trends, and
perform comparisons using treemaps. Each data element contained in a treemap is represented with
a rectangle, or a cell. Treemap cell arrangement, size, and color are each mapped to an attribute of
that element. Treemap cells can be grouped by common attributes. Within a group, larger cells are
placed towards the bottom left, and smaller cells are placed at the top right.

Value

returns a list with groupwise organized midpoints in x and y for the rectangles within a group and
for the groups themselves.

Author(s)

Andri Signorell <andri@signorell.net>, strongly based on code from Jeff Enos <jeff@kanecap.com>

See Also

PlotCirc, mosaicplot, barplot



PlotVenn 445

Examples

set.seed(1789)
N <- 20
area <- rlnorm(N)

PlotTreemap(x=sort(area, decreasing=TRUE), labels=letters[1:20], col=Pal("RedToBlack", 20))

grp <- sample(x=1:3, size=20, replace=TRUE, prob=c(0.2,0.3,0.5))

z <- Sort(data.frame(area=area, grp=grp), c("grp","area"), decreasing=c(FALSE,TRUE))
z$col <- SetAlpha(c("steelblue","green","yellow")[z$grp],

unlist(lapply(split(z$area, z$grp),
function(...) LinScale(..., newlow=0.1, newhigh=0.6))))

PlotTreemap(x=z$area, grp=z$grp, labels=letters[1:20], col=z$col)

b <- PlotTreemap(x=z$area, grp=z$grp, labels=letters[1:20], labels.grp=NA,
col=z$col, main="Treemap")

# the function returns the midpoints of the areas
# extract the group midpoints from b
mid <- do.call(rbind, lapply(lapply(b, "[", 1), data.frame))

# and draw some visible text
BoxedText( x=mid$grp.x, y=mid$grp.y, labels=LETTERS[1:3], cex=3, border=NA,

col=SetAlpha("white",0.7) )

PlotVenn Plot a Venn Diagram

Description

This function produces Venn diagrams for up to 5 datasets.

Usage

PlotVenn(x, col = "transparent", plotit = TRUE, labels = NULL)

Arguments

x the list with the sets to be analysed. Those can be factors or something coercable
to a factor.

col the colors for the sets on the plot.

plotit logical. Should a plot be produced or just the results be calculated.

labels special labels for the plot. By default the names of the list x will be used. If
those are missing, the LETTERS A..E will be chosen. Set this argument to NA,
if no labels at all should be plotted.



446 PlotVenn

Details

The function calculates the necessary frequencies and plots the venn diagram.

Value

a list with 2 elements, the first contains a table with the observed frequencies in the given sets. The
second returns a data.frame with the xy coordinates for the labels in the venn diagram, the specific
combination of factors and the frequency in that intersection area. The latter can be 0 as well.

Author(s)

Andri Signorell <andri@signorell.net>

References

Venn, J. (1880): On the Diagrammatic and Mechanical Representation of Propositions and Reason-
ings. Dublin Philosophical Magazine and Journal of Science 9 (59): 1-18.

Edwards, A.W.F. (2004): Cogwheels of the mind: the story of Venn diagrams. JHU Press ISBN
978-0-8018-7434-5.

Examples

element <- function() paste(sample(LETTERS, 5, replace=TRUE), collapse="")
group <- replicate(1000, element())

GroupA <- sample(group, 400, replace=FALSE)
GroupB <- sample(group, 750, replace=FALSE)
GroupC <- sample(group, 250, replace=FALSE)
GroupD <- sample(group, 300, replace=FALSE)

x <- list(GroupA, GroupB, GroupC, GroupD)
x

PlotVenn(x=list(GroupA, GroupB))
PlotVenn(x=list(Set_1=GroupA, Set_2=GroupB))
PlotVenn(x=list(GroupA, GroupB), labels=c("English","Spanish"))

PlotVenn(x=x[1:3])
PlotVenn(x=x[1:4], col=SetAlpha(c("blue","red","yellow","green","lightblue"), 0.2))

r.venn <- PlotVenn(x=x[1:5], col=SetAlpha(c("blue","red","yellow","green","lightblue"), 0.2))
r.venn



PlotViolin 447

PlotViolin Plot Violins Instead of Boxplots

Description

This function serves the same utility as side-by-side boxplots, only it provides more detail about
the different distribution. It plots violins instead of boxplots. That is, instead of a box, it uses the
density function to plot the density. For skewed distributions, the results look like "violins". Hence
the name.

Usage

PlotViolin(x, ...)

## Default S3 method:
PlotViolin(x, ..., horizontal = FALSE, bw = "SJ", na.rm = FALSE,

names = NULL, args.boxplot = NULL)

## S3 method for class 'formula'
PlotViolin(formula, data, subset, na.action, ...)

Arguments

x Either a sequence of variable names, or a data frame, or a model formula

horizontal logical indicating if the densityplots should be horizontal; default FALSE means
vertical arrangement.

bw the smoothing bandwidth (method) being used by density.
bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd. The default, has been switched from "nrd0" to "SJ", following the
general recommendation in Venables & Ripley (2002).
In case of a method, the average computed bandwidth is used.

na.rm logical, should NAs be omitted? The density-function can’t do with missings.
Defaults to FALSE.

names a vector of names for the groups.

formula a formula, such as y ~ grp, where y is a numeric vector of data values to be split
into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... The dots are passed to polygon. Notably, you can set the color to red with
col="red", and a border color with border="blue"

args.boxplot list of arguments for a boxplot to be superposed to the densityplot. By default
(NULL) a black boxplot will be drawn. Set this to NA to suppress the boxplot.



448 PlotViolin

Value

If a boxplot was drawn then the function returns a list with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker for one
group/plot. If all the inputs have the same class attribute, so will this component.

n a vector with the number of observations in each group.

conf a matrix where each column contains the lower and upper extremes of the notch.

out the values of any data points which lie beyond the extremes of the whiskers.

group a vector of the same length as out whose elements indicate to which group the
outlier belongs.

names a vector of names for the groups.

Note

This function is based on violinplot (package UsingR). Some adaptions were made in the inter-
face, such as to accept the same arguments as boxplot does. Moreover the function was extended
by the option to have a boxplot superposed.

Author(s)

John Verzani, Andri Signorell <andri@signorell.net>

References

The code is based on the boxplot function from R/base.

See Also

boxplot, PlotMultiDens , density

Examples

# make a "violin"
x <- c(rnorm(100), rnorm(50,5))

PlotViolin(x, col = "brown")

par(mfrow=c(1,2))
f <- factor(rep(1:5, 30))
# make a quintet. Note also choice of bandwidth
PlotViolin(x ~ f, col = SetAlpha("steelblue",0.3), bw = "SJ", main="Vertical")

# and the same, but in horizontal arrangement
PlotViolin(x ~ f, col = SetAlpha("steelblue",0.3), bw = "SJ", horizontal = TRUE,

las=1, main="Horizontal")

# example taken from boxplot



PlotWeb 449

boxplot(count ~ spray, data = InsectSprays, col = "lightgray", main="Boxplot")
PlotViolin(count ~ spray, data = InsectSprays, col = "lightgray", main="Violinplot")

# groupwise densityplots defined the same way as in boxplot
boxplot(len ~ supp*dose, data = ToothGrowth,

main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg", ylab = "tooth length",
col=c("yellow", "orange"), lty=c(1,2)

)

b <- PlotViolin(len ~ supp*dose, data = ToothGrowth,
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg", ylab = "tooth length",
col=c("yellow", "orange"), lty=c(1,2)

)
# use points, if the medians deserve special attention
points(x=1:6, y=b$stats[3,], pch=21, bg="white", col="black", cex=1.2)

PlotWeb Plot a Web of Connected Points

Description

This plot can be used to graphically display a correlation matrix by using the linewidth between the
nodes in proportion to the correlation of two variables. It will place the elements homogenously
around a circle and draw connecting lines between the points.

Usage

PlotWeb(m, col = c(DescTools::hred, DescTools::hblue), lty = NULL,
lwd = NULL, args.legend=NULL,
pch = 21, pt.cex = 2, pt.col = "black", pt.bg = "darkgrey",
cex.lab = 1, las = 1, adj = NULL, dist = 0.5, ...)

Arguments

m a symmetric matrix of numeric values

col the color for the connecting lines

lty the line type for the connecting lines, the default will be par("lty").

lwd the line widths for the connecting lines. If left to NULL it will be linearly scaled
between the minimum and maximum value of m.

args.legend list of additional arguments to be passed to the legend function. Use args.legend
= NA if no legend should be added.

pch the plotting symbols appearing in the plot, as a non-negative numeric vector (see
points, but unlike there negative values are omitted) or a vector of 1-character
strings, or one multi-character string.



450 PlotWeb

pt.cex expansion factor(s) for the points.

pt.col the foreground color for the points, corresponding to its argument col.

pt.bg the background color for the points, corresponding to its argument bg.

las alignment of the labels, 1 means horizontal, 2 radial and 3 vertical.

adj adjustments for the labels. (Left: 0, Right: 1, Mid: 0.5)

dist gives the distance of the labels from the outer circle. Default is 2.

cex.lab the character extension for the labels.

... dots are passed to plot.

Details

The function uses the lower triangular matrix of m, so this is the order colors, linewidth etc. must be
given, when the defaults are to be overrun.

Value

A list of x and y coordinates, giving the coordinates of all the points drawn, useful for adding other
elements to the plot.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotCorr

Examples

m <- cor(d.pizza[, which(sapply(d.pizza, IsNumeric, na.rm=TRUE))[-c(1:2)]],
use="pairwise.complete.obs")

PlotWeb(m=m, col=c(DescTools::hred, DescTools::hblue), main="Pizza Correlation")

# let's describe only the significant corrs and start with a dataset
d.m <- d.pizza[, which(sapply(d.pizza, IsNumeric, na.rm=TRUE))[-c(1:2)]]

# get the correlation matrix
m <- cor(d.m, use="pairwise.complete.obs")

# let's get rid of all non significant correlations
ctest <- PairApply(d.m, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)

# ok, got all the p-values, now replace > 0.05 with NAs
m[ctest > 0.05] <- NA
# How does that look like now?
Format(m, na.form = ". ", ldigits=0, digits=3, align = "right")

PlotWeb(m, las=2, cex=1.2)



PMT 451

# define line widths
PlotWeb(m, lwd=abs(m[lower.tri(m)] * 10))

PMT Periodic Payment of an Annuity.

Description

PMT computes the periodic payment of an annuity. IPMT calculates what portion of a period payment
is going towards interest in a particular period and PPMT what portion of a period payment is going
towards principal in a particular period. RBAL yields the remaining balance in a particular period.

Usage

PMT(rate, nper, pv, fv = 0, type = 0)
IPMT(rate, per, nper, pv, fv = 0, type = 0)
PPMT(rate, per, nper, pv, fv = 0, type = 0)
RBAL(rate, per, nper, pv, fv = 0, type = 0)

Arguments

rate specifies the interest rate.

per specifies the period of the payment to be applied to interest or to principal.

nper specifies the number of payment periods.

pv specifies the present value or the lump-sum amount that a series of future pay-
ments is worth currently. pv can be 0 if a positive fv argument is included.

fv specifies the future value or a cash balance that you want to attain after the last
payment is made. Default is 0.

type specifies the number 0 or 1 and indicates when payments are due. Default is 0.

Value

a numeric value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

NPV, SLN



452 PoissonCI

Examples

# original principal: 20'000
# loan term (years): 5
# annual interest rate: 8%
# annual payment: -4'156.847

# simple amortization schedule
cbind(

year = 1:5,
payment = PMT(rate=0.08, nper=5, pv=20000, fv=-5000, type=0),
interest = IPMT(rate=0.08, per=1:5, nper=5, pv=20000, fv=-5000, type=0),
principal = PPMT(rate=0.08, per=1:5, nper=5, pv=20000, fv=-5000, type=0),
balance = RBAL(rate=0.08, per=1:5, nper=5, pv=20000, fv=-5000, type=0)

)

# year payment interest principal balance
# [1,] 1 -4156.847 -1600.0000 -2556.847 17443.153
# [2,] 2 -4156.847 -1395.4523 -2761.395 14681.759
# [3,] 3 -4156.847 -1174.5407 -2982.306 11699.452
# [4,] 4 -4156.847 -935.9562 -3220.891 8478.562
# [5,] 5 -4156.847 -678.2849 -3478.562 5000.000

PoissonCI Poisson Confidence Interval

Description

Computes the confidence intervals of a poisson distributed variable’s lambda. Several methods are
implemented, see details.

Usage

PoissonCI(x, n = 1, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("exact", "score", "wald", "byar"))

Arguments

x number of events.

n time base for event count.

conf.level confidence level, defaults to 0.95.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

method character string specifing which method to use; can be one out of "wald",
"score", "exact" or "byar". Method can be abbreviated. See details. De-
faults to "score".



PoissonCI 453

Details

The Wald interval uses the asymptotic normality of the test statistic.
Byar’s method is quite a good approximation. Rothman and Boice (1979) mention that these limits
were first proposed by Byar (unpublished).

Value

A vector with 3 elements for estimate, lower confidence intervall and upper for the upper one.

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than "exact" for interval estimation of
binomial proportions. American Statistician, 52, pp. 119-126.
Rothman KJ, Boice JD, Jr. (1979) Epidemiologic Analysis with a Programmable Calculator (NIH
Publication 79-1649). Washington DC: US Government Printing Office.
Garwood, F. (1936) Fiducial Limits for the Poisson distribution. Biometrika 28:437-442.
https://www.ine.pt/revstat/pdf/rs120203.pdf

See Also

poisson.test, BinomCI, MultinomCI

Examples

# the horse kick example
count <- 0:4
deaths <- c(144, 91, 32, 11, 2)

n <- sum(deaths)
x <- sum(count * deaths)

lambda <- x/n

PoissonCI(x=x, n=n, method = c("exact","score", "wald", "byar"))

exp <- dpois(0:4, lambda) * n

barplot(rbind(deaths, exp * n/sum(exp)), names=0:4, beside=TRUE,
col=c(DescTools::hred, DescTools::hblue), main = "Deaths from Horse Kicks",
xlab = "count")

legend("topright", legend=c("observed","expected"),
fill=c(DescTools::hred, DescTools::hblue), bg="white")

## SMR, Welsh Nickel workers
PoissonCI(x=137, n=24.19893)

https://www.ine.pt/revstat/pdf/rs120203.pdf


454 PolarGrid

PolarGrid Plot a Grid in Polar Coordinates

Description

PolarGrid adds a polar grid to an existing plot. The number of radial gridlines are set by ntheta
and the tangential lines by nr. Labels for the angular grid and the radial axis can be provided.

Usage

PolarGrid(nr = NULL, ntheta = NULL, col = "lightgray", lty = "dotted", lwd = par("lwd"),
rlabels = NULL, alabels = NULL, lblradians = FALSE, cex.lab = 1, las = 1,
adj = NULL, dist = NULL)

Arguments

nr number of circles. When NULL, as per default, the grid aligns with the tick
marks on the corresponding default axis (i.e., tickmarks as computed by axTicks).
When NA, no circular grid lines are drawn.

ntheta number of radial grid lines. Defaults to 12 uniformly distributed between 0 and
2*pi (each pi/3).

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

lwd non-negative numeric giving line width of the grid lines.

rlabels the radius labels. Use NA if no labels should be to be added.

alabels the labels for the angles, they are printed on a circle outside the plot. Use NA for
no angle labels.

lblradians logic, defines if angle labels will be in degrees (default) or in radians.

cex.lab the character extension for the labels.

las alignment of the labels, 1 means horizontal, 2 radial and 3 vertical.

adj adjustments for the labels. (Left: 0, Right: 1, Mid: 0.5) The default is 1 for the
levels on the right side of the circle, 0 for labels on the left and 0.5 for labels
exactly on north on south.

dist gives the radius for the labels, in user coordinates. Default is par("usr")[2] *
1.07.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotPolar



PostHocTest 455

Examples

Canvas(xlim=c(-5,5), xpd=TRUE)
PolarGrid()

Canvas(xlim=c(-5,5), xpd=TRUE)
PolarGrid(nr=0:5, ntheta=6)

Canvas(xlim=c(-5,5), xpd=TRUE)
PolarGrid(ntheta=36, rlabels=NA, lblradians=TRUE)

PostHocTest Post-Hoc Tests

Description

A convenience wrapper for computing post-hoc test after having calculated an ANOVA.

Usage

PostHocTest(x, ...)

## S3 method for class 'aov'
PostHocTest(x, which = NULL,

method = c("hsd", "bonferroni", "lsd", "scheffe", "newmankeuls", "duncan"),
conf.level = 0.95, ordered = FALSE, ...)

## S3 method for class 'table'
PostHocTest(x, method = c("none", "fdr", "BH", "BY", "bonferroni",

"holm", "hochberg", "hommel"),
conf.level = 0.95, ...)

## S3 method for class 'PostHocTest'
print(x, digits = getOption("digits", 3), ...)
## S3 method for class 'PostHocTest'
plot(x, ...)

Arguments

x an aov object.

method one of "hsd", "bonf", "lsd", "scheffe", "newmankeuls", defining the method
for the pairwise comparisons.
For the post hoc test of tables the methods of p.adjust can be supplied. See the
detail there.

which a character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to all the terms.



456 PostHocTest

conf.level a numeric value between zero and one giving the family-wise confidence level
to use. If this is set to NA, just a matrix with the p-values will be returned.

ordered a logical value indicating if the levels of the factor should be ordered according
to increasing average in the sample before taking differences. If ordered is TRUE
then the calculated differences in the means will all be positive. The significant
differences will be those for which the lower end point is positive.
This argument will be ignored if method is not either hsd or newmankeuls.

digits controls the number of fixed digits to print.

... further arguments, not used so far.

Details

The function is designed to consolidate a couple of post-hoc tests with the same interface for input
and output.

Choosing Tests. Different post hoc tests use different methods to control familywise
(FW) and per experiment error rate (PE). Some tests are very conservative. Conservative tests go to
great lengths to prevent the user from committing a type 1 error. They use more stringent criterion
for determining significance. Many of these tests become more and more stringent as the number
of groups increases (directly limiting the FW and PE error rate). Although these tests buy you
protection against type 1 error, it comes at a cost. As the tests become more stringent, you loose
power (1-B). More liberal tests, buy you power but the cost is an increased chance of type 1 error.
There is no set rule for determining which test to use, but different researchers have offered some
guidelines for choosing. Mostly it is an issue of pragmatics and whether the number of comparisons
exceeds k-1.

The Fisher’s LSD (Least Significant Different) sets alpha level per comparison. alpha =
.05 for every comparison. df = df error (i.e. df within). This test is the most liberal of all post hoc
tests. The critical t for significance is unaffected by the number of groups. This test is appropriate
when you have 3 means to compare. In general the alpha is held at .05 because of the criterion
that you can’t look at LSD’s unless the ANOVA is significant. This test is generally not considered
appropriate if you have more than 3 means unless there is reason to believe that there is no more
than one true null hypothesis hidden in the means.

Dunn’s (Bonferroni) t-test is sometimes referred to as the Bonferroni t because it used the
Bonferroni PE correction procedure in determining the critical value for significance. In general,
this test should be used when the number of comparisons you are making exceeds the number of
degrees of freedom you have between groups (e.g. k-1). This test sets alpha per experiment; alpha
= (.05)/c for every comparison. df = df error (c = number of comparisons (k(k-1))/2) This test
is extremely conservative and rapidly reduces power as the number of comparisons being made
increase.

Newman-Keuls is a step down procedure that is not as conservative as Dunn’s t test. First,
the means of the groups are ordered (ascending or descending) and then the largest and smallest
means are tested for significant differences. If those means are different, then test smallest with
next largest, until you reach a test that is not significant. Once you reach that point then you can
only test differences between means that exceed the difference between the means that were found
to be non-significant. Newman-Keuls is perhaps one of the most common post hoc test, but it is a
rather controversial test. The major problem with this test is that when there is more than one true
null hypothesis in a set of means it will overestimate the FW error rate. In general we would use



PostHocTest 457

this when the number of comparisons we are making is larger than k-1 and we don’t want to be as
conservative as the Dunn’s test is.

Tukey’s HSD (Honestly Significant Difference) is essentially like the Newman-Keuls, but
the tests between each mean are compared to the critical value that is set for the test of the means
that are furthest apart (rmax e.g. if there are 5 means we use the critical value determined for the
test of X1 and X5). This method corrects for the problem found in the Newman-Keuls where the
FW is inflated when there is more than one true null hypothesis in a set of means. It buys protection
against type 1 error, but again at the cost of power. It tends to be the most common and preferred
test because it is very conservative with respect to type 1 error when the null hypothesis is true. In
general, HSD is preferred when you will make all the possible comparisons between a large set of
means (6 or more means).

The Scheffe test is designed to protect against a type 1 error when all possible complex
and simple comparisons are made. That is we are not just looking the possible combinations of
comparisons between pairs of means. We are also looking at the possible combinations of compar-
isons between groups of means. Thus Scheffe is the most conservative of all tests. Because this
test does give us the capacity to look at complex comparisons, it essentially uses the same statistic
as the linear contrasts tests. However, Scheffe uses a different critical value (or at least it makes
an adjustment to the critical value of F). This test has less power than the HSD when you are mak-
ing pairwise (simple) comparisons, but it has more power than HSD when you are making complex
comparisons. In general, only use this when you want to make many post hoc complex comparisons
(e.g. more than k-1).

Tables For tables pairwise chi-square test can be performed, either without correction or with
correction for multiple testing following the logic in p.adjust.

Value

an object of type "PostHocTest", which will either be
A) a list of data.frames containing the mean difference, lower ci, upper ci and the p-value, if a
conf.level was defined (something else than NA) or
B) a list of matrices with the p-values, if conf.level has been set to NA.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

TukeyHSD, aov, pairwise.t.test, ScheffeTest

Examples

PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "lsd")
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "hsd")
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "scheffe")

r.aov <- aov(breaks ~ tension, data = warpbreaks)

# compare p-values:
round(cbind(



458 power.chisq.test

lsd= PostHocTest(r.aov, method="lsd")$tension[,"pval"]
, bonf=PostHocTest(r.aov, method="bonf")$tension[,"pval"]

), 4)

# only p-values by setting conf.level to NA
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "hsd",

conf.level=NA)

power.chisq.test Power Calculations for ChiSquared Tests

Description

Compute power of test or determine parameters to obtain target power (same as power.anova.test).

Usage

power.chisq.test(n = NULL, w = NULL, df = NULL, sig.level = 0.05, power = NULL)

Arguments

n total number of observations.

w effect size.

df degree of freedom (depends on the chosen test.

sig.level Significance level (Type I error probability).

power Power of test (1 minus Type II error probability).

Details

Exactly one of the parameters w, n, power or sig.level must be passed as NULL, and this param-
eter is determined from the others. Note that the last one has non-NULL default, so NULL must be
explicitly passed, if you want to compute it.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with
’method’ and ’note’ elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Stephane Champely <champely@univ-lyon1.fr>
but this is a mere copy of Peter Dalgaard’s work on power.t.test



PowerPoint Interface 459

References

Cohen, J. (1988) Statistical power analysis for the behavioral sciences (2nd ed.) Hillsdale, NJ:
Lawrence Erlbaum.

See Also

power.t.test

Examples

## Exercise 7.1 P. 249 from Cohen (1988)
power.chisq.test(w=0.289, df=(4-1), n=100, sig.level=0.05)

## Exercise 7.3 p. 251
power.chisq.test(w=0.346, df=(2-1)*(3-1), n=140, sig.level=0.01)

## Exercise 7.8 p. 270
power.chisq.test(w=0.1, df=(5-1)*(6-1), power=0.80, sig.level=0.05)

PowerPoint Interface Add Slides, Insert Texts and Plots to PowerPoint

Description

A couple of functions to get R-stuff into MS-Powerpoint.

GetNewPP() starts a new instance of PowerPoint and returns its handle. A new presentation with
one empty slide will be created thereby. The handle is needed for addressing the presentation
afterwards.
GetCurrPP() will look for a running PowerPoint instance and return its handle. NULL is returned if
nothing’s found. PpAddSlide() inserts a new slide into the active presentation.
PpPlot() inserts the active plot into PowerPoint. The image is transferred by saving the picture to
a file in R and inserting the file in PowerPoint. The format of the plot can be selected, as well as
crop options and the size factor for inserting.
PpText() inserts a new textbox with given text and box properties.

Usage

GetNewPP(visible = TRUE, template = "Normal")
GetCurrPP()

PpAddSlide(pos = NULL, pp = DescToolsOptions("lastPP"))

PpPlot(type = "png", crop = c(0, 0, 0, 0), picscale = 100, x = 1, y = 1,
height = NA, width = NA, res=200, dfact=1.6, pp = DescToolsOptions("lastPP"))

PpText(txt, x = 1, y = 1, height = 50, width = 100, fontname = "Calibri", fontsize = 18,
bold = FALSE, italic = FALSE, col = "black", bg = "white",
hasFrame = TRUE, pp = DescToolsOptions("lastPP"))



460 PowerPoint Interface

Arguments

visible logical, should PowerPoint made visible by GetNewPP()? Defaults to TRUE.

template the name of the template to be used for the new presentation.

pos position of the new inserted slide within the presentation.

type the format for the picture file, default is "png".

crop crop options for the picture, defined by a 4-elements-vector. The first element is
the bottom side, the second the left and so on.

picscale scale factor of the picture in percent, default ist 100.

x, y left/upper xy-coordinate for the plot or for the textbox.

height height in cm, this overrides the picscale if both are given.

width width in cm, this overrides the picscale if both are given.

res resolution for the png file, defaults to 200.

dfact the size factor for the graphic.

txt text to be placed in the textbox

fontname used font for textbox

fontsize used fontsize for textbox

bold logic. Text is set bold if this is set to TRUE (default is FALSE).

italic logic. Text is set italic if this is to TRUE (default is FALSE).

col font color, defaults to "black".

bg background color for textboxdefaults to "white".

hasFrame logical. Defines if a textbox is to be framed. Default is TRUE.

pp the pointer to a PowerPoint instance, can be a new one, created by GetNewPP()
or the last created by DescToolsOptions("lastPP") (default).

Details

See PowerPoint-objectmodel for further informations.

Value

The functions return the pointer to the created object.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdPlot



pRevGumbel 461

Examples

## Not run: # Windows-specific example

# let's have some graphic
plot(1,type="n", axes=FALSE, xlab="", ylab="", xlim=c(0,1), ylim=c(0,1))
rect(0,0,1,1,col="black")
segments(x0=0.5, y0=seq(0.632,0.67, length.out=100),

y1=seq(0.5,0.6, length.out=100), x1=1, col=rev(rainbow(100)))
polygon(x=c(0.35,0.65,0.5), y=c(0.5,0.5,0.75), border="white",

col="black", lwd=2)
segments(x0=0,y0=0.52, x1=0.43, y1=0.64, col="white", lwd=2)
x1 <- seq(0.549,0.578, length.out=50)
segments(x0=0.43, y0=0.64, x1=x1, y1=-tan(pi/3)* x1 + tan(pi/3) * 0.93,

col=rgb(1,1,1,0.35))

# get a handle to a new PowerPoint instance
pp <- GetNewPP()
# insert plot with a specified height
PpPlot(pp=pp, x=150, y=150, height=10, width=10)

PpText("Remember?\n", fontname="Arial", x=200, y=70, height=30, fontsize=14,
bold=TRUE, pp=pp, bg="lemonchiffon", hasFrame=TRUE)

PpAddSlide(pp=pp)
# crop the picture
pic <- PpPlot(pp=pp, x=1, y=200, height=10, width=10, crop=c(9,9,0,0))
pic

# some more automatic procedure
pp <- GetNewPP()
PpText("Hello to my presentation", x=100, y=100, fontsize=32, bold=TRUE,

width=300, hasFrame=FALSE, col="blue", pp=pp)

for(i in 1:4){
barplot(1:4, col=i)
PpAddSlide(pp=pp)
PpPlot(height=15, width=21, x=50, y=50, pp=pp)
PpText(gettextf("This is my barplot nr %s", i), x=100, y=10, width=300, pp=pp)

}

## End(Not run)

pRevGumbel "Reverse" Gumbel Distribution Functions

Description

Density, distribution function, quantile function and random generation for the “Reverse” Gumbel
distribution with parameters location and scale.



462 pRevGumbel

Usage

dRevGumbel (x, location = 0, scale = 1)
pRevGumbel (q, location = 0, scale = 1)
qRevGumbel (p, location = 0, scale = 1)
rRevGumbel (n, location = 0, scale = 1)

qRevGumbelExp(p)

Arguments

x, q numeric vector of abscissa (or quantile) values at which to evaluate the density
or distribution function.

p numeric vector of probabilities at which to evaluate the quantile function.

location location of the distribution

scale scale (> 0) of the distribution.

n number of random variates, i.e., length of resulting vector of rRevGumbel(..).

Value

a numeric vector, of the same length as x, q, or p for the first three functions, and of length n for
rRevGumbel().

Author(s)

Werner Stahel; partly inspired by package VGAM. Martin Maechler for numeric cosmetic.

See Also

the Weibull distribution functions in R’s stats package.

Examples

curve(pRevGumbel(x, scale= 1/2), -3,2, n=1001, col=1, lwd=2,
main = "RevGumbel(x, scale = 1/2)")

abline(h=0:1, v = 0, lty=3, col = "gray30")
curve(dRevGumbel(x, scale= 1/2), n=1001, add=TRUE,

col = (col.d <- adjustcolor(2, 0.5)), lwd=3)
legend("left", c("cdf","pdf"), col=c("black", col.d), lwd=2:3, bty="n")

med <- qRevGumbel(0.5, scale=1/2)
cat("The median is:", format(med),"\n")



Primes 463

Primes Find All Primes Less Than n

Description

Find all prime numbers aka ‘primes’ less than n.

Uses an obvious sieve method and some care, working with logical and integers to be quite fast.

Usage

Primes(n)

Arguments

n a (typically positive integer) number.

Details

As the function only uses max(n), n can also be a vector of numbers.

Value

numeric vector of all prime numbers ≤ n.

Note

This function was previously published in the package sfsmisc as primes and has been integrated
here without logical changes.

Author(s)

Bill Venables (≤ n); Martin Maechler gained another 40% speed, working with logicals and inte-
gers.

See Also

Factorize, GCD, LCM, IsPrime

Examples

(p1 <- Primes(100))
system.time(p1k <- Primes(1000)) # still lightning ..

stopifnot(length(p1k) == 168)



464 PseudoR2

PseudoR2 Pseudo R2 Statistics

Description

Although there’s no commonly accepted agreement on how to assess the fit of a logistic regression,
there are some approaches. The goodness of fit of the logistic regression model can be expressed
by some variants of pseudo R squared statistics, most of which being based on the deviance of the
model.

Usage

PseudoR2(x, which = NULL)

Arguments

x the glm, polr or multinom model object to be evaluated.

which character, one out of "McFadden", "McFaddenAdj", "CoxSnell", "Nagelkerke",
"AldrichNelson", "VeallZimmermann", "Efron", "McKelveyZavoina", "Tjur",
"all". Partial matching is supported.

Details

Cox and Snell’s R2 is based on the log likelihood for the model compared to the log likelihood for
a baseline model. However, with categorical outcomes, it has a theoretical maximum value of less
than 1, even for a "perfect" model.

Nagelkerke’s R2 (also sometimes called Cragg-Uhler) is an adjusted version of the Cox and Snell’s
R2 that adjusts the scale of the statistic to cover the full range from 0 to 1.

McFadden’s R2 is another version, based on the log-likelihood kernels for the intercept-only model
and the full estimated model.

Veall and Zimmermann concluded that from a set of six widely used measures the measure sug-
gested by McKelvey and Zavoina had the closest correspondance to ordinary least square R2. The
Aldrich-Nelson pseudo-R2 with the Veall-Zimmermann correction is the best approximation of
the McKelvey-Zavoina pseudo-R2. Efron, Aldrich-Nelson, McFadden and Nagelkerke approaches
severely underestimate the "true R2".

Value

the value of the specific statistic. AIC, LogLik, LogLikNull and G2 will only be reported with option
"all".

McFadden McFadden pseudo-R2

McFaddenAdj McFadden adjusted pseudo-R2

CoxSnell Cox and Snell pseudo-R2 (also known as ML pseudo-R2)

Nagelkerke Nagelkerke pseudoR2 (also known as CraggUhler R2)



PseudoR2 465

AldrichNelson AldrichNelson pseudo-R2

VeallZimmermann

VeallZimmermann pseudo-R2

McKelveyZavoina

McKelvey and Zavoina pseudo-R2

Efron Efron pseudo-R2

Tjur Tjur’s pseudo-R2

AIC Akaike’s information criterion

LogLik log-Likelihood for the fitted model (by maximum likelihood)

LogLikNull log-Likelihood for the null model. The null model will include the offset, and
an intercept if there is one in the model.

G2 differenz of the null deviance - model deviance

Author(s)

Andri Signorell <andri@signorell.net> with contributions of Ben Mainwaring <benjamin.mainwaring@yougov.com>
and Daniel Wollschlaeger

References

Aldrich, J. H. and Nelson, F. D. (1984): Linear Probability, Logit, and probit Models, Sage Univer-
sity Press, Beverly Hills.

Cox D R & Snell E J (1989) The Analysis of Binary Data 2nd ed. London: Chapman and Hall.

Efron, B. (1978). Regression and ANOVA with zero-one data: Measures of residual variation.
Journal of the American Statistical Association, 73(361), 113–121.

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). Hoboke, NJ: Wiley.

McFadden D (1979). Quantitative methods for analysing travel behavior of individuals: Some
recent developments. In D. A. Hensher & P. R. Stopher (Eds.), Behavioural travel modelling (pp.
279-318). London: Croom Helm.

McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level depen-
dent variables. The Journal of Mathematical Sociology, 4(1), 103–120

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination.
Biometrika, 78(3), 691–692.

Tjur, T. (2009) Coefficients of determination in logistic regression models - a new proposal: The
coefficient of discrimination. The American Statistician, 63(4): 366-372

Veall, M.R., & Zimmermann, K.F. (1992) Evalutating Pseudo-R2’s fpr binary probit models. Qual-
ity&Quantity, 28, pp. 151-164

See Also

logLik, AIC, BIC



466 PtInPoly

Examples

r.glm <- glm(Survived ~ ., data=Untable(Titanic), family=binomial)
PseudoR2(r.glm)

PseudoR2(r.glm, c("McFadden", "Nagel"))

PtInPoly Point in Polygon

Description

PtInPoly works out, whether XY-points lie within the boundaries of a given polygon.

Note: Points that lie on the boundaries of the polygon or vertices are assumed to lie within the
polygon.

Usage

PtInPoly(pnts, poly.pnts)

Arguments

pnts a 2-column matrix or dataframe defining locations of the points of interest

poly.pnts a 2-column matrix or dataframe defining the locations of vertices of the polygon
of interest

Details

The algorithm implements a sum of the angles made between the test point and each pair of points
making up the polygon. The point is interior if the sum is 2pi, otherwise, the point is exterior if the
sum is 0. This works for simple and complex polygons (with holes) given that the hole is defined
with a path made up of edges into and out of the hole.

This sum of angles is not able to consistently assign points that fall on vertices or on the boundary
of the polygon. The algorithm defined here assumes that points falling on a boundary or polygon
vertex are part of the polygon.

Value

A 3-column dataframe where the first 2 columns are the original locations of the points. The third
column (names pip) is a vector of binary values where 0 represents points not with the polygon and
1 within the polygon.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>



Quantile 467

Examples

#define the points and polygon
pnts <- expand.grid(x=seq(1,6,0.1), y=seq(1,6,0.1))
polypnts <- cbind(x=c(2,3,3.5,3.5,3,4,5,4,5,5,4,3,3,3,2,2,1,1,1,1,2),

y=c(1,2,2.5,2,2,1,2,3,4,5,4,5,4,3,3,4,5,4,3,2,2) )

#plot the polygon and all points to be checked
plot(rbind(polypnts, pnts))
polygon(polypnts, col='#99999990')

#create check which points fall within the polygon
out <- PtInPoly(pnts, polypnts)
head(out)

#identify points not in the polygon with an X
points(out[which(out$pip==0), 1:2], pch='X')

Quantile (Weighted) Sample Quantiles

Description

Compute weighted quantiles (Eurostat definition).

Usage

Quantile(x, weights = NULL, probs = seq(0, 1, 0.25),
na.rm = FALSE, names = TRUE, type = 7, digits = 7)

Arguments

x a numeric vector.

weights an optional numeric vector giving the sample weights.

probs numeric vector of probabilities with values in [0, 1].

na.rm a logical indicating whether missing values in x should be omitted.

names logical; if true, the result has a names attribute. Set to FALSE for speedup with
many probs.

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed
below to be used. Currently only types 5 and 7 (default) are implemented.

digits used only when names is true: the precision to use when formatting the percent-
ages. In R versions up to 4.0.x, this had been set to max(2, getOption("digits")),
internally.

Details

The implementation strictly follows the Eurostat definition.



468 QuantileCI

Value

A named numeric vector containing the weighted quantiles of values in x at probabilities probs is
returned.

Author(s)

Andreas Alfons, Matthias Templ, some tweaks Andri Signorell <andri@signorell.net>

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

Median, quantile, QuantileCI

Examples

Quantile(d.pizza$temperature, rep(c(1:3), length.out=nrow(d.pizza)))

QuantileCI Confidence Interval for Any Quantile

Description

Calculates the confidence interval for any quantile. Although bootstrapping might be a good ap-
proach for getting senisble confidence intervals there’s sometimes need to have a nonparameteric
alternative. This function offers one.

Usage

QuantileCI(x, probs=seq(0, 1, .25), conf.level = 0.95,
sides = c("two.sided", "left", "right"),
na.rm = FALSE, method = c("exact", "boot"), R = 999)

Arguments

x a (non-empty) numeric vector of data values.

probs numeric vector of probabilities with values in [0,1]. (Values up to 2e-14 outside
that range are accepted and moved to the nearby endpoint.)

conf.level confidence level of the interval

sides a character string specifying the side of the confidence interval, must be one of
"two.sided" (default), "left" or "right" (abbreviations allowed).
"left" would be analogue to a "greater" hypothesis in a t.test.

na.rm logical. Should missing values be removed? Defaults to FALSE.



QuantileCI 469

method defining the type of interval that should be calculated (one out of "exact",
"boot"). Default is "exact". See Details.

R The number of bootstrap replicates. Usually this will be a single positive integer.
See boot.ci for details.

Details

The "exact" method corresponds to the way the confidence interval for the median is calculated in
SAS.
The boot confidence interval type is calculated by means of boot.ci with default type "basic".

Value

if probs was of length 1 a numeric vector with 3 elements:

est est

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

or, if probs was a vector, a matrix with 3 columns consisting of estimate, lower ci, upper ci est,
lwr.ci, upr.ci

Author(s)

Andri Signorell <andri@signorell.net> based on code of W Huber on StackExchange

See Also

Quantile, quantile, MedianCI

Examples

QuantileCI(d.pizza$price, probs=0.25, na.rm=TRUE)

QuantileCI(d.pizza$price, na.rm=TRUE)
QuantileCI(d.pizza$price, conf.level=0.99, na.rm=TRUE)

# multiple probs
QuantileCI(1:100, method="exact" , probs = c(0.25, 0.75, .80, 0.95))
QuantileCI(1:100, method="boot" , probs = c(0.25, 0.75, .80, 0.95))



470 Quot

Quot Lagged Quotients

Description

Returns suitably lagged and iterated quotients

Usage

Quot(x, lag = 1, quotients = 1, ...)

Arguments

x a numeric vector or matrix containing the values to be used for calculating the
quotients.

lag an integer indicating which lag to use.
quotients an integer indicating the order of the quotient.
... further arguments to be passed to or from methods.

Details

NA’s propagate.

Value

If x is a vector of length n and quotients = 1, then the computed result is equal to the successive
quotients x[(1+lag):n] - x[1:(n-lag)].

If quotients is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the division operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff

Examples

Quot(1:10, 2)
Quot(1:10, 2, 2)
x <- cumprod(cumprod(1:10))
Quot(x, lag = 2)
Quot(x, quotients = 2)



Range 471

Range (Robust) Range

Description

Determines the range of the data, which can possibly be trimmed before calculating the extreme
values. The robust range version is calculated on the basis of the trimmed mean and variance (see
Details).

Usage

Range(x, trim = NULL, robust = FALSE, na.rm = FALSE, ...)

Arguments

x a numeric vector.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint. Default is 0 for robust=FALSE and 0.2 for robust=TRUE

robust logical, determining whether the robust or the convential range should be re-
turned.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

... the dots are sent to RobRange and can be used to set fac (See details).

Details

The R base function range returns the minimum and maximum value of a numeric object. Here
we return the span of a (possibly trimmed) numeric vector, say the difference of maximum and
minimum value.

If robust is set to TRUE the function determines the trimmed mean m and then the "upper trimmed
mean" s of absolute deviations from m, multiplied by fac (fac is 3 by default). The robust minimum
is then defined as m-fac*s or min(x), whichever is larger, and similarly for the maximum.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)
or complex, NA_real_ is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observa-
tions deleted from each end before the mean is computed.

Author(s)

Werner Stahel, ETH Zurich (robust range)
Andri Signorell andri@signorell.net

mailto:andri@signorell.net


472 Rank

See Also

range, min, max

Examples

x <- c(0:10, 50)
xm <- Range(x)
c(xm, Range(x, trim = 0.10))

x <- c(rnorm(20), rnorm(3, 5, 20))
Range(x, robust=TRUE)

# compared to
Range(x)

Rank Fast Sample Ranks

Description

The function base::rank has various weaknesses. Apart from the fact that it is not very fast, the
option to calculate dense ranks is not implemented. Then, an argument for specifying the ranking
direction is missing (assuming that this can be done with the ranking of the negative variables) and
finally, multiple columns cannot be used in the case of ties for further ranking.
The function data.table::frankv provides a more elaborated interface and convinces by very
performant calculations and is much faster than the original. It further accepts vectors, lists,
data.frames or data.tables as input. In addition to the ties.method possibilities provided by
base::rank, it also provides ties.method="dense".
The present function Rank is merely a somewhat customized parameterization of the data.table
function.

Usage

Rank(..., decreasing = FALSE, na.last = TRUE,
ties.method = c("average", "first", "last", "random",

"max", "min", "dense"))

Arguments

... A vector, or list with all its elements identical in length or data.frame or
data.table.

decreasing An logical vector corresponding to ascending and descending order. decreasing
is recycled to length(...).

na.last Control treatment of NAs. If TRUE, missing values in the data are put last; if
FALSE, they are put first; if NA, they are removed; if "keep" they are kept with
rank NA.

ties.method A character string specifying how ties are treated, see Details.



Rank 473

Details

To be consistent with other data.table operations, NAs are considered identical to other NAs (and
NaNs to other NaNs), unlike base::rank. Therefore, for na.last=TRUE and na.last=FALSE, NAs
(and NaNs) are given identical ranks, unlike rank.

Rank is not limited to vectors. It accepts data.tables (and lists and data.frames) as well.
It accepts unquoted column names (with names preceded with a - sign for descending order,
even on character vectors), for e.g., Rank(DT, a, -b, c, ties.method="first") where a,b,c are
columns in DT.

In addition to the ties.method values possible using base’s rank, it also provides another addi-
tional argument "dense". Dense ranks are consecutive integers beginning with 1. No ranks are
skipped if there are ranks with multiple items. So the largest rank value is the number of unique
values of x. See examples.

Like forder, sorting is done in "C-locale"; in particular, this may affect how capital/lowercase
letters are ranked. See Details on forder for more.

bit64::integer64 type is also supported.

Value

A numeric vector of length equal to NROW(x) (unless na.last = NA, when missing values are re-
moved). The vector is of integer type unless ties.method = "average" when it is of double type
(irrespective of ties).

See Also

frankv, data.table, setkey, setorder

Examples

# on vectors
x <- c(4, 1, 4, NA, 1, NA, 4)
# NAs are considered identical (unlike base R)
# default is average
Rank(x) # na.last=TRUE
Rank(x, na.last=FALSE)

# ties.method = min
Rank(x, ties.method="min")
# ties.method = dense
Rank(x, ties.method="dense")

# on data.frame, using both columns
d.set <- data.frame(x, y=c(1, 1, 1, 0, NA, 0, 2))
Rank(d.set, na.last="keep")
Rank(d.set, ties.method="dense", na.last=NA)

# decreasing argument
Rank(d.set, decreasing=c(FALSE, TRUE), ties.method="first")



474 Recode

ReadSPSS Read SPSS Datafiles and Return It in Good Old Style Data Frame
Structure

Description

While haven is a great package it uses tibbles as basic data structures. Older R users (as myself)
might prefer a more archaic structures. This function returns SPSS files in form of a data.frame and
the nominal variables as factors.

Usage

ReadSPSS(fn, encoding = NULL)

Arguments

fn Either a path to a file, a connection, or literal data (either a single string or a raw
vector).

encoding The character encoding used for the file. The default, NULL, use the encoding
specified in the file, but sometimes this value is incorrect and it is useful to be
able to override it.

Value

A data frame.

Variable labels are stored in the "label" attribute of each variable. It is not printed on the console,
but the RStudio viewer will show it.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

read_spss

Recode Recode a Factor

Description

Combining or rearranging a factor can be tedious if it has many levels. Recode supports this step by
accepting a direct definition of new levels by enumerating old levelnames as argument and adding
an "elselevel" option. If new levels are given as integer values they will be translated in the
according levels.



Recode 475

Usage

Recode(x, ..., elselevel = NA, use.empty = FALSE, num = FALSE)

Arguments

x the factor whose levels are to be altered. If x is character it will be factorized
(using factor defaults).

... the old levels (combined by c() if there are several) named with the new level:
newlevel_a=c("old_a", "old_b"),
newlevel_b=c("old_c", "old_d")
See examples.

elselevel the value for levels, which are not matched by newlevel list. If this is set to NULL,
the elselevels will be left unchanged. If set to NA (default) non matched levels
will be set to NA.

use.empty logical. Defines how a new level, which can’t be found in x, should be handled.
Should it be left in the level’s list or be dropped? The default is FALSE, which
drops empty levels.

num logical. If set to TRUE the result will be numeric.

Value

the factor having the new levels applied.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

factor, levels
There’s another solution in the package car.

Examples

set.seed(1984)
x <- factor(sample(1:15, 20, replace=TRUE))
levels(x) <- paste("old", levels(x), sep="_")

y <- Recode(x,
"new_1" = c("old_1","old_4","old_5"),
"new_2" = c("old_6","old_10","old_11"),
"new_3" = c("old_12","old_13"),
elselevel = "other")

data.frame(x=x, y=y)

# Coding NAs, NA is recoded to new_1
x[5:6] <- NA
x <- x[1:7]



476 Recycle

data.frame(
x,
RecodeNA = Recode(x,

"new_1" = c("old_4","old_8", NA),
elselevel = "other"),

# NAs remain untouched
NoRecodeNA = Recode(x,

"new_1" = c("old_4","old_8"),
elselevel = "other")

)

x <- factor(letters[1:6])

z1 <- Recode(x, AB=c("a","b"), CD=c("c","d"), elselevel="none of these")
z2 <- Recode(x, AB=c("a","b"), CD=c("c","d"), elselevel=NA)
z3 <- Recode(x, AB=c("a","b"), CD=c("c","d"), elselevel=NULL)
z4 <- Recode(x, AB=c("a","b"), GH=c("g","h"), elselevel=NA, use.empty=TRUE)
z5 <- Recode(x, AB=c("a","b"), GH=c("g","h"), elselevel=NA, use.empty=FALSE)

data.frame(z1, z2, z3, z4, z5)

lapply(data.frame(z1, z2, z3, z4, z5), levels)

# empty level GH exists in z4...
table(z4, useNA="ifany")
# and is dropped in z5
table(z5, useNA="ifany")

# use integers to define the groups to collapse
set.seed(1972)
(likert <- factor(sample(1:10, size=15, replace=TRUE),

levels=1:10, labels=gettextf("(%s)", 1:10)))
Recode(likert, det=1:6, pas=7:8, pro=9:10)

# or directly turned to numeric
Recode(likert, "1"=1:6, "2"=7:8, "5"=9:10, num=TRUE)

Recycle Recyle a List of Elements

Description

This function recycles all supplied elments to the maximal dimension.

Usage

Recycle(...)



RelRisk 477

Arguments

... a number of vectors of elements.

Value

a list of the supplied elements
attr(,"maxdim") contains the maximal dimension of the recyled list

Author(s)

Andri Signorell <andri@signorell.net>

See Also

rep, replicate

Examples

Recycle(x=1:5, y=1, s=letters[1:2])

z <- Recycle(x=letters[1:5], n=2:3, sep=c("-"," "))
sapply(1:attr(z, "maxdim"), function(i) paste(rep(z$x[i], times=z$n[i]), collapse=z$sep[i]))

RelRisk Relative Risk

Description

Computes the relative risk and its confidence intervals. Confidence intervals are calculated using
normal approximation ("wald"), ("score") or by using odds ratio ("use.or")

Usage

RelRisk(x, y = NULL, conf.level = NA,
method = c("score", "wald", "use.or"), delta = 0.5, ...)

Arguments

x a numeric vector or a 2x2 numeric matrix, resp. table.
y NULL (default) or a vector with compatible dimensions to x. If y is provided,

table(x, y, ...) will be calculated.
conf.level confidence level. Default is NA, meaning no confidence intervals will be re-

ported.
method method for calculating the relative risk and the confidence intervals. Can be one

out of "score", "wald", "use.or". Default is "score".
delta small constant to be added to the numerator for calculating the log risk ratio

(Wald method). Usual choice is 0.5 although there does not seem to be any
theory behind this. (Dewey, M. 2006)

... further arguments are passed to the function table, allowing i.e. to set useNA.



478 RelRisk

Details

Best is to always put the outcome variable (disease yes/no) in the columns and the exposure variable
in the rows. In other words, put the dependent variable – the one that describes the problem under
study – in the columns. And put the independent variable – the factor assumed to cause the problem
– in the rows. (Gerritsen, 2010)

According to this, the function expects the following table structure:

diseased=1 diseased=0
exposed=1 (ref) n00 n01
exposed=0 n10 n11

The relative risk is then calculated as:

(exposed & diseased) / exposed
rr = ----------------------------------

(unexposed & diseased) / unexposed

If the table to be used is not in the required shape, use the function Rev() and/or t() to reverse
rows, columns, or both, resp. to transpose the table.

Value

If conf.level is not NA then the result will be a vector with 3 elements for estimate, lower con-
fidence intervall and upper for the upper one. Else the relative risk will be reported as a single
value.

Author(s)

Andri Signorell <andri@signorell.net>, based on code of Yongyi Min and Michael Dewey

References

Rothman, K. J. and Greenland, S. (1998) Modern Epidemiology. Lippincott-Raven Publishers

Rothman, K. J. (2002) Epidemiology: An Introduction. Oxford University Press

Jewell, N. P. (2004) Statistics for Epidemiology. 1st Edition, 2004, Chapman & Hall, pp. 73-81

Selvin, S. (1998) Modern Applied Biostatistical Methods Using S-Plus. 1st Edition, Oxford Uni-
versity Press

Gerritsen, A (2010) https://www.theanalysisfactor.com/cross-tabulation-in-cohort-and-case-control-studies/

See Also

OddsRatio

https://www.theanalysisfactor.com/cross-tabulation-in-cohort-and-case-control-studies/


Rename 479

Examples

m <- matrix(c(78,50,1422,950),
nrow=2,
dimnames = list(water=c("cont", "clean"),

diarrhea=c("yes", "no")))

RelRisk(m, conf.level = 0.95)

mm <- cbind(c(9,20),c(41,29))
mm

RelRisk(t(mm), conf.level=0.95)
RelRisk(t(mm), conf.level=0.95, method="wald")
RelRisk(t(mm), conf.level=0.95, method="use.or")

Rename Change Names of a Named Object

Description

Rename changes the names of a named object.

Usage

Rename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE)

Arguments

x Any named object

... A sequence of named arguments, all of type character

gsub a logical value; if TRUE, gsub is used to change the row and column labels of
the resulting table. That is, instead of substituting whole names, substrings of
the names of the object can changed.

fixed a logical value, passed to gsub. If TRUE, substitutions are by fixed strings and
not by regular expressions.

warn a logical value; should a warning be issued if those names to change are not
found?

Details

This function changes the names of x according to the remaining arguments. If gsub is FALSE,
argument tags are the old names, the values are the new names. If gsub is TRUE, arguments are
substrings of the names that are substituted by the argument values.

Value

The object x with new names defined by the . . . arguments.



480 reorder.factor

Note

This function was previously published in the package memisc as rename and has been integrated
here without logical changes.

Author(s)

Martin Elff <melff@essex.ac.uk>

See Also

SetNames, Recode for recoding of a factor (renaming or combining levels)

Examples

x <- c(a=1, b=2)
Rename(x, a="A", b="B")

str(Rename( iris,
Sepal.Length="Sepal_Length",
Sepal.Width ="Sepal_Width",
Petal.Length="Petal_Length",
Petal.Width ="Petal_Width"
))

str(Rename(iris, .="_", gsub=TRUE))

reorder.factor Reorder the Levels of a Factor

Description

Reorder the levels of a factor

Usage

## S3 method for class 'factor'
reorder(x, X, FUN, ...,

order = is.ordered(x), new.order, sort = SortMixed)

Arguments

x factor

X auxillary data vector

FUN function to be applied to subsets of X determined by x, to determine factor order

... optional parameters to FUN

order logical value indicating whether the returned object should be an ordered factor



reorder.factor 481

new.order a vector of indexes or a vector of label names giving the order of the new factor
levels

sort function to use to sort the factor level names, used only when new.order is
missing

Details

This function changes the order of the levels of a factor. It can do so via three different mechanisms,
depending on whether, X and FUN, new.order or sort are provided.

If X and Fun are provided: The data in X is grouped by the levels of x and FUN is applied. The groups
are then sorted by this value, and the resulting order is used for the new factor level names.

If new.order is provided: For a numeric vector, the new factor level names are constructed by
reordering the factor levels according to the numeric values. For vectors, new.order gives the list
of new factor level names. In either case levels omitted from new.order will become missing (NA)
values.

If sort is provided (as it is by default): The new factor level names are generated by applying the
supplied function to the existing factor level names. With sort=mixedsort the factor levels are
sorted so that combined numeric and character strings are sorted in according to character rules on
the character sections (including ignoring case), and the numeric rules for the numeric sections. See
mixedsort for details.

Value

A new factor with reordered levels

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

factor and reorder

Examples

# Create a 4 level example factor
trt <- factor( sample( c("PLACEBO", "300 MG", "600 MG", "1200 MG"),

100, replace=TRUE ) )
summary(trt)
# Note that the levels are not in a meaningful order.

# Change the order to something useful
# default "mixedsort" ordering
trt2 <- reorder(trt)
summary(trt2)
# using indexes:
trt3 <- reorder(trt, new.order=c(4, 2, 3, 1))
summary(trt3)
# using label names:
trt4 <- reorder(trt, new.order=c("PLACEBO", "300 MG", "600 MG", "1200 MG"))



482 Rev

summary(trt4)
# using frequency
trt5 <- reorder(trt, X=as.numeric(trt), FUN=length)
summary(trt5)

# drop out the '300 MG' level
trt6 <- reorder(trt, new.order=c("PLACEBO", "600 MG", "1200 MG"))
summary(trt6)

Rev Reverse Elements of a Vector, a Matrix, a Table, an Array or a
Data.frame

Description

Rev provides a reversed version of its argument. Unlike the basic function, it does in higher-
dimensional structures such as matrices not reverse the elements, but the order of the rows and/or
columns. It further offers additional interfaces for higher dimensional arrays or tables.

Usage

Rev(x, ...)

## S3 method for class 'matrix'
Rev(x, margin, ...)

## S3 method for class 'table'
Rev(x, margin, ...)

## S3 method for class 'array'
Rev(x, margin, ...)

## S3 method for class 'data.frame'
Rev(x, margin, ...)

Arguments

x a vector, a matrix or a higher dimensional table to be reversed.

margin vector of dimensions which to be reversed (1 for rows, 2 for columns, etc.). If
not defined, all dimensions will be reverted.

... the dots are passed to the array interface.

Author(s)

Andri Signorell <andri@signorell.net>



RevCode 483

See Also

rev, order, sort, seq

Examples

tab <- matrix(c(1, 11, 111,
2, 22, 222,
3, 33, 333),

byrow=TRUE, nrow=3,
dimnames=list(mar1=1:3, mar2=c("a","b","c")))

Rev(tab, margin=1)
Rev(tab, margin=2)

# reverse both dimensions
Rev(tab, margin=c(1, 2))

t(tab)

# reverse 3dimensional array
aa <- Abind(tab, 2 * tab, along=3)
dimnames(aa)[[3]] <- c("A","Z")

# reverse rows
Rev(aa, 1)
# reverse columns
Rev(aa, 2)
# reverse 3th dimension
Rev(aa, 3)

# reverse all dimensions
Rev(aa)
# same as
Rev(aa, margin=(1:3))

RevCode Reverse Codes

Description

In psychology variables often need to be recoded into reverse order in cases that items are negatively
worded. So it can be ensured that a high value indicate the same type of response on every item.
Let’s say we have a Likert scale from 1 to 5 and we want to recode the variable so that a 5 becomes
a 1, 4 a 2 and so on.

Usage

RevCode(x, ...)



484 RevCode

Arguments

x a numerical or logical vector, or a factor.

... the dots are sent to min/max, such as possibly to remove NAs before reversing
numeric values.

Details

The function recodes based on:

min(x, na.rm=TRUE) + max(x, na.rm=TRUE) - x

Value

the recoded vector

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Recode

Examples

x <- 1:5
data.frame(x, rev_num=RevCode(x), rev_fac=RevCode(factor(x)))

s <- c(3,4,2,7,4,9,NA,10)
RevCode(factor(s, levels=1:10))

i <- c(1,0,0,0,1,1)
cbind(i, RevCode(i))

k <- as.logical(c(1,0,0,0,1,1))
cbind(k, RevCode(k))

x <- factor(sample(letters[1:5], 10, replace = TRUE))
RevCode(x)

# we want to set the level 5 to NA before reversing
RevCode(factor(NAIf(x, "e")))



RevWeibull 485

RevWeibull The Reverse Weibull Distribution

Description

Density function, distribution function, quantile function and random generation for the reverse (or
negative) Weibull distribution with location, scale and shape parameters.

Usage

dRevWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pRevWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qRevWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rRevWeibull(n, loc=0, scale=1, shape=1)

dNegWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pNegWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qNegWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rNegWeibull(n, loc=0, scale=1, shape=1)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n Number of observations.
loc, scale, shape

Location, scale and shape parameters (can be given as vectors).

log Logical; if TRUE, the log density is returned.

lower.tail Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The reverse (or negative) Weibull distribution function with parameters loc = a, scale = b and
shape = s is

G(z) = exp

{
−
[
−
(
z − a

b

)]s}
for z < a and one otherwise, where b > 0 and s > 0.

Value

dRevWeibull and dNegWeibull give the density function, pRevWeibull and pNegWeibull give the
distribution function, qRevWeibull and qNegWeibull give the quantile function, rRevWeibull and
rNegWeibull generate random deviates.



486 RgbToCmy

Note

Within extreme value theory the reverse Weibull distibution (also known as the negative Weibull
distribution) is often referred to as the Weibull distribution. We make a distinction to avoid confu-
sion with the three-parameter distribution used in survival analysis, which is related by a change of
sign to the distribution given above.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

rFrechet, rGenExtrVal, rGumbel

Examples

dRevWeibull(-5:-3, -1, 0.5, 0.8)
pRevWeibull(-5:-3, -1, 0.5, 0.8)
qRevWeibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rRevWeibull(6, -1, 0.5, 0.8)
p <- (1:9)/10
pRevWeibull(qRevWeibull(p, -1, 2, 0.8), -1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RgbToCmy Conversion Between RGB and CMYK

Description

These function convert colors between RGB and CMYK system.

Usage

RgbToCmy(col, maxColorValue = 1)
CmykToRgb(cyan, magenta, yellow, black, maxColorValue=1)
CmyToCmyk(col)
CmykToCmy(col)

Arguments

col the matrix of the color to be converted

cyan cyan values of the color(s) to be converted

magenta magenta values of the color(s) to be converted

yellow yellow values of the color(s) to be converted

black black values of the color(s) to be converted

maxColorValue the value for the color



RgbToCol 487

Value

the converted value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

RgbToCol

Examples

CmykToRgb(0.42, 45.23, 85.14, maxColorValue=100)

RgbToCol Find the Nearest Named R-Color to a Given RGB-Color

Description

Converting a RGB-color to a named R-Color means looking for a color in the R-palette, which is
nearest to the given RGB-color. This function uses the minimum of squared distance ("euclidean")
or the minimum absolute distance ("manhattan") as proximity measure.
RgbToLong() converts a RGB-color to a long integer in numeric format. LongToRGB() does it the
other way round.

Usage

RgbToCol(col, method = "rgb", metric = "euclidean")

RgbToLong(col)
LongToRgb(col)

Arguments

col the color in rgb code, say a matrix with the red, green and blue code in the rows.

method character string specifying the color space to be used. Can be "rgb" (default) or
"hsv".

metric character string specifying the metric to be used for calculating distances be-
tween the colors. Available options are "euclidean" (default) and "manhattan".
Euclidean distances are root sum-of-squares of differences, and manhattan dis-
tances are the sum of absolute differences.

Details

It may not be clear from the start which method, rgb or hsv, yield the more natural results. Trying
and comparing is a recommended strategy. Moreover the shortest numerical distance will not always
be the best choice, when comparing the colours visually.



488 RndPairs

Value

the name of the nearest found R color.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ColToRgb and the other conversion functions

Examples

RgbToCol(matrix(c(162,42,42), nrow=3))

RgbToLong(matrix(c(162,42,42), nrow=3))

RndPairs Create Pairs of Correlated Random Numbers

Description

Create pairs of correlated random numbers.

Usage

RndPairs(n, r, rdist1 = rnorm(n = n, mean = 0, sd = 1),
rdist2 = rnorm(n = n, mean = 0, sd = 1), prop = NULL)

RndWord(size, length, x = LETTERS, replace = TRUE, prob = NULL)

Arguments

n number of pairs. If length(n) > 1, the length is taken to be the number required.

r the correlation between the two sets.

rdist1, rdist2 the distribution of the random vector X1 and X2. Default is standard normal
distribution.

size a non-negative integer giving the number of artificial words to build.

length a non-negative integer giving the length of the words.

x elements to choose from.

replace Should sampling be with replacement?

prop proportions for ordinal variable, must sum to 1.

prob a vector of probability weights for obtaining the elements of the vector being
sampled.



RobScale 489

Value

a data.frame with 2 columns, X1 and X2 containing the random numbers

Author(s)

Andri Signorell <andri@signorell.net>

See Also

runif, rnorm, Random and friends

Examples

# produce 100 pairs of a normal distributed random number with a correlation of 0.7
d.frm <- RndPairs(n=100, r=0.7)

plot(d.frm)
lines(lm(y ~ x,d.frm))

# change the distribution
d.frm <- RndPairs(n=100, r=0.7, rdist2 = rlnorm(n = 100, meanlog = 1, sdlog = .8))
d.frm <- RndPairs(n=100, r=0.7, rdist2 = runif(n = 100, -1, 4))

x <- StrCap(sapply(sample(3:15, 10), function(i) RndWord(1, i, x=letters)))

# produce some artificial words with defined probabilities for the letters
p <- c(6.51,1.89,3.06,5.08,17.4,1.66,3.01,4.76,7.55,0.27,1.21,3.44,2.53,

9.78,2.51,0.79,0.02,7,7.27,6.15,4.35,0.67,1.89,0.03,0.04,1.13)
sapply(sample(3:15, 10), function(i) RndWord(1, i, x=letters, prob=p))

# produce associated ordinal variables
d.ord <- RndPairs(500, r=0.8, prop = list(c(.15, .3, .55),

c(.3, .5, .2)))
levels(d.ord$y) <- levels(d.ord$x) <- LETTERS[1:3]
PlotMosaic(table(d.ord$x, d.ord$y), las=1, main="")

RobScale Robust Scaling With Median and Mad

Description

RobScale is a wrapper function for robust standardization, using median and mad instead of mean
and sd.

Usage

RobScale(x, center = TRUE, scale = TRUE)



490 RomanToInt

Arguments

x a numeric matrix(like object).

center a logical value defining whether x should be centered by the median. Center-
ing is done by subtracting the column medians (omitting NAs) of x from their
corresponding columns. If center is FALSE, no centering is done.

scale a logical value defining whether x should be scaled by the mad. Scaling is done
by dividing the (centered) columns of x by their mad. If scale is FALSE, no
scaling is done.

Value

the centered, scaled matrix. The numeric centering and scalings used (if any) are returned as at-
tributes "scaled:center" and "scaled:scale"

Author(s)

Andri Signorell <andri@signorell.net>

See Also

scale, sweep

Examples

x <- d.pizza$temperature
plot(x=seq_along(x), y=RobScale(x), xlim=c(0,100))
points(x=seq_along(x), y=scale(x), col="red" )

RomanToInt Convert Roman Numerals to Integers

Description

Convert roman numerals to integers

Usage

RomanToInt(x)

Arguments

x character vector containing roman numerals

Details

This functon will convert roman numerals to integers without the upper bound imposed by R (3899),
ignoring case.



Rotate 491

Value

A integer vector with the same length as roman. Character strings which are not valid roman nu-
merals will be converted to NA.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

as.roman

Examples

RomanToInt( c('I', 'V', 'X', 'C', 'L', 'D', 'M' ) )

# works regardless of case
RomanToInt( 'MMXVI' )
RomanToInt( 'mmxvi' )

# works beyond R's limit of 3899
val.3899 <- 'MMMDCCCXCIX'
val.3900 <- 'MMMCM'
val.4000 <- 'MMMM'
as.numeric(as.roman( val.3899 ))
as.numeric(as.roman( val.3900 ))
as.numeric(as.roman( val.4000 ))

RomanToInt(val.3899)
RomanToInt(val.3900)
RomanToInt(val.4000)

Rotate Rotate a Geometric Structure

Description

Rotate a geometric structure by an angle theta around a centerpoint xy.

Usage

Rotate(x, y = NULL, mx = NULL, my = NULL, theta = pi/3, asp = 1)



492 RoundTo

Arguments

x, y vectors containing the coordinates of the vertices of the polygon , which has to
be rotated. The coordinates can be passed in a plotting structure (a list with x
and y components), a two-column matrix, .... See xy.coords.

mx, my xy-coordinates of the center of the rotation. If left to NULL, the centroid of the
structure will be used.

theta angle of the rotation

asp the aspect ratio for the rotation. Helpful for rotate structures along an ellipse.

Value

The function invisibly returns a list of the coordinates for the rotated shape(s).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon, DrawRegPolygon, DrawEllipse, DrawArc

Examples

# let's have a triangle
Canvas(main="Rotation")
x <- DrawRegPolygon(nv=3)[[1]]

# and rotate
sapply( (0:3) * pi/6, function(theta) {

xy <- Rotate( x=x, theta=theta )
polygon(xy, col=SetAlpha("blue", 0.2))

} )

abline(v=0, h=0)

RoundTo Round to Multiple

Description

Returns a number rounded to the nearest specified multiple.

Usage

RoundTo(x, multiple = 1, FUN = round)



RoundTo 493

Arguments

x numeric. The value to round.

multiple numeric. The multiple to which the number is to be rounded. Default is 1.

FUN the rounding function as character or as expression. Can be one out of trunc,
ceiling, round (default) or floor.

Details

There are several functions to convert to integers. round rounds to the nearest integer or to any
number of digits. Using a negative number rounds to a power of ten, so that round (x, -3) rounds
to thousands. Each of trunc, floor and ceiling round in a fixed direction, towards zero, down
and up respectively. round is documented to round to even, so round(2.5) is 2.

RoundTo uses round(x/multiple)*multiple to get the result. So if x is equally close to two
multiples, the multiple with the smaller absolute value will be returned when round(x/multiple)
is even (and the greater when it’s odd).
If FUN is set to ceiling it will always round up, and if set to floor it will always round down. See
examples for comparison).

Value

the rounded value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

round, trunc, ceiling, floor

Examples

RoundTo(10, 3) # Rounds 10 to a nearest multiple of 3 (9)
RoundTo(-10, -3) # Rounds -10 to a nearest multiple of -3 (-9)

RoundTo(1.3, 0.2) # Rounds 1.3 to a nearest multiple of 0.2 (1.2)
RoundTo(-1.3, 0.2) # Rounds -1.3 to a nearest multiple of 0.2 (-1.2)
RoundTo(5, -2) # Returns an error, because -2 and 5 have different signs

# Round down
RoundTo(c(1,-1) * 1.2335, 0.05, floor)
RoundTo(c(1,-1) * 1233.5, 100, floor)

# Round up
RoundTo(c(1,-1) * 1.2335, 0.05, ceiling)
RoundTo(c(1,-1) * 1233.5, 100, ceiling)

# Round towards zero
RoundTo(c(1,-1) * 1.2335, 0.05, trunc)
RoundTo(c(1,-1) * 1233.5, 100, trunc)



494 RSessionAlive

x <- c(-1.5,-1.3, 1.3, 1.5)
cbind(x = x,

round = RoundTo(x, 0.2, FUN=round),
trunc = RoundTo(x, 0.2, FUN=trunc),
ceiling = RoundTo(x, 0.2, FUN=ceiling),
floor = RoundTo(x, 0.2, FUN=floor)

)

x <- -10:10
cbind(x = x,

round = RoundTo(x, 2, FUN=round),
trunc = RoundTo(x, 2, FUN=trunc),
ceiling = RoundTo(x, 2, FUN=ceiling),
floor = RoundTo(x, 2, FUN=floor)

)

RSessionAlive How Long Has the RSession Been Running?

Description

RSessionAlive() returns the time the R session has been running in hours. The function uses
powershell in Windows and is thus restricted to run in windows only. RTempdirAlive() does the
same for temporary directories, but runs on all systems.

Usage

RSessionAlive()
RTempdirAlive()

Value

time in hours

Author(s)

Markus Napflin <markus.naepfl@in>, Andri Signorell <andri@signorell.net>

See Also

Sys.getenv



RSqCI 495

RSqCI Confidence Intervals for the R squared of a Linear Model

Description

Calculate bootstrap intervals for the the R squared of a linear model as returned by lm.

Usage

RSqCI(
object,
conf.level = 0.95,
sides = c("two.sided", "left", "right"),
adjusted = TRUE,
...

)

Arguments

object the model object as returned by glm.

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one of
"two.sided" (default), "left" or "right". "left" would be analogue to a
hypothesis of "greater" in a t.test. You can specify just the initial letter.

adjusted logical, defining if the R squared or the adjusted R squared should be used.
Default is TRUE, returning the latter.

... further arguments are passed to the boot function. Supported arguments are
type ("norm", "basic", "stud", "perc", "bca"), parallel and the number
of bootstrap replicates R. If not defined those will be set to their defaults, being
"basic" for type, option "boot.parallel" (and if that is not set, "no") for
parallel and 999 for R.

Value

a numeric vector with 3 elements:

mean mean

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell andri@signorell.net

See Also

BrierScore

mailto:andri@signorell.net


496 rSum21

Examples

# get linear model
r.lm <- lm(Fertility ~ Agriculture + Examination + Education

+ Catholic + Infant.Mortality, data=swiss)

# calculate confidence intervals for the R2
summary(r.lm)$r.squared

RSqCI(r.lm, R=99) # use higher R in real life!

rSum21 Random Numbers Adding Up to 1

Description

Generates a vector of uniformly distributed random numbers which sum to 1.

Usage

rSum21(size, digits = NULL)

Arguments

size a non-negative integer giving the number of numbers to generate.

digits integer indicating the number of decimal places to be used.

Value

a vector of length size with elements drawn

Author(s)

Andri Signorell <andri@signorell.net>

See Also

runif, (Dirichlet distribution)

Examples

# generate 5 numbers
x <- rSum21(5)
sum(x)



RunsTest 497

RunsTest Runs Test for Randomness

Description

Performs a test whether the elements of x are serially independent - say, whether they occur in a
random order - by counting how many runs there are above and below a threshold. If y is sup-
plied a two sample Wald-Wolfowitz-Test testing the equality of two distributions against general
alternatives will be computed.

Usage

RunsTest(x, ...)

## Default S3 method:
RunsTest(x, y = NULL, alternative = c("two.sided", "less", "greater"),

exact = NULL, correct = TRUE, na.rm = FALSE, ...)

## S3 method for class 'formula'
RunsTest(formula, data, subset, na.action, ...)

Arguments

x a dichotomous vector of data values or a (non-empty) numeric vector of data
values.

y an optional (non-empty) numeric vector of data values.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "less" or "greater".

exact a logical indicating whether an exact p-value should be computed. By default
exact values will be calculated for small vectors with a total length <= 30 and
the normal approximation for longer ones.

correct a logical indicating whether to apply continuity correction when computing the
test statistic. Default is TRUE. Ignored if exact is set to TRUE. See details.

na.rm defines if NAs should be omitted. Default is FALSE.

... further arguments to be passed to or from methods.



498 RunsTest

Details

The runs test for randomness is used to test the hypothesis that a series of numbers is random.

For a categorical variable, the number of runs correspond to the number of times the category
changes, that is, where xi belongs to one category and xi+1 belongs to the other. The number of
runs is the number of sign changes plus one.

For a numeric variable x containing more than two values, a run is a set of sequential values that are
either all above or below a specified cutpoint, typically the median. This is not necessarily the best
choice. If another threshold should be used use a code like: RunsTest(x > mean(x)).

The exact distribution of runs and the p-value based on it are described in the manual of SPSS
"Exact tests" https://www.sussex.ac.uk/its/pdfs/SPSS_Exact_Tests_21.pdf.

The normal approximation of the runs test is calculated with the expected number of runs under the
null

µr =
2n0n1

n0 + n1
+ 1

and its variance

σ2
r =

2n0n1(2n0n1 − n0 − n1)

(n0 + n1)2 · (n0 + n1 − 1)

as
ẑ =

r − µr + c

σr

where n0, n1 the number of values below/above the threshold and r the number of runs.

Setting the continuity correction correct = TRUE will yield the normal approximation as SAS (and
SPSS if n < 50) does it, see http://support.sas.com/kb/33/092.html. The c is set to c = 0.5
if r < 2n0n1

n0+n1
+ 1 and to c = −0.5 if r > 2n0n1

n0+n1
+ 1.

The Wald-Wolfowitz test is a 2-sample nonparametric test to evaluate if two continuous
cumulative distributions are significantly different or not. Ideally there should be no ties in the data.
In practice there is no problem with ties within a group, but if ties occur between members of the
different groups then there is no unique sequence of observations. For example the data sets A:
10,14,17,19,34 and B: 12,13,17,19,22 can give four possible sequences, with two possible values
for r (7 or 9). The "solution" to this is to list every possible combination, and calculate the test statis-
tic for each one. If all test statistics are significant at the chosen level, then one can reject the null
hypothesis. If only some are significant, then Siegel (1956) suggests that the average of the P-values
is taken. Help for finding all permutations of ties can be found at: https://stackoverflow.com/
questions/47565066/all-possible-permutations-in-factor-variable-when-ties-exist-in-r

However this solutions seems quite coarse and in general, the test should not be used if there are
more than one or two ties. We have better tests to distinguish between two samples!

Value

A list with the following components.

statistic z, the value of the standardized runs statistic, if not exact p-values are computed.

parameter the number of runs, the total number of zeros (m) and ones (n)

p.value the p-value for the test.

https://www.sussex.ac.uk/its/pdfs/SPSS_Exact_Tests_21.pdf
http://support.sas.com/kb/33/092.html
https://stackoverflow.com/questions/47565066/all-possible-permutations-in-factor-variable-when-ties-exist-in-r
https://stackoverflow.com/questions/47565066/all-possible-permutations-in-factor-variable-when-ties-exist-in-r


RunsTest 499

data.name a character string giving the names of the data.

alternative a character string describing the alternative hypothesis.

Author(s)

Andri Signorell <andri@signorell.net>, exact p-values by Detlew Labes <detlewlabes@gmx.de>

References

Wackerly, D., Mendenhall, W. Scheaffer, R. L. (1986) Mathematical Statistics with Applications,
3rd Ed., Duxbury Press, CA.

Wald, A. and Wolfowitz, J. (1940): On a test whether two samples are from the same population,
Ann. Math Statist. 11, 147-162.

Siegel, S. (1956) Nonparametric Statistics for the Behavioural Sciences, McGraw-Hill Kogakusha,
Tokyo.

See Also

Run Length Encoding rle

Examples

# x will be coerced to a dichotomous variable
x <- c("S","S", "T", "S", "T","T","T", "S", "T")
RunsTest(x)

x <- c(13, 3, 14, 14, 1, 14, 3, 8, 14, 17, 9, 14, 13, 2, 16, 1, 3, 12, 13, 14)
RunsTest(x)
# this will be treated as
RunsTest(x > median(x))

plot( (x < median(x)) - 0.5, type="s", ylim=c(-1,1) )
abline(h=0)

set.seed(123)
x <- sample(0:1, size=100, replace=TRUE)
RunsTest(x)
# As you would expect of values from a random number generator, the test fails to reject
# the null hypothesis that the data are random.

# SPSS example
x <- c(31,23,36,43,51,44,12,26,43,75,2,3,15,18,78,24,13,27,86,61,13,7,6,8)
RunsTest(x, exact=TRUE) # exact probability
RunsTest(x, exact=FALSE) # normal approximation

# SPSS example small dataset
x <- c(1, 1, 1, 1, 0, 0, 0, 0, 1, 1)
RunsTest(x)
RunsTest(x, exact=FALSE)



500 Sample

# if y is not NULL, the Wald-Wolfowitz-Test will be performed
A <- c(35,44,39,50,48,29,60,75,49,66)
B <- c(17,23,13,24,33,21,18,16,32)

RunsTest(A, B, exact=TRUE)
RunsTest(A, B, exact=FALSE)

Sample Random Samples and Permutations

Description

Sample takes a sample of the specified size from the elements of x using either with or without
replacement. The function does the same as the base::sample() and offers additionally an interface
for data frames.

Usage

Sample(x, size, replace = FALSE, prob = NULL)

Arguments

x either a vector of one or more elements from which to choose, or a positive
integer.

size a positive number, the number of items to choose from.

replace a non-negative integer giving the number of items to choose.

prob should sampling be with replacement?

Value

sampled elements in the same structure as x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

sample

Examples

sample(d.pizza, size=5)



SampleTwins 501

SampleTwins Sample Twins

Description

Draw a twin sample out of a population for a given recordset, by matching some strata criteria.

Usage

SampleTwins(x, stratanames = NULL, twins,
method = c("srswor", "srswr", "poisson", "systematic"),
pik, description = FALSE)

Arguments

x the data to draw the sample from
stratanames the stratanames to use
twins the twin sample
method method to select units; the following methods are implemented: simple random

sampling without replacement (srswor), simple random sampling with replace-
ment (srswr), Poisson sampling (poisson), systematic sampling (systematic); if
"method" is missing, the default method is "srswor". See Strata.

pik vector of inclusion probabilities or auxiliary information used to compute them;
this argument is only used for unequal probability sampling (Poisson and sys-
tematic). If an auxiliary information is provided, the function uses the inclusion-
probabilities function for computing these probabilities. If the method is "srswr"
and the sample size is larger than the population size, this vector is normalized
to one.

description a message is printed if its value is TRUE; the message gives the number of
selected units and the number of the units in the population. By default, the
value is FALSE.

Value

The function produces an object, which contains the following information:

id the identifier of the selected units.
stratum the unit stratum.
prob the final unit inclusion probability.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Strata, sample



502 SaveAs

Examples

m <- rbind(matrix(rep("nc",165), 165, 1, byrow=TRUE),
matrix(rep("sc", 70), 70, 1, byrow=TRUE))

m <- cbind.data.frame(m, c(rep(1, 100), rep(2,50), rep(3,15),
rep(1,30), rep(2,40)), 1000*runif(235))

names(m) <- c("state","region","income")

# this would be our sample to be reproduced by a twin sample
d.smp <- m[sample(nrow(m), size=10, replace=TRUE),]

# draw the sample
s <- SampleTwins(x = m, stratanames=c("state","region"), twins = d.smp, method="srswor")

d.twin <- m[s$id,]
d.twin

SaveAs Saves an R Object Under a Different Name

Description

An R object cannot be saved in binary mode under a different name using the default save()
function. SaveAs() extends the save function for this option.

Usage

SaveAs(x, objectname, file, ...)

Arguments

x the object to save
objectname the new name for the object.
file a (writable binary-mode) connection or the name of the file where the data will

be saved (when tilde expansion is done).
... the dots are passed to the save function.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

save

Examples

x <- stats::runif(20)
SaveAs(x=x, objectname="NewX", file = "NewXFile.rda")
unlink("NewXFile.rda")



ScheffeTest 503

ScheffeTest Scheffe Test for Pairwise and Otherwise Comparisons

Description

Scheffe’s method applies to the set of estimates of all possible contrasts among the factor level
means, not just the pairwise differences considered by Tukey’s method.

Usage

ScheffeTest(x, ...)

## S3 method for class 'formula'
ScheffeTest(formula, data, subset, na.action, ...)
## S3 method for class 'aov'
ScheffeTest(x, which = NULL, contrasts = NULL,

conf.level = 0.95, ...)
## Default S3 method:
ScheffeTest(x, g = NULL, which = NULL,

contrasts = NULL, conf.level = 0.95, ...)

Arguments

x either a fitted model object, usually an aov fit, when g is left to NULL or a re-
sponse variable to be evalutated by g (which mustn’t be NULL then).

g the grouping variable.

which character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to all the terms.

contrasts a r × c matrix containing the contrasts to be computed, while r is the number
of factor levels and c the number of contrasts. Each column must contain a full
contrast ("sum") adding up to 0. Note that the argument which must be defined,
when non default contrasts are used. Default value of contrasts is NULL. In
this case all pairwise contrasts will be reported.

conf.level numeric value between zero and one giving the confidence level to use. If this is
set to NA, just a matrix with the p-values will be returned.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments, currently not used.



504 ScheffeTest

Value

A list of classes c("PostHocTest"), with one component for each term requested in which. Each
component is a matrix with columns diff giving the difference in the observed means, lwr.ci
giving the lower end point of the interval, upr.ci giving the upper end point and pval giving the
p-value after adjustment for the multiple comparisons.

There are print and plot methods for class "PostHocTest". The plot method does not accept xlab,
ylab or main arguments and creates its own values for each plot.

Author(s)

Andri Signorell <andri@signorell.net>

References

Robert O. Kuehl, Steel R. (2000) Design of experiments. Duxbury

Steel R.G.D., Torrie J.H., Dickey, D.A. (1997) Principles and Procedures of Statistics, A Biometri-
cal Approach. McGraw-Hill

See Also

pairwise.t.test, TukeyHSD

Examples

fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)

ScheffeTest(x=fm1)
ScheffeTest(x=fm1, which="tension")

TukeyHSD(fm1)

# some special contrasts
y <- c(7,33,26,27,21,6,14,19,6,11,11,18,14,18,19,14,9,12,6,

24,7,10,1,10,42,25,8,28,30,22,17,32,28,6,1,15,9,15,
2,37,13,18,23,1,3,4,6,2)

group <- factor(c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6))

r.aov <- aov(y ~ group)

ScheffeTest(r.aov, contrasts=matrix( c(1,-0.5,-0.5,0,0,0,
0,0,0,1,-0.5,-0.5), ncol=2) )

# just p-values:
ScheffeTest(r.aov, conf.level=NA)



SD 505

SD (Weighted) Standard Deviation

Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then missing
values are removed before computation proceeds. SDn returns the uncorrected sample standard
deviation (which is biased estimator for the sample standard deviation).

Usage

SD(x, weights = NULL, na.rm = FALSE, ...)

SDN(x, na.rm = FALSE)

Arguments

x a numeric vector or an R object which is coercible to one by as.double(x).

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

na.rm logical. Should missing values be removed?

... further arguments passed to or from other methods.

Details

Like var this uses denominator n− 1.

The standard deviation of a zero-length vector (after removal of NAs if na.rm = TRUE) is not defined
and gives an error. The standard deviation of a length-one vector is NA.

See Also

var for its square, and mad, the most robust alternative.

Examples

SD(1:2)^2



506 SendOutlookMail

SendOutlookMail Send a Mail Using Outlook as Mail Client

Description

Sending emails in R can be required in some reporting tasks. As we already have RDCOMClient
available we wrap the send code in a function.

Usage

SendOutlookMail(to, cc = NULL, bcc = NULL, subject, body, attachment = NULL)

Arguments

to a vector of recipients

cc a vector of recipients receiving a carbon copy

bcc a vector of recipients receiving a blind carbon copy

subject the subject of the mail

body the body text of the mail

attachment a vector of paths to attachments

Value

Nothing is returned

Author(s)

Andri Signorell <andri@signorell.net> strongly based on code of Franziska Mueller

See Also

ToXL

Examples

## Not run:
SendOutlookMail(to=c("me@microsoft.com", "you@rstudio.com"), subject = "Some Info",

body = "Hi all\r Find the files attached\r Regards, Andri",
attachment = c("C:/temp/fileA.txt",

"C:/temp/fileB.txt"))

## End(Not run)



SetAlpha 507

SetAlpha Add an Alpha Channel To a Color

Description

Add transparency to a color defined by its name or number. The function first converts the color to
RGB and then appends the alpha channel. Fade() combines ColToOpaque(SetAlpha(col)).

Usage

SetAlpha(col, alpha = 0.5)
Fade(col, ...)

Arguments

col vector of two kind of R colors, i.e., either a color name (an element of colors())
or an integer i meaning palette()[i].

alpha the alpha value to be added. This can be any value from 0 (fully transparent) to
1 (opaque). NA is interpreted so as to delete a potential alpha channel. Default is
0.5.

... the dots in Fade are passed on to SetAlpha.

Details

All arguments are recyled as necessary.

Value

Vector with the same length as col, giving the rgb-values extended by the alpha channel as hex-
number (#rrggbbaa).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ColToHex, col2rgb, adjustcolor, ColToOpaque

Examples

SetAlpha("yellow", 0.2)
SetAlpha(2, 0.5) # red

Canvas(3)
DrawCircle(x=c(-1,0,1), y=c(1,-1,1), r.out=2, col=SetAlpha(2:4, 0.4))

x <- rnorm(15000)



508 SetNames

par(mfrow=c(1,2))
plot(x, type="p", col="blue" )
plot(x, type="p", col=SetAlpha("blue", .2), main="Better insight with alpha channel" )

SetNames Set the Names in an Object

Description

This is a convenience function that sets the names of an object and returns it including the new
names. It is most useful at the end of a function definition where one is creating the object to be
returned and would prefer not to store it under a name just that the names can be assigned. In
addition to the function setNames in base R the user can decide, whether rownames, colnames or
simply the names are to be set. Names are recyled.

Usage

SetNames(x, ...)

Arguments

x an object for which a names attribute will be meaningful

... the names to be assigned to the object. This should be a character vector of
names named dimnames, rownames, colnames or names. Setting rownames=NULL
would remove existing rownames. All kind of names can be changed at the same
time. Default would be names. Abbreviations are supported.

Value

An object of the same sort as object with the new names assigned.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

setNames, Rename

Examples

SetNames(1:5, names=letters[1:5])

# the default, if no argument names are provided, is "names"
SetNames(1:5, letters[1:5])

tab <- table(d.pizza$driver, d.pizza$wine_delivered)



Shade 509

# rownames and columnnames can be set at the same time
SetNames(BinomCI(tab[,1], rowSums(tab)),

rownames=rownames(tab), colnames=c("perc", "lci", "uci"))

# can also be used to set the names to an empty string
SetNames(diag(6), rownames="", colnames="")

# setting dimnames works as well
tab <- SetNames(

as.table(rbind(c(84,43), c(10,92))),
dimnames= list(

dipstick=c("positive","negative"),
culture=c("positive","negative")))

Shade Produce a Shaded Curve

Description

Sometimes the area under a density curve has to be color shaded, for instance to illustrate a p-value
or a specific region under the normal curve. This function draws a curve corresponding to a function
over the interval [from, to]. It can plot also an expression in the variable xname, default x.

Usage

Shade(expr, col = par("fg"), breaks, density = 10, n = 101, xname = "x", ...)

Arguments

expr the name of a function, or a call or an expression written as a function of x
which will evaluate to an object of the same length as x.

col color to fill or shade the shape with. The default is taken from par("fg").

breaks numeric, a vector giving the breakpoints between the distinct areas to be shaded
differently. Should be finite as there are no plots with infinite limits.

density the density of the lines as needed in polygon.

n integer; the number of x values at which to evaluate. Default is 101.

xname character string giving the name to be used for the x axis.

... the dots are passed on to polygon.

Details

Useful for shading the area under a curve as often needed for explaining significance tests.

Value

A list with components x and y of the points that were drawn is returned invisibly.



510 ShapiroFranciaTest

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon, curve

Examples

curve(dt(x, df=5), xlim=c(-6,6),
main=paste("Student t-Distribution Probability Density Function, df = ", 5, ")", sep=""),

type="n", las=1, ylab="probability", xlab="t")

Shade(dt(x, df=5), breaks=c(-6, qt(0.025, df=5), qt(0.975, df=5), 6),
col=c(DescTools::hred, DescTools::hblue), density=c(20, 7))

ShapiroFranciaTest Shapiro-Francia Test for Normality

Description

Performs the Shapiro-Francia test for the composite hypothesis of normality.

Usage

ShapiroFranciaTest(x)

Arguments

x a numeric vector of data values, the number of which must be between 5 and
5000. Missing values are allowed.

Details

The test statistic of the Shapiro-Francia test is simply the squared correlation between the ordered
sample values and the (approximated) expected ordered quantiles from the standard normal distri-
bution. The p-value is computed from the formula given by Royston (1993).

Value

A list of class htest, containing the following components:

statistic the value of the Shapiro-Francia statistic.

p.value the p-value for the test.

method the character string “Shapiro-Francia normality test”.

data.name a character string giving the name(s) of the data.



SiegelTukeyTest 511

Note

The Shapiro-Francia test is known to perform well, see also the comments by Royston (1993). The
expected ordered quantiles from the standard normal distribution are approximated by qnorm(ppoints(x,
a = 3/8)), being slightly different from the approximation qnorm(ppoints(x, a = 1/2)) used for
the normal quantile-quantile plot by qqnorm for sample sizes greater than 10.

Author(s)

Juergen Gross <gross@statistik.uni-dortmund.de>

References

Royston, P. (1993): A pocket-calculator algorithm for the Shapiro-Francia test for non-normality:
an application to medicine. Statistics in Medicine, 12, 181–184.

Thode Jr., H.C. (2002): Testing for Normality. Marcel Dekker, New York. (2002, Sec. 2.3.2)

See Also

shapiro.test for performing the Shapiro-Wilk test for normality. AndersonDarlingTest, CramerVonMisesTest,
LillieTest, PearsonTest for performing further tests for normality. qqnorm for producing a nor-
mal quantile-quantile plot.

Examples

ShapiroFranciaTest(rnorm(100, mean = 5, sd = 3))
ShapiroFranciaTest(runif(100, min = 2, max = 4))

SiegelTukeyTest Siegel-Tukey Test For Equality In Variability

Description

Non-parametric Siegel-Tukey test for equality in variability. The null hypothesis is that the vari-
ability of x is equal between two groups. A rejection of the null hypothesis indicates that variability
differs between the two groups. SiegelTukeyRank returns the ranks, calculated after Siegel Tukey
logic.

Usage

SiegelTukeyTest(x, ...)

## Default S3 method:
SiegelTukeyTest(x, y, adjust.median = FALSE,

alternative = c("two.sided", "less", "greater"),
mu = 0, exact = NULL, correct = TRUE, conf.int = FALSE,
conf.level = 0.95, ...)



512 SiegelTukeyTest

## S3 method for class 'formula'
SiegelTukeyTest(formula, data, subset, na.action, ...)

SiegelTukeyRank(x, g, drop.median = TRUE)

Arguments

x, y numeric vector of data values. Non-finite (e.g. infinite or missing) values will
be omitted.

g a vector or factor object giving the group for the corresponding elements of x.

adjust.median Should between-group differences in medians be leveled before performing the
test? In certain cases, the Siegel-Tukey test is susceptible to median differences
and may indicate significant differences in variability that, in reality, stem from
differences in medians. Default is FALSE.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

mu a number specifying an optional parameter used to form the null hypothesis. See
Details.

exact a logical indicating whether an exact p-value should be computed. This is passed
directly to wilcox.test.

correct a logical indicating whether to apply continuity correction in the normal approx-
imation for the p-value.

conf.int a logical indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

drop.median logical, defining whether the median of the combined samples should be left
out, ensuring that there’s an even number of elements (which is a requirement
of the Siegel-Tukey test). Defaults to TRUE.

... further arguments to be passed to or from methods.

Details

The Siegel-Tukey test has relatively low power and may, under certain conditions, indicate sig-
nificance due to differences in medians rather than differences in variabilities (consider using the
argument adjust.median). Consider also using mood.test or ansari.test.



SiegelTukeyTest 513

Value

A list of class htest, containing the following components:

statistic Siegel-Tukey test (Wilcoxon test on tie-adjusted Siegel-Tukey ranks, after the
median adjustment if specified).

p.value the p-value for the test

null.value is the value of the median specified by the null hypothesis. This equals the input
argument mu.

alternative a character string describing the alternative hypothesis.

method the type of test applied

data.name a character string giving the names of the data.

Author(s)

Daniel Malter, Tal Galili <tal.galili@gmail.com>, Andri Signorell <andri@signorell.net>
published on: https://www.r-statistics.com/2010/02/siegel-tukey-a-non-parametric-test-for-equality-in-variability-r-code/

References

Siegel, S., Tukey, J. W. (1960): A nonparametric sum of ranks procedure for relative spread in
unpaired samples. Journal of the American Statistical Association.

Sheskin, D. J. (2004): Handbook of parametric and nonparametric statistical procedures 3rd edi-
tion. Chapman and Hall/CRC. Boca Raton, FL.

See Also

mood.test, ansari.test, wilcox.test, LeveneTest

Examples

# Duller, S. 183
x <- c(12, 13, 29, 30)
y <- c(15, 17, 18, 24, 25, 26)
SiegelTukeyTest(x, y)
SiegelTukeyTest(x, y, alternative="greater")

# Duller, S. 323
old <- c(870,930,935,1045,1050,1052,1055)
new <- c(932,970,980,1001,1009,1030,1032,1040,1046)
SiegelTukeyTest(old, new, alternative = "greater")
# compare to the recommended alternatives
mood.test(old, new, alternative="greater")
ansari.test(old, new, alternative="greater")

# Bortz, S. 250
x <- c(26.3,26.5,26.8,27.0,27.0,27.2,27.3,27.3,27.4,27.5,27.6,27.8,27.9)
id <- c(2,2,2,1,2,2,1,2,2,1,1,1,2)-1
SiegelTukeyTest(x ~ id)

https://www.r-statistics.com/2010/02/siegel-tukey-a-non-parametric-test-for-equality-in-variability-r-code/


514 SignTest

# Sachs, Angewandte Statistik, 12. Auflage, 2007, S. 314
A <- c(10.1,7.3,12.6,2.4,6.1,8.5,8.8,9.4,10.1,9.8)
B <- c(15.3,3.6,16.5,2.9,3.3,4.2,4.9,7.3,11.7,13.1)
SiegelTukeyTest(A, B)

### 1
x <- c(4,4,5,5,6,6)
y <- c(0,0,1,9,10,10)
SiegelTukeyTest(x, y)

### 2
# example for a non equal number of cases:
x <- c(4,4,5,5,6,6)
y <- c(0,0,1,9,10)
SiegelTukeyTest(x, y)

### 3
x <- c(33, 62, 84, 85, 88, 93, 97, 4, 16, 48, 51, 66, 98)
id <- c(0,0,0,0,0,0,0,1,1,1,1,1,1)
SiegelTukeyTest(x ~ id)

### 4
x <- c(177,200,227,230,232,268,272,297,47,105,126,142,158,172,197,220,225,230,262,270)
id <- c(rep(0,8),rep(1,12))
SiegelTukeyTest(x ~ id, adjust.median=TRUE)

### 5
x <- c(33,62,84,85,88,93,97)
y <- c(4,16,48,51,66,98)
SiegelTukeyTest(x, y)

### 6
x <- c(0,0,1,4,4,5,5,6,6,9,10,10)
id <- c(0,0,0,1,1,1,1,1,1,0,0,0)
SiegelTukeyTest(x ~ id)

### 7
x <- c(85,106,96, 105, 104, 108, 86)
id <- c(0,0,1,1,1,1,1)
SiegelTukeyTest(x ~ id)

SignTest Sign Test

Description

Performs one- and two-sample sign tests on vectors of data.



SignTest 515

Usage

SignTest(x, ...)

## Default S3 method:
SignTest(x, y = NULL, alternative = c("two.sided", "less", "greater"),

mu = 0, conf.level = 0.95, ... )

## S3 method for class 'formula'
SignTest(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will
be omitted.

y an optional numeric vector of data values: as with x non-finite values will be
omitted.

mu a number specifying an optional parameter used to form the null hypothesis. See
Details.

alternative is a character string, one of "greater", "less", or "two.sided", or the initial
letter of each, indicating the specification of the alternative hypothesis. For one-
sample tests, alternative refers to the true median of the parent population in
relation to the hypothesized value of the median.

conf.level confidence level for the returned confidence interval, restricted to lie between
zero and one.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-

faults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample test.

SignTest computes a “Dependent-samples Sign-Test” if both x and y are provided. If only x is
provided, the “One-sample Sign-Test” will be computed.

For the one-sample sign-test, the null hypothesis is that the median of the population from which
x is drawn is mu. For the two-sample dependent case, the null hypothesis is that the median for
the differences of the populations from which x and y are drawn is mu. The alternative hypothesis
indicates the direction of divergence of the population median for x from mu (i.e., "greater",
"less", "two.sided".)

The confidence levels are exact.



516 SignTest

Value

A list of class htest, containing the following components:

statistic the S-statistic (the number of positive differences between the data and the hy-
pothesized median), with names attribute “S”.

parameter the total number of valid differences.

p.value the p-value for the test.

null.value is the value of the median specified by the null hypothesis. This equals the input
argument mu.

alternative a character string describing the alternative hypothesis.

method the type of test applied.

data.name a character string giving the names of the data.

conf.int a confidence interval for the median.

estimate the sample median.

Author(s)

Andri Signorell <andri@signorell.net>

References

Gibbons, J.D. and Chakraborti, S. (1992): Nonparametric Statistical Inference. Marcel Dekker
Inc., New York.

Kitchens, L. J. (2003): Basic Statistics and Data Analysis. Duxbury.

Conover, W. J. (1980): Practical Nonparametric Statistics, 2nd ed. Wiley, New York.

See Also

t.test, wilcox.test, ZTest, binom.test, SIGN.test in the package BSDA (reporting approxi-
mative confidence intervals).

Examples

x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

SignTest(x, y)
wilcox.test(x, y, paired = TRUE)

d.light <- data.frame(
black = c(25.85,28.84,32.05,25.74,20.89,41.05,25.01,24.96,27.47),
white <- c(18.23,20.84,22.96,19.68,19.5,24.98,16.61,16.07,24.59),
d <- c(7.62,8,9.09,6.06,1.39,16.07,8.4,8.89,2.88)

)

d <- d.light$d



SmoothSpline 517

SignTest(x=d, mu = 4)
wilcox.test(x=d, mu = 4, conf.int = TRUE)

SignTest(x=d, mu = 4, alternative="less")
wilcox.test(x=d, mu = 4, conf.int = TRUE, alternative="less")

SignTest(x=d, mu = 4, alternative="greater")
wilcox.test(x=d, mu = 4, conf.int = TRUE, alternative="greater")

# test die interfaces
x <- runif(10)
y <- runif(10)
g <- rep(1:2, each=10)
xx <- c(x, y)

SignTest(x ~ group, data=data.frame(x=xx, group=g ))
SignTest(xx ~ g)
SignTest(x, y)

SignTest(x - y)

SmoothSpline Formula Interface For smooth.spline

Description

smooth.spline has no formula interface, which is sometimes inconvenient, if one simply wants to
copy a formula of a linear model or a plot to spline.

Usage

SmoothSpline(x, ...)

## Default S3 method:
SmoothSpline(x, y = NULL, w = NULL, df, spar = NULL, cv = FALSE,

all.knots = FALSE, nknots = .nknots.smspl, keep.data = TRUE,
df.offset = 0, penalty = 1, control.spar = list(),
tol = 0.000001 * IQR(x), ...)

## S3 method for class 'formula'
SmoothSpline(formula, data, subset, na.action, ...)

Arguments

x a vector giving the values of the predictor variable, or a list or a two-column
matrix specifying x and y.



518 SmoothSpline

y responses. If y is missing or NULL, the responses are assumed to be specified by
x, with x the index vector.

w optional vector of weights of the same length as x; defaults to all 1.

df the desired equivalent number of degrees of freedom (trace of the smoother ma-
trix).

spar smoothing parameter, typically (but not necessarily) in (0, 1]. The coefficient λ
of the integral of the squared second derivative in the fit (penalized log likeli-
hood) criterion is a monotone function of spar, see the details below.

cv ordinary (TRUE) or ‘generalized’ cross-validation (GCV) when FALSE; setting it
to NA skips the evaluation of leverages and any score.

all.knots if TRUE, all distinct points in x are used as knots. If FALSE (default), a subset
of x[] is used, specifically x[j] where the nknots indices are evenly spaced in
1:n, see also the next argument nknots.

nknots integer or function giving the number of knots to use when all.knots = FALSE.
If a function (as by default), the number of knots is nknots(nx). By default for
nx > 49 this is less than nx, the number of unique x values, see the Note.

keep.data logical specifying if the input data should be kept in the result. If TRUE (as per
default), fitted values and residuals are available from the result.

df.offset allows the degrees of freedom to be increased by df.offset in the GCV crite-
rion.

penalty the coefficient of the penalty for degrees of freedom in the GCV criterion.

control.spar optional list with named components controlling the root finding when the smooth-
ing parameter spar is computed, i.e., missing or NULL, see below.
Note that this is partly experimental and may change with general spar compu-
tation improvements!

low: lower bound for spar; defaults to -1.5 (used to implicitly default to 0 in R
versions earlier than 1.4).

high: upper bound for spar; defaults to +1.5.
tol: the absolute precision (tolerance) used; defaults to 1e-4 (formerly 1e-3).
eps: the relative precision used; defaults to 2e-8 (formerly 0.00244).
trace: logical indicating if iterations should be traced.
maxit: integer giving the maximal number of iterations; defaults to 500.

Note that spar is only searched for in the interval [low, high].

tol a tolerance for same-ness or uniqueness of the x values. The values are binned
into bins of size tol and values which fall into the same bin are regarded as the
same. Must be strictly positive (and finite).

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data The data frame from which the formula should be evaluated.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... Other arguments to be passed to smooth.spline.



Some 519

Author(s)

Andri Signorell <andri@signorell.net>

See Also

smooth.spline, lines.smooth.spline

Examples

plot(temperature ~ delivery_min, data=d.pizza)
lines(SmoothSpline(temperature ~ delivery_min, data=d.pizza))

Some Return Some Randomly Chosen Elements of an Object

Description

For displaying the first and last elements of an object there are the functions head and tail. Some-
times one might want to see more randomly scattered elements. This function returns some random
parts of a vector, matrix or a data frame. The order of the elements within the object will be pre-
served.

Usage

Some(x, n = 6L, ...)
## Default S3 method:
Some(x, n = 6L, ...)
## S3 method for class 'data.frame'
Some(x, n = 6L, ...)
## S3 method for class 'matrix'
Some(x, n = 6L, addrownums = TRUE, ...)

Arguments

x an object

n a single integer. If positive, size for the resulting object: number of elements for
a vector (including lists), rows for a matrix or data frame or lines for a function.
If negative, all but the n last/first number of elements of x.

addrownums if there are no row names, create them from the row numbers.

... arguments to be passed to or from other methods.



520 Some numeric checks

Details

For matrices, 2-dim tables and data frames, Some() returns some n rows when n > 0 or all but the
some n rows when n < 0. Some.matrix() is not exported (unlike head.matrix).

If a matrix has no row names, then Some() will add row names of the form "[n,]" to the result, so
that it looks similar to the last lines of x when printed. Setting addrownums = FALSE suppresses this
behaviour.

I desisted from implementing interfaces for tables, ftables and functions, as this would not make
much sense.

Value

An object (usually) like x but generally smaller.

Author(s)

Andri Signorell, basically copying and just slightly modifying Patrick Burns and R-Core code.

See Also

head

Examples

Some(letters)
Some(letters, n = -6L)

Some(freeny.x, n = 10L)
Some(freeny.y)

Some numeric checks Check a Vector For Being Numeric, Zero Or a Whole Number

Description

Test if x contains only integer numbers, or if is numeric or if it is zero.

Usage

IsWhole(x, all = FALSE, tol = sqrt(.Machine$double.eps), na.rm = FALSE)
IsZero(x, tol = sqrt(.Machine$double.eps), na.rm = FALSE)
IsNumeric(x, length.arg = Inf, integer.valued = FALSE, positive = FALSE, na.rm = FALSE)



Some numeric checks 521

Arguments

x a (non-empty) numeric vector of data values.

all logical, specifying if the whole vector should be checked. If set to TRUE the
function will return the result of all(IsWhole(x)).

tol tolerance to be used

length.arg integer, the length of the vector to be checked for.

integer.valued logical, should x be checked as integer?

positive logical, is x supposed to be positive?

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. Defaults to FALSE.

Details

IsWhole is the suggested solution for checking for an integer value, as is.integer tests for class(x)
== "integer" and does NOT test whether x (which might be of class "numeric") contains only in-
teger numbers. (Why not simply implement it in base?)

IsZero tests float numeric values for being zero.

IsNumeric combines a test for numeric and integers.

Value

logical vector of the same dimension as x.

Author(s)

R-Core, Andri Signorell <andri@signorell.net>, Thomas W. Yee

See Also

is.integer

Examples

(x <- seq(1,5, by=0.5))
IsWhole( x ) #--> \code{TRUE} \code{FALSE} \code{TRUE} ...

# ... These are people who live in ignorance of the Floating Point Gods.
# These pagans expect ... (Burns, 2011)" the following to be TRUE:
(.1 - .3 / 3) == 0

# they might be helped by
IsZero(.1 - .3 / 3)



522 SomersDelta

SomersDelta Somers’ Delta

Description

Calculate Somers’ Delta statistic, a measure of association for ordinal factors in a two-way table.
The function has interfaces for a table (matrix) and for single vectors.

Usage

SomersDelta(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...)

Arguments

x a numeric vector or a table. A matrix will be treated as table.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated.

direction direction of the calculation. Can be "row" (default) or "column", where "row"
calculates Somers’ D (R | C) ("column dependent").

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

... further arguments are passed to the function table, allowing i.e. to set useNA.
This refers only to the vector interface.

Details

Somers’ D(C|R) and Somers’ D(R|C) are asymmetric modifications of τb and Goodman-Kruskal’s
Gamma. C|R indicates that the row variable x is regarded as the independent variable and the col-
umn variable y is regarded as dependent. Similarly, R|C indicates that the column variable y is
regarded as the independent variable and the row variable x is regarded as dependent. It is logically
very similar to Gamma, but differs in that it uses a correction only for pairs that are tied on the
dependent variable. As Gamma and the Taus, D is appropriate only when both variables lie on an
ordinal scale.
Somers’ D is computed as

D(C|R) =
P −Q

n2 −
∑

(ni.2)

where P equals twice the number of concordances and Q twice the number of discordances and ni.
rowSums(tab). Its range lies [-1, 1]. The interpretation of d is analogous to Gamma.

Value

a single numeric value if no confidence intervals are requested
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval



Sort 523

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57–59.

Brown, M.B., Benedetti, J.K.(1977) Sampling Behavior of Tests for Correlation in Two-Way Con-
tingency Tables, Journal of the American Statistical Association, 72, 309-315.

Goodman, L. A., & Kruskal, W. H. (1954) Measures of association for cross classifications. Journal
of the American Statistical Association, 49, 732-764.

Somers, R. H. (1962) A New Asymmetric Measure of Association for Ordinal Variables, American
Sociological Review, 27, 799–811.

Goodman, L. A., & Kruskal, W. H. (1963) Measures of association for cross classifications III:
Approximate sampling theory. Journal of the American Statistical Association, 58, 310–364.

See Also

There’s an implementation of Somers’s D in Frank Harrell’s Hmisc somers2, which is quite fast
for large sample sizes. However it is restricted to computing Somers’ Dxy rank correlation between
a variable x and a binary (0-1) variable y.
ConDisPairs yields concordant and discordant pairs

Other association measures:
KendallTauA (tau-a), KendallTauB (tau-b), cor (method="kendall") for tau-b, StuartTauC (tau-
c), GoodmanKruskalGamma
Lambda, GoodmanKruskalTau, UncertCoef, MutInf

Examples

# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

# Somers' D C|R
SomersDelta(tab, direction="column", conf.level=0.95)
# Somers' D R|C
SomersDelta(tab, direction="row", conf.level=0.95)

Sort Sort a Vector, a Matrix, a Table or a Data.frame



524 Sort

Description

Sort a vector, a matrix, a table or a data.frame. The base sort function does not have an interface
for classes other than vectors and coerces the whole world to a vector. This means you get a sorted
vector as result while passing a matrix to sort.
Sort wraps the base sort function and adds an interface for sorting the rows of the named 2-
dimensional data structures by the order of one or more of its columns.

Usage

Sort(x, ...)

## Default S3 method:
Sort(x, ...)
## S3 method for class 'matrix'
Sort(x, ord = NULL, decreasing = FALSE, na.last = TRUE, ...)
## S3 method for class 'table'
Sort(x, ord = NULL, decreasing = FALSE, na.last = TRUE, ...)
## S3 method for class 'data.frame'
Sort(x, ord = NULL, decreasing = FALSE,

factorsAsCharacter = TRUE, na.last = TRUE, ...)

Arguments

x a numeric, complex. character or logical vector, a factor, a table or a data.frame
to be sorted.

decreasing logical. Should the sort be increasing or decreasing?
factorsAsCharacter

logical. Should factors be sorted by the alphabetic order of their labels or by the
order or their levels. Default is TRUE (by labels).

ord vector of integers or columnames. Defines the columns in a table, in a matrix or
in a data.frame to be sorted for.
0 means row.names, 1:n the columns and n+1 the marginal sum. See examples.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed (see order.)

... further arguments to be passed to or from methods.

Details

The sort order for factors is the order of their levels (which is particularly appropriate for ordered
factors), and usually confusing for unordered factors, whose levels may be defined in the sequence
in which they appear in the data (which normally is unordered).

Value

the sorted object.



SortMixed 525

Author(s)

Andri Signorell <andri@signorell.net>

See Also

sort, order

Examples

d.frm <- d.pizza[1:10, c("driver","temperature","delivery_min")]

Sort(d.frm[,1])
# Sort follows the levels by default
levels(d.frm[,1])

Sort(x=d.frm, ord="driver", decreasing=FALSE)
# set factorsAsCharacter = TRUE, if alphabetical order is required
Sort(x=d.frm, ord="driver", decreasing=FALSE, factorsAsCharacter=TRUE)

Sort(x=d.frm, ord=c("driver","delivery_min"), factorsAsCharacter = TRUE)
Sort(x=d.frm, ord=c("driver","delivery_min"), factorsAsCharacter = FALSE)

Sort(x=d.frm, ord=c("driver","delivery_min"), decreasing=c(FALSE, TRUE),
factorsAsCharacter = FALSE)

# Sorting tables
tab <- table(d.pizza$driver, d.pizza$area)

Sort(x=tab, ord=c(0,2), decreasing=c(TRUE, FALSE))
Sort(x=tab, ord=2, decreasing=TRUE)

# partial matching ok:
Sort(tab, o=1, d=TRUE)

SortMixed Sort Strings with Embedded Numbers Based on Their Numeric Order

Description

These functions sort or order character strings containing embedded numbers so that the numbers
are numerically sorted rather than sorted by character value. I.e. "Asprin 50mg" will come before
"Asprin 100mg". In addition, case of character strings is ignored so that "a", will come before "B"
and "C".

Usage

SortMixed(x, decreasing=FALSE, na.last=TRUE, blank.last=FALSE,
numeric.type=c("decimal", "roman"),
roman.case=c("upper","lower","both") )



526 SortMixed

OrderMixed(x, decreasing=FALSE, na.last=TRUE, blank.last=FALSE,
numeric.type=c("decimal", "roman"),
roman.case=c("upper","lower","both") )

Arguments

x vector to be sorted.

decreasing logical. Should the sort be increasing or decreasing? Note that descending=TRUE
reverses the meanings of na.last and blanks.last.

na.last logical, controlling the treatment of NA values. If TRUE, missing values in the
data are put last; if FALSE, they are put first; if NA, they are removed.

blank.last logical, controlling the treatment of blank values. If TRUE, blank values in the
data are put last; if FALSE, they are put first; if NA, they are removed.

numeric.type either "decimal" (default) or "roman". Are numeric values represented as deci-
mal numbers (numeric.type="decimal") or as Roman numerals (numeric.type="roman")?

roman.case one of "upper", "lower", or "both". Are roman numerals represented using
only capital letters (’IX’) or lower-case letters (’ix’) or both?

Details

I often have character vectors (e.g. factor labels), such as compound and dose, that contain both text
and numeric data. This function is useful for sorting these character vectors into a logical order.

It does so by splitting each character vector into a sequence of character and numeric sections, and
then sorting along these sections, with numbers being sorted by numeric value (e.g. "50" comes
before "100"), followed by characters strings sorted by character value (e.g. "A" comes before "B")
ignoring case (e.g. ’A’ has the same sort order as ’a’).

By default, sort order is ascending, empty strings are sorted to the front, and NA values to the
end. Setting descending=TRUE changes the sort order to descending and reverses the meanings of
na.last and blank.last.

Parsing looks for decimal numbers unless numeric.type="roman", in which parsing looks for
roman numerals, with character case specified by roman.case.

Value

OrderMixed returns a vector giving the sort order of the input elements. SortMixed returns the
sorted vector.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

sort, order



SpearmanRho 527

Examples

## compound & dose labels
Treatment <- c("Control", "Asprin 10mg/day", "Asprin 50mg/day",

"Asprin 100mg/day", "Acetomycin 100mg/day",
"Acetomycin 1000mg/day")

## ordinary sort puts the dosages in the wrong order
sort(Treatment)

## but SortMixed does the 'right' thing
SortMixed(Treatment)

## Here is a more complex example
x <- rev(c("AA 0.50 ml", "AA 1.5 ml", "AA 500 ml", "AA 1500 ml",

"EXP 1", "AA 1e3 ml", "A A A", "1 2 3 A", "NA", NA, "1e2",
"", "-", "1A", "1 A", "100", "100A", "Inf"))

OrderMixed(x)

SortMixed(x) # Notice that plain numbers, including 'Inf' show up
# before strings, NAs at the end, and blanks at the
# beginning .

SortMixed(x, na.last=TRUE) # default
SortMixed(x, na.last=FALSE) # push NAs to the front

SortMixed(x, blank.last=FALSE) # default
SortMixed(x, blank.last=TRUE) # push blanks to the end

SortMixed(x, decreasing=FALSE) # default
SortMixed(x, decreasing=TRUE) # reverse sort order

## Roman numerals
chapters <- c("V. Non Sequiturs", "II. More Nonsense",

"I. Nonsense", "IV. Nonesensical Citations",
"III. Utter Nonsense")

SortMixed(chapters, numeric.type="roman" )

## Lower-case Roman numerals
vals <- c("xix", "xii", "mcv", "iii", "iv", "dcclxxii", "cdxcii",

"dcxcviii", "dcvi", "cci")
(ordered <- SortMixed(vals, numeric.type="roman", roman.case="lower"))
RomanToInt(ordered)

SpearmanRho Spearman Rank Correlation



528 SpearmanRho

Description

Calculate Spearman correlation coefficient and its confidence interval. In addition to the base R
function cor(), frequency tables are also accepted as arguments (i.e. actually weights are used).

Usage

SpearmanRho(x, y = NULL, use = c("everything", "all.obs", "complete.obs",
"na.or.complete","pairwise.complete.obs"),
conf.level = NA)

Arguments

x a numeric vector, an ordered factor, matrix or data frame. An ordered factor will
be coerced to numeric.

y NULL (default) or a vector, an ordered factor, matrix or data frame with compat-
ible dimensions to x. An ordered factor will be coerced to numeric.

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be (an abbreviation of) one of the strings
"everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

Details

The function calculates Spearman’s rho statistic by means of cor(..., method="spearman") when
two variables x and y are supplied. If a frequency table is provided an implementation based on
SAS documentation is used.
The confidence intervals are calculated via z-Transformation.

Value

Either a single numeric value, if no confidence interval is required,
or a vector with 3 elements for estimate, lower and upper confidence intervall.

Author(s)

Andri Signorell <andri@signorell.net>

References

Conover W. J. (1999) Practical Nonparametric Statistics (3rd edition). Wiley

See Also

cor



split.formula 529

Examples

pain <- as.table(matrix(c(26, 6, 26, 7, 23,
9, 18, 14, 9, 23),
ncol=5, byrow=TRUE,

dimnames=list(adverse=c("no", "yes"), dose=1:5)))

SpearmanRho(pain)

SpearmanRho(pain, conf.level=0.95)

# must be the same as
with(Untable(pain),

SpearmanRho(adverse, dose, conf.level=0.95))

split.formula Formula Interface for Split

Description

Implementation of a simple formula interface for the split function.

Usage

## S3 method for class 'formula'
split(x, f, drop = FALSE, data = NULL, ...)

Arguments

x a formula of the form y ~ x.
f a ’factor’ in the sense that as.factor(f) defines the grouping, or a list of such

factors in which case their interaction is used for the grouping.
drop logical indicating if levels that do not occur should be dropped (if f is a factor

or a list). Defaults to FALSE.
data the data frame from which the formula should be evaluated.
... other arguments to be passed to split.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

split

Examples

split(extra ~ group, data = sleep)



530 SplitAt

SplitAt Split a Vector Into Several Pieces at Given Positions

Description

Split a vector into several pieces at given positions.

Usage

SplitAt(x, pos)

Arguments

x the vector to be splitted.

pos integer vector, giving the positions at which the vector should be splitted.

Value

a list with the splitted parts of x.

Author(s)

flodel (on StackOverflow)

References

https://stackoverflow.com/questions/16357962/r-split-numeric-vector-at-position

See Also

split, strsplit

Examples

x <- 1:10
SplitAt(x, pos=c(3, 8))

https://stackoverflow.com/questions/16357962/r-split-numeric-vector-at-position


SplitPath 531

SplitPath Split Path In Drive, Path, Filename

Description

Split a full path in its components. This is specifically an issue in Windows and not really interesting
for other OSs.

Usage

SplitPath(path, last.is.file = NULL)

Arguments

path a path

last.is.file logical, determining if the basename should be interpreted as filename or as last
directory. If set to NULL (default), the last entry will be interpreted if the last
character is either \ or / and as filename else.

Value

A list, containing the following components:

normpath the normalized path as returned by normalizePath

drive the drive if the OS is Windows, NA else

dirname the path without directory and without filename

fullfilename the filename including extension

filename the filename without extension

extension the file extension

Author(s)

Andri Signorell <andri@signorell.net>

See Also

dirname, basename

Examples

## Not run: # Windows-specific example
path <- "C:/Documents/Projects/Import/eyestudy.dta"
SplitPath(path)

path <- "C:/Documents/Projects/Import/"
SplitPath(path)



532 SplitToCol

path <- "C:/Documents/Projects/Import"
SplitPath(path) # last entry will be taken as filename
SplitPath(path, last.is.file=FALSE)

## End(Not run)

SplitToCol Split Data Frame String Column Into Multiple Columns

Description

Splitting the string columns of a data frame into multiple columns requires a considerable number
of codelines, which are condensed in this function for convenience.

Usage

SplitToCol(x, split = " ", fixed = TRUE, na.form = "", colnames = NULL)

Arguments

x a data frame containing the string columns to be splitted.

split character vector (or object which can be coerced to such) containing regular
expression(s) (unless fixed = TRUE) to use for splitting. If empty matches occur,
in particular if split has length 0, x is split into single characters. If split has
length greater than 1, it is re-cycled along x.

fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has
priority over perl.

na.form character, string specifying how NAs should be specially formatted. Default is a
blank "".

colnames columnnames for the resulting data.frame. Will be recycled. Can easily be set
to "" if no columnnames should be set.

Value

A data.frame with all the columns splitted

A vector with the length of the number of columns of the data.frame containing the number of the
found columns is returned as attribute namede "ncols".

Author(s)

Andri Signorell <andri@signorell.net>

See Also

strsplit



SplitToDummy 533

Examples

d.frm <- data.frame(res1=c("2 [-3,5] **", "5 [-2,6] ***", "9 [-3,1]"),
res2=c("5 [6,8] **", "7 [-2,9]", "4 [3,5] **"),
stringsAsFactors=FALSE)

SplitToCol(d.frm, na.form="-", colnames=c("coef", "ci", "pval"))

SplitToDummy Split Strings of a Vector and Provide Dummy Codes for Found Pieces

Description

Split the strings of a character vector, put together all the unique pieces and return a matrix of
dummy vectors for each single value.

Usage

SplitToDummy(x, split = ",", ...)

Arguments

x character vector, each element of which is to be split. Other inputs, including a
factor, will give an error.

split character vector (or object which can be coerced to such) containing regular
expression(s) (unless fixed = TRUE) to use for splitting. If empty matches occur,
in particular if split has length 0, x is split into single characters. If split has
length greater than 1, it is re-cycled along x.

... the dots are passed on to strsplit

Value

a data.frame containing x and all the found dummy vectors

Author(s)

Andri Signorell <andri@signorell.net>

See Also

strsplit

Examples

d.frm <- data.frame(id=1:5, txt=c("A,C,D", "A","B,C","D","D,E"))
SplitToDummy(d.frm$txt)



534 SpreadOut

SpreadOut Spread Out a Vector of Numbers To a Minimum Interval

Description

Spread the numbers of a vector so that there is a minimum interval between any two numbers (in
ascending or descending order). This is helpful when we want to place textboxes on a plot and
ensure, that they do not mutually overlap.

Usage

SpreadOut(x, mindist = NULL, cex = 1.0)

Arguments

x a numeric vector which may contain NAs.

mindist the minimum interval between any two values. If this is left to NULL (default)
the function will check if a plot is open and then use 90% of strheight().

cex numeric character expansion factor; multiplied by par("cex") yields the final
character size; the default NULL is equivalent to 1.

Details

SpreadOut() starts at or near the middle of the vector and increases the intervals between the
ordered values. NAs are preserved. SpreadOut() first tries to spread groups of values with intervals
less than mindist out neatly away from the mean of the group. If this doesn’t entirely succeed, a
second pass that forces values away from the middle is performed.

SpreadOut() can also be used to avoid overplotting of axis tick labels where they may be close
together.

Value

On success, the spread out values. If there are less than two valid values, the original vector is
returned.

Note

This function is based on plotrix::spreadout() and has been integrated here with some minor
changes.

Author(s)

Jim Lemon <jim@bitwrit.com.au>
some extensions Andri Signorell <andri@signorell.net>

See Also

strheight()



Stamp 535

Examples

SpreadOut(c(1, 3, 3, 3, 3, 5), 0.2)
SpreadOut(c(1, 2.5, 2.5, 3.5, 3.5, 5), 0.2)
SpreadOut(c(5, 2.5, 2.5, NA, 3.5, 1, 3.5, NA), 0.2)

# this will almost always invoke the brute force second pass
SpreadOut(rnorm(10), 0.5)

Stamp Date/Time/Directory Stamp the Current Plot

Description

Stamp the current plot in the extreme lower right corner. A free text or expression can be defined as
text to the stamp.

Usage

Stamp(txt = NULL, las = par("las"), cex = 0.6)

Arguments

txt an optional single text string. If it is not given, the function will look for a
defined option named stamp. If not found the current date will be taken as text.
If the stamp option is defined as expression the function will evaluate it. This
can be used to define dynamic texts.

las numeric in c(1, 3), defining direction of the text. 1 means horizontal, 3 vertical.
Default is taken from par("las").

cex numeric character expansion factor; multiplied by par("cex") yields the final
character size. Defaults to 0.6.

Details

The text can be freely defined as option. If user and date should be included by default, the following
option using an expression will help:

DescToolsOptions(stamp=expression(gettextf('%s/%s',
Sys.getenv('USERNAME'), Format(Today(), fmt='yyyy-mm-dd') )))

For R results may not be satisfactory if par(mfrow=) is in effect.

Author(s)

Frank E Harrell Jr <f.harrell@vanderbilt.edu>
with some amendments by Andri Signorell <andri@signorell.net>



536 StdCoef

See Also

text

Examples

plot(1:20)
Stamp()

StdCoef Standardized Model Coefficients

Description

Standardize model coefficients by Standard Deviation or Partial Standard Deviation.

Usage

StdCoef(x, partial.sd = FALSE, ...)

PartialSD(x)

Arguments

x a fitted model object.

partial.sd logical, if set to TRUE, model coefficients are multiplied by partial SD, otherwise
they are multiplied by the ratio of the standard deviations of the independent
variable and dependent variable.

... additional arguments passed to coefTable, e.g. dispersion.

Details

The standardized coefficients are meant to allow for a comparison of the importance of explanatory
variables that have different variances. Each of them shows the effect on the response of increasing
its predictor X(j) by one standard deviation, as a multiple of the response’s standard deviation. This
is often a more meaningful comparison of the relevance of the input variables.

Note, however, that increasing one X(j) without also changing others may not be possible in a
given application, and therefore, interpretation of coefficients can always be tricky. Furthermore,
for binary input variables, increasing the variable by one standard deviation is impossible, since an
increase can only occur from 0 to 1, and therefore, the standardized coeffient is somewhat counter-
intuitive in this case.

Standardizing model coefficients has the same effect as centring and scaling the input variables.

“Classical” standardized coefficients are calculated as β∗
i = βi

sXi

sy
, where β is the unstandardized

coefficient, sXi
is the standard deviation of associated depenent variable Xi and sy is SD of the

response variable.



StdCoef 537

If the variables are intercorrelated, the standard deviation of Xi used in computing the standardized
coefficients β∗

i should be replaced by a partial standard deviation of Xi which is adjusted for the
multiple correlation of Xi with the other X variables included in the regression equation. The
partial standard deviation is calculated as s∗Xi

= sXi
V IF (Xi)

−0.5(n−1
n−p )

0.5, where VIF is the
variance inflation factor, n is the number of observations and p number of predictors in the model.
Coefficient is then transformed as β∗

i = βis
∗
Xi

.

Value

A matrix with at least two columns for standardized coefficient estimate and its standard error.
Optionally, third column holds degrees of freedom associated with the coefficients.

Author(s)

Kamil Bartoń

References

Cade, B.S. (2015) Model averaging and muddled multimodel inferences. Ecology 96, 2370-2382.

Afifi A., May S., Clark V.A. (2011) Practical Multivariate Analysis, Fifth Edition. CRC Press.

Bring, J. (1994). How to standardize regression coefficients. The American Statistician 48, 209-
213.

See Also

coef

Examples

# Fit model to original data:
fm <- lm(Fertility ~ Agriculture + Examination + Education + Catholic,

data = swiss)

# Partial SD for the default formula:
psd <- PartialSD(lm(data = swiss))[-1] # remove first element for intercept

# Standardize data:
zswiss <- scale(swiss, scale = c(NA, psd), center = TRUE)
# Note: first element of 'scale' is set to NA to ignore the first column 'y'

# Coefficients of a model fitted to standardized data:
# zapsmall(coefTable(stdizeFit(fm, data = zGPA)))
# Standardized coefficients of a model fitted to original data:
# zapsmall(StdCoef(fm, partial = TRUE))

# Standardizing nonlinear models:
fam <- Gamma("inverse")
fmg <- glm(log(Fertility) ~ Agriculture + Examination + Education + Catholic,

data = swiss, family = fam)



538 Str

psdg <- PartialSD(fmg)
# zGPA <- stdize(GPA, scale = c(NA, psdg[-1]), center = FALSE)
# fmgz <- glm(log(y) ~ z.x1 + z.x2 + z.x3 + z.x4, zGPA, family = fam)

# Coefficients using standardized data:
# coef(fmgz) # (intercept is unchanged because the variables haven't been

# centred)
# Standardized coefficients:
# coef(fmg) * psdg

Str Compactly Display the Structure of any R Object

Description

Basically a wrapper for str(), extended with an enumeration for the variables of a data.frame.

Usage

Str(x, ...)

Arguments

x any R object about which you want to have some information.

... dots are passed to str.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

str

Examples

Str(d.pizza)



StrAbbr 539

StrAbbr String Abbreviation

Description

Abbreviate a character vector. The function includes starting from the first character as many char-
acters as there are needed to result in a vector of unique values.

Usage

StrAbbr(x, minchar = 1, method = c("left", "fix"))

Arguments

x character vector to be abbreviated

minchar integer, minimal number of characters for the abbreviations.

method one out of left or fix. While left restricts the result to as many characters
are needed to ensure uniqueness, does fix yield a vector with all the elements
being as long, as the the longest needed substring for differentiating the terms.

Value

The abbreviated strings.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

abbreviate, StrTrunc, StrTrim

Examples

StrAbbr(x=levels(d.pizza$driver), minchar=2)
StrAbbr(x=levels(d.pizza$driver), minchar=2, method="left")
StrAbbr(x=levels(d.pizza$driver), minchar=2, method="fix")

x <- c("Aaron", "Aaramis", "Berta", "Bello", "Claudia", "Cardinale", "Doretta", "Emilia")
StrAbbr(x, minchar=2, method="left")
StrAbbr(x, minchar=2, method="fix")



540 StrAlign

StrAlign String Alignment

Description

Align a vector of strings to the left, to the right, to the center or to the first occurance of a spec-
ified character, e.g. to the decimal separator. Alignment is achieved by padding the strings with
empty spaces (which evidently only will have an alignment effect if the text is displayed with a
monospaced font).

Usage

StrAlign(x, sep = "\\r")

Arguments

x a character vector to be aligned.

sep the character on whose position the strings will be aligned. Left alignment can
be requested by setting sep = "\\l", right alignment by "\\r" and center align-
ment by "\\c". Mind the backslashes, as if they are omitted, strings would be
aligned to the character l, r or c respectively. Default value is "\\r", thus right
alignment.

Details

Alignment to the left or right leave no room for misinterpretation. The function will determine the
maximum string size in the vector, resize all the strings to this size by padding empty spaces either
at the beginning or at the end.

cbind(StrAlign(c("here", "there", "everywhere"), sep = "\r"))
[1,] " here"
[2,] " there"
[3,] "everywhere"

When it comes to center strings, it’s not clear where to place strings with an even length in case the
maximum length is odd (or vice versa). We will put the shorter distance of an uneven string to the
left (note the second term, that has 2 spaces on the left and 3 spaces on the right).

cbind(StrAlign(c("here", "there", "everywhere"), sep = "\c"))
[1,] " here "
[2,] " there "
[3,] "everywhere"

Any specific length of the strings can be created by StrPad if required.

In case of a given character as separator the strings will be aligned towards this separator. Frequently
this might be the decimal separator. If a string does not contain the separator, the affected string will
be aligned as if it had a separator as last character. This seems to be a good default, when integer



StrAlign 541

numbers are to be aligned with numerical values. Note that the character length of the resulting
strings can excceed the maximum length of the supplied strings.

z <- c(" 6.0", "6.00 ", " 45.12 ", "784", NA)
cbind(StrAlign(z, sep="."))

[,1]
[1,] " 6.0 "
[2,] " 6.00"
[3,] " 45.12"
[4,] "784 "
[5,] NA

The character strings will not be pruned of whitespaces, if the requested alignment does not explic-
itly require it. StrTrim can be used for that.

Value

a character vector containing the aligned strings

Author(s)

Andri Signorell <andri@signorell.net>

See Also

StrTrim, StrPad, Format

Examples

# align on (the first occuring) B
x <- c("ABCDMNB", "CDGHEBK", "BCI")
cbind(StrAlign(x, sep="B"))

# align to decimal separator (here point)
z <- c(" 6.0", "6.00 ", " 45.12 ", "784", NA)
cbind(StrAlign(z, sep="."))

# right align, the width will be the max number of characters in x
cbind(StrAlign(x, sep="\\r"))
# left align
cbind(StrAlign(x, sep="\\l"))
# center
cbind(StrAlign(x, sep="\\c"))



542 Strata

Strata Stratified Sampling

Description

Stratified sampling with equal/unequal probabilities.

Usage

Strata(x, stratanames = NULL, size,
method = c("srswor", "srswr", "poisson", "systematic"),
pik, description = FALSE)

Arguments

x a data frame or a matrix; its number of rows is n, the population size.

stratanames vector of stratification variables.

size vector of stratum sample sizes (in the order in which the strata are given in the
input data set).

method method to select units; implemented are: a) simple random sampling without re-
placement ("srswor"), b) simple random sampling with replacement ("srswr"),
c) Poisson sampling ("poisson"), d) systematic sampling ("systematic") (de-
fault is "srswor").

pik vector of inclusion probabilities or auxiliary information used to compute them;
this argument is only used for unequal probability sampling (Poisson and sys-
tematic). If an auxiliary information is provided, the function uses the inclusion-
probabilities function for computing these probabilities. If the method is "srswr"
and the sample size is larger than the population size, this vector is normalized
to one.

description a message is printed if its value is TRUE; the message gives the number of
selected units and the number of the units in the population. By default, the
value is FALSE.

Value

The function produces an object, which contains the following information:

id the identifier of the selected units.

stratum the unit stratum.

prob the final unit inclusion probability.

Author(s)

Andri Signorell <andri@signorell.net>
rewritten based on the ideas of Yves Tille <yves.tille@unine.ch> and Alina Matei <alina.matei@unine.ch>



Strata 543

See Also

sample

Examples

# Example from An and Watts (New SAS procedures for Analysis of Sample Survey Data)
# generates artificial data (a 235X3 matrix with 3 columns: state, region, income).
# the variable "state" has 2 categories ('nc' and 'sc').
# the variable "region" has 3 categories (1, 2 and 3).
# the sampling frame is stratified by region within state.
# the income variable is randomly generated

m <- rbind(matrix(rep("nc",165), 165, 1, byrow=TRUE),
matrix(rep("sc", 70), 70, 1, byrow=TRUE))

m <- cbind.data.frame(m, c(rep(1, 100), rep(2,50), rep(3,15),
rep(1, 30), rep(2, 40)), 1000 * runif(235))

names(m) <- c("state", "region", "income")

# computes the population stratum sizes
table(m$region, m$state)

# not run
# nc sc
# 1 100 30
# 2 50 40
# 3 15 0
# there are 5 cells with non-zero values
# one draws 5 samples (1 sample in each stratum)
# the sample stratum sizes are 10,5,10,4,6, respectively
# the method is 'srswor' (equal probability, without replacement)

s <- Strata(m, c("region", "state"), size=c(10, 5, 10, 4, 6), method="srswor")

# extracts the observed data
data.frame(income=m[s$id, "income"], s)

# see the result using a contigency table
table(s$region, s$state)

# The same data as in Example 1
# the method is 'systematic' (unequal probability, without replacement)
# the selection probabilities are computed using the variable 'income'
s <- Strata(m,c("region", "state"), size=c(10, 5, 10, 4, 6),

method="systematic", pik=m$income)

# extracts the observed data
data.frame(income=m[s$id, "income"], s)

# see the result using a contigency table
table(s$region, s$state)



544 StrCap

StrCap Capitalize the First Letter of a String

Description

Capitalize the first letter of each element of the string vector.

Usage

StrCap(x, method=c("first", "word", "title"))

Arguments

x string to be capitalized.

method one out of "first" (default), "word", "title". "first" will only capital-
ize the first character of a string. "word" will capitalize all found words and
"title" will also capitalize wordwise, but leave out: a, an, the, at, by, for, in,
of, on, to, up, and, as, but, s, or and nor.)

Value

Returns a vector of charaters with the first letter capitalized

Author(s)

Charles Dupont <charles.dupont@vanderbilt.edu>, Andri Signorell <andri@signorell.net> (meth-
ods word and title)

Examples

# capitalize first character
StrCap(c("Hello", "bob", "daN"))
# but not all...
StrCap(c("Hello bob, how are you?", "And you, DANIEL?"))

# wordwise
StrCap(c("Capitalize all words in titles of publications and documents",

"but Up and UP, not all and all", NA), method="word")

# wordwise omitting the ones listed above
StrCap(c("Capitalize all words in titles of publications and documents",

"but Up and UP, not all and all", NA), method="title")

# do not touch non alphabetic characters
z <- c("Lorem ipsum dolor", "-- sit amet", "consectetur --", " adipiscing elit ",

"sed,.--(do) / +-*eiusmod")
StrCap(z, method="title")



StrChop 545

StrChop Split a String into a Number of Sections of Defined Length

Description

Splitting a string into a number of sections of defined length is needed, when we want to split a
table given as a number of lines without separator into columns. The cutting points can either be
defined by the lengths of the sections or directly by position.

Usage

StrChop(x, len, pos)

Arguments

x the string to be cut in pieces.

len a vector with the lengths of the pieces.

pos a vector of cutting positions. Will be ignored when len has been defined.

Details

If length is going over the end of the string the last part will be returned, so if the rest of the string
is needed, it’s possible to simply enter a big number as last partlength.

len and pos can’t be defined simultaneously, only alternatively.

Typical usages are

StrChop(x, len)
StrChop(x, pos)

Value

a vector with the parts of the string.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

FixToTable, StrLeft, substr



546 StrCountW

Examples

x <- paste(letters, collapse="")
StrChop(x=x, len = c(3,5,2))

# and with the rest integrated
StrChop(x=x, len = c(3, 5, 2, nchar(x)))

# cutpoints at 5th and 10th position
StrChop(x=x, pos=c(5, 10))

StrCountW Count Words in a String

Description

Count the number of words that appear within a character string.

Usage

StrCountW(x)

Arguments

x a vector of strings to be parsed.

Details

This is just a wrapper for a fine regexpr. It uses the expression \b\W+\b to separate the words. The
code \W is equivalent to [^[:alnum:]_]) wheras [:alnum:] contains [:alpha:] and [:digit:].
So everything that is not an alphanumeric character, a digit or a _ (underscore) is used as separator
for the words to be counted.

Value

an integer defining the number of word in the string

Author(s)

Andri Signorell <andri@signorell.net>, based on code from Adam Bradley <hisself@adambradley.net>

References

http://stackoverflow.com/questions/8920145/count-the-number-of-words-in-a-string-in-r

See Also

nchar

http://stackoverflow.com/questions/8920145/count-the-number-of-words-in-a-string-in-r


StrDist 547

Examples

StrCountW("This is a true story!")

StrCountW("Just_one_word")
StrCountW("Not-just.one/word")

StrCountW("And what about numbers 8899 or special characters $$$/*?")
StrCountW(" Starting'n ending with some whitespace ")

StrCountW(c("This is a", "text in more", "than one line."))

StrDist Compute Distances Between Strings

Description

StrDist computes distances between strings following to Levenshtein or Hamming method.

Usage

StrDist(x, y, method = "levenshtein", mismatch = 1, gap = 1, ignore.case = FALSE)

Arguments

x character vector, first string.

y character vector, second string.

method character, name of the distance method. This must be "levenshtein", "normlevenshtein"
or "hamming". Default is "levenshtein", the classical Levenshtein distance.

mismatch numeric, distance value for a mismatch between symbols.

gap numeric, distance value for inserting a gap.

ignore.case if FALSE (default), the distance measure will be case sensitive and if TRUE, case
is ignored.

Details

The function computes the Hamming and the Levenshtein (edit) distance of two given strings (se-
quences). The Hamming distance between two vectors is the number mismatches between corre-
sponding entries.

In case of the Hamming distance the two strings must have the same length.

In case of the Levenshtein (edit) distance a scoring and a trace-back matrix are computed and are
saved as attributes "ScoringMatrix" and "TraceBackMatrix". The numbers in the trace-back
matrix reflect insertion of a gap in string y (1), match/missmatch (2), and insertion of a gap in string
x (3).

The edit distance is useful, but normalizing the distance to fall within the interval [0,1] is preferred
because it is somewhat diffcult to judge whether an LD of for example 4 suggests a high or low



548 StrDist

degree of similarity. The method "normlevenshtein" for normalizing the LD is sensitive to this
scenario. In this implementation, the Levenshtein distance is transformed to fall in this interval as
follows:

lnd = 1− ld

max(length(x), length(y))

where ld is the edit distance and max(length(x), length(y)) denotes that we divide by the length
of the larger of the two character strings. This normalization, referred to as the Levenshtein normal-
ized distance (lnd), yields a statistic where 1 indicates perfect agreement between the two strings,
and a 0 denotes imperfect agreement. The closer a value is to 1, the more certain we can be that the
character strings are the same; the closer to 0, the less certain.

Value

StrDist returns an object of class "dist"; cf. dist.

Note

For distances between strings and for string alignments see also Bioconductor package Biostrings

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

R. Merkl and S. Waack (2009) Bioinformatik Interaktiv. Wiley.

Harold C. Doran (2010) MiscPsycho. An R Package for Miscellaneous Psychometric Analyses

See Also

adist, dist

Examples

x <- "GACGGATTATG"
y <- "GATCGGAATAG"
## Levenshtein distance
d <- StrDist(x, y)
d
attr(d, "ScoringMatrix")
attr(d, "TraceBackMatrix")

## Hamming distance
StrDist(x, y, method="hamming")



StrExtract 549

StrExtract Extract Part of a String

Description

Extract a part of a string, defined as regular expression. StrExtractBetween() is a convenience
function used to extract parts between a left and right delimiter.

Usage

StrExtract(x, pattern, ...)

StrExtractBetween(x, left, right, greedy = FALSE)

Arguments

x a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector.

pattern character string containing a regular expression (or character string for fixed =
TRUE) to be matched in the given character vector. Coerced by as.character to
a character string if possible. If a character vector of length 2 or more is supplied,
the first element is used with a warning. Missing values are not allowed.

left left character(s) limiting the string to be extracted

right right character(s) limiting the string to be extracted

greedy logical, determines whether the first found match for right should be used
(FALSE, default) or the last (TRUE).

... the dots are passed to the the internally used function regexpr(), which allows
to use e.g. Perl-like regular expressions.

Details

The function wraps regexpr and regmatches.

Value

A character vector.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

regexpr, regmatches



550 StripAttr

Examples

txt <- c("G1:E001", "No points here", "G2:E002", "G3:E003", NA)

# extract everything after the :
StrExtract(x=txt, pattern=":.*")

# extract everything between "left" and "right"
z <- c("yBS (23A) 890", "l 89Z) 890.?/", "WS (55X) 8(90)", "123 abc", "none", NA)
# everything enclosed by spaces
StrExtractBetween(z, " ", " ")

# note to escape special characters
StrExtractBetween(z, "\\(", "\\)")

StripAttr Remove Attributes from an Object

Description

For convenience we sometimes want to strip some or all attributes in a oneliner.

Usage

SetAttr(x, attr, attr_val)
StripAttr(x, attr_names = NULL)

Arguments

x the object whose attributes should be removed or to which an attribute should
be added.

attr name of a new attribute

attr_val value for the new attribute attr

attr_names a vector with attribute names, which will be removed. Leaving the default to
NULL will cause all the attributes to be deleted.

Value

the object x without the attributes contained in attr_names

Author(s)

Andri Signorell <andri@signorell.net>

See Also

SetNames, unname



StrIsNumeric 551

Examples

x <- runif(10)
x <- SetAttr(x,

attr=c("some_attr", "other_attr"),
attr_val=c("First attribute", "Second attribute"))

# strip only single
StripAttr(x, "other_attr")

# strip all attributes
StripAttr(x)

StrIsNumeric Does a String Contain Only Numeric Data

Description

Check whether a string does only contain numeric data.

Usage

StrIsNumeric(x)

Arguments

x a character vector

Value

a logical vector with the same dimension as x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Other string functions, e.g. StrTrunc

Examples

x <- c("123", "-3.141", "foobar123")
StrIsNumeric(x)



552 StrLeft, StrRight

StrLeft, StrRight Returns the Left Or the Right Part Of a String

Description

Returns the left part or the right part of a string. The number of characters are defined by the
argument n. If n is negative, this number of characters will be cut off from the other side.

Usage

StrLeft(x, n)
StrRight(x, n)

Arguments

x a vector of strings.
n a positive or a negative integer, the number of characters to cut. If n is negative,

this number of characters will be cut off from the right with StrLeft and from
the right with StrRight.
n will be recycled.

Details

The functions StrLeft and StrRight are simple wrappers to substr.

Value

the left (right) n characters of x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

substr, StrTrim

Examples

StrLeft("Hello world!", n=5)
StrLeft("Hello world!", n=-5)

StrRight("Hello world!", n=6)
StrRight("Hello world!", n=-6)

StrLeft(c("Lorem", "ipsum", "dolor","sit","amet"), n=2)

StrRight(c("Lorem", "ipsum", "dolor","sit","amet"), n=c(2,3))



StrPad 553

StrPad Pad a String With Justification

Description

StrPad will fill a string x with defined characters to fit a given length.

Usage

StrPad(x, width = NULL, pad = " ", adj = "left")

Arguments

x a vector of strings to be padded.

width resulting width of padded string. If x is a vector and width is left to NULL, it
will be set to the length of the largest string in x.

pad string to pad with. Will be repeated as often as necessary. Default is " ".

adj adjustement of the old string, one of "left", "right", "center". If set to
"left" the old string will be adjusted on the left and the new characters will be
filled in on the right side.

Details

If a string x has more characters than width, it will be chopped on the length of width.

Value

the string

Author(s)

Christian W. Hoffmann <c-w.hoffmann@sunrise.ch>
some extensions Andri Signorell <andri@signorell.net>

Examples

StrPad("My string", 25, "XoX", "center")
# [1] "XoXXoXXoMy stringXXoXXoXX"



554 StrPos

StrPos Find Position of First Occurrence Of a String

Description

Returns the numeric position of the first occurrence of a substring within a string. If the search
string is not found, the result will be NA.

Usage

StrPos(x, pattern, pos = 1, ...)

Arguments

x a character vector in which to search for the pattern, or an object which can be
coerced by as.character to a character vector.

pattern character string (search string) containing the pattern to be matched in the given
character vector. This can be a character string or a regular expression.

pos integer, defining the start position for the search within x. The result will then
be relative to the begin of the truncated string. Will be recycled.

... the dots are passed to the function regexpr.

Details

This is just a wrapper for the function regexpr.

Value

a vector of the first position of pattern in x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

StrChop, regexpr

Examples

StrPos(x = levels(d.pizza$driver), pattern = "t")



StrRev 555

StrRev Reverse a String

Description

Returns a string in reverse order.

Usage

StrRev(x)

Arguments

x a string to be processed.

Value

string

Author(s)

Andri Signorell <andri@signorell.net> solely copying R core code from strsplit example

See Also

String functions: nchar, match, grep, regexpr, substr, sub, gsub, StrTrunc, StrDist

Examples

StrRev("home")
StrRev("Anna")

StrSpell Spell a String Using the NATO Phonetic or the Morse Alphabet

Description

The function splits a string into single characters and returns their representation in either the NATO
phonetic alphabet or the Morse alphabet. The 26 code words in the NATO phonetic alphabet are
assigned to the 26 letters of the English alphabet in alphabetical order as follows: Alfa, Bravo,
Charlie, Delta, Echo, Foxtrot, Golf, Hotel, India, Juliett, Kilo, Lima, Mike, November, Oscar, Papa,
Quebec, Romeo, Sierra, Tango, Uniform, Victor, Whiskey, X-ray, Yankee, Zulu. Digits 0-9 are also
supported.

Usage

StrSpell(x, upr = "CAP", type = c("NATO", "Morse"))



556 StrSplit

Arguments

x character, the string to be encoded.

upr character, a shortcut to be used to characterise capital letters. Ignored if type is
set to "Morse". No distinction is made between upper and lower case if upr is
set to NA or to an empty string "".

type the type of phonetic alphabet, either "NATO" or "Morse".

Value

a character vector containing the code words

Author(s)

Andri Signorell <andri@signorell.net>

References

https://en.wikipedia.org/wiki/NATO_phonetic_alphabet

See Also

strsplit

Examples

# ... ever had to communicate a password by phone? ;-)
StrSpell("Yailov9teb6i")

paste(StrSpell("Andri", type="Morse"), collapse="|")

StrSplit Split the Elements of a Character Vector

Description

Split the elements of a character vector x into substrings according to the matches to substring split
within them.
This is a verbatim copy of the base R function strsplit, but with a split default of "" and returning
a vector instead of a list, when x had the length 1.

Usage

StrSplit(x, split = "", fixed = FALSE, perl = FALSE, useBytes = FALSE)

https://en.wikipedia.org/wiki/NATO_phonetic_alphabet


StrTrim 557

Arguments

x character vector, each element of which is to be split. Other inputs, including a
factor, will give an error.

split character vector (or object which can be coerced to such) containing regular
expression(s) (unless fixed = TRUE) to use for splitting. If empty matches occur,
in particular if split has length 0, x is split into single characters. If split has
length greater than 1, it is re-cycled along x.

fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has
priority over perl.

perl logical. Should Perl-compatible regexps be used?

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character, and inputs with marked encodings are not converted. This is forced
(with a warning) if any input is found which is marked as "bytes" (see Encoding).

Details

See strsplit for the details.

Value

A list of the same length as x, the i-th element of which contains the vector of splits of x[i].

If the length x was 1 a vecotor with the splits will be returned.

See Also

paste for the reverse, grep and sub for string search and manipulation; also nchar, substr.

‘regular expression’ for the details of the pattern specification.

Examples

noquote(StrSplit("A text I want to display with spaces"))

# the same as ...
noquote(strsplit("A text I want to display with spaces", NULL)[[1]])

StrTrim Remove Leading/Trailing Whitespace From A String

Description

The function removes whitespace characters as spaces, tabs and newlines from the beginning and
end of the supplied string. Whitespace characters occurring in the middle of the string are retained.
Trimming with method "left" deletes only leading whitespaces, "right" only trailing. Designed
for users who were socialized by SQL.



558 StrTrim

Usage

StrTrim(x, pattern = " \t\n", method = "both")

Arguments

x the string to be trimmed.

pattern the pattern of the whitespaces to be deleted, defaults to space, tab and newline:
" \t\n".

method one out of "both" (default), "left", "right". Determines on which side the
string should be trimmed.

Details

The functions are defined depending on method as
both: gsub( pattern=gettextf("^[%s]+|[%s]+$", pattern, pattern), replacement="", x=x)
left: gsub( pattern=gettextf("^[%s]+",pattern), replacement="", x=x)
right: gsub( pattern=gettextf("[%s]+$",pattern), replacement="", x=x)

Value

the string x without whitespaces

Author(s)

Andri Signorell <andri@signorell.net>

See Also

String functions: trimws, nchar, match, grep, regexpr, substr, sub, gsub, StrTrunc, StrDist

Examples

StrTrim(" Hello world! ")

StrTrim(" Hello world! ", method="left")
StrTrim(" Hello world! ", method="right")

# user defined pattern
StrTrim(" ..Hello ... world! ", pattern=" \\.")



StrTrunc 559

StrTrunc Truncate Strings and Add Ellipses If a String is Truncated.

Description

Truncates one or more strings to a specified length, adding an ellipsis (...) to those strings that have
been truncated. The truncation can also be performed using word boundaries. Use StrAlign() to
justify the strings if needed.

Usage

StrTrunc(x, maxlen = 20, ellipsis = "...", wbound = FALSE)

Arguments

x a vector of strings.

maxlen the maximum length of the returned strings (NOT counting the appended ellip-
sis). maxlen is recycled.

ellipsis the string to be appended, if the string is longer than the given maximal length.
The default is "...".

wbound logical. Determines if the maximal length should be reduced to the next smaller
word boundary and so words are not chopped. Default is FALSE.

Value

The string(s) passed as ‘x’ now with a maximum length of ‘maxlen’ + 3 (for the ellipsis).

Author(s)

Andri Signorell,
once following an idea of Jim Lemon in truncString()

See Also

String functions: nchar, match, grep, regexpr, substr, sub, gsub, StrTrim, StrDist

Examples

x <- c("this is short", "and this is a longer text",
"whereas this is a much longer story, which could not be told shorter")

# simple truncation on 10 characters
StrTrunc(x, maxlen=10)

# NAs remain NA
StrTrunc(c(x, NA_character_), maxlen=15, wbound=TRUE)

# using word boundaries



560 StrVal

for(i in -5:20)
print(StrTrunc(x, maxlen=i, wbound=TRUE))

# compare
for(i in -5:20)

print(StrTrunc(x, maxlen=i, wbound=FALSE))

StrVal Extract All Numeric Values From a String

Description

Extract all numeric values from a string using a regular expression and return a list of all found
values. If there are several, the values can be either pasted and/or casted from characters to numeric
values.

Usage

StrVal(x, paste = FALSE, as.numeric = FALSE, dec = getOption("OutDec"))

Arguments

x a character vector

paste should separatetly extracted numbers be pasted together? This can be useful to
reverse a prior format action. Default is FALSE.

as.numeric logical value, determining if the extracted values should be converted to a num-
ber or be returned as characters. Default is FALSE.

dec character string containing a single character. The preferred character to be used
as the decimal point. Defaults getOption("OutDec").

Details

If there are multiple numbers in the same string to paste and cast to numeric, pasting will be done
first and after pasting the conversion will be performed. So if for example the numbers in x = "34
way 066" should be extracted StrVal(x, paste = TRUE, as.numeric = TRUE) will lead to 34066.
This is a useful choice for converting formatted numbers having some kind of bigmark.

Value

depending on the results the function will return either a character vector, in the case every element
of x contained only one number, or a list of character vectors containing the found numbers.

Author(s)

Andri Signorell <andri@signorell.net>, Markus Naepflin <markus@naepfl.in> provided an opti-
mized regex



StuartMaxwellTest 561

See Also

other string functions in DescTools-package, section String functions

Examples

# a simple vector with only one number per element
StrVal(x=c("week 1", "week 3", "week 4", "week 5"))

# several numbers per element, extract each part, do not paste and return characters
StrVal(x=c("This is 1. place: 45.2", "none", "12.1 but -2.7 follow, 10.2e23 "),

paste = FALSE, as.numeric = FALSE)

# critical are numbers combined with signs, where we sequentially extract valid numbers
StrVal(x=c("78-23-99", "1e-15-34*789+9", "- 34values"),

paste = FALSE, as.numeric = FALSE)

# a typical use case for this function is to reverse a previously
# applied number format

x <- c(100000, 4564654632, -456463)
xf <- Format(x, big.mark="'")

StrVal(xf, paste = TRUE, as.numeric = TRUE)

StrVal(xf, paste = TRUE, as.numeric = FALSE)
StrVal(xf, paste = FALSE, as.numeric = TRUE)
StrVal(xf, paste = FALSE, as.numeric = FALSE)

# use an alternative decimal point
StrVal("8 452,12", dec=",")

StuartMaxwellTest Stuart-Maxwell Marginal Homogeneity Test

Description

This function computes the marginal homogeneity test for a k× k matrix of assignments of objects
to k categories or two vectors x, y of category scores for n data objects by two raters. The statistic
is distributed as χ2 with k-1 degrees of freedom.
It can be viewed as an extension of the McNemar test to k × k table.

Usage

StuartMaxwellTest(x, y = NULL)

Arguments

x either a 2-way k × k contingency table in matrix form, or a factor.

y a factor with the same levels as x; ignored if x is a matrix.



562 StuartMaxwellTest

Details

The null is that the probabilities of being classified into cells [i, j] and [j, i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, both x and y must be vectors or factors of the same length and
with the same levels.
Incomplete cases are removed, vectors are coerced into factors, and the contingency table is com-
puted from these.

If there is perfect agreement for any category k, that category must be omitted in order to invert
matrix S.

If for any category k, all frequencies in row k and column k are 0, except possibly for the main
diagonal element (e.g., for perfect agreement for category k, in such cases also the corresponding
row and column marginal frequencies would be equal), then the category is not included in the
test and should be ignored, say the Stuart-Maxwell test is performed with respect to the remaining
categories only. The degree of freedom df in this case can still be considered k - 1, where k is the
number of original categories; this treats omitted categories as if they were included but contributed
0 to the value of χ2 - a reasonable view since such categories have equal row and column marginals.
(See: https://www.john-uebersax.com/stat/mcnemar.htm#stuart)

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

Andri Signorell <andri@signorell.net>, based on Code from Jim Lemon

References

Stuart, A (1955) A test for homogeneity of the marginal distributions in a two-way classification.
Biometrika, 42, 412-416.

Maxwell, A.E. (1970) Comparing the classification of subjects by two independent judges. British
Journal of Psychiatry, 116, 651-655.

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp 86 ff.

See Also

BhapkarTest for a more powerful alternative to the Stuart-Maxwell test

mcnemar.test, chisq.test, MHChisqTest, BreslowDayTest

https://www.john-uebersax.com/stat/mcnemar.htm#stuart


StuartTauC 563

Examples

# Source: https://www.john-uebersax.com/stat/mcnemar.htm#stuart
hyp <- as.table(matrix(c(20,3,0,10,30,5,5,15,40), nrow=3))
StuartMaxwellTest(hyp)

# same as defined with two vectors
d.hyp <- Untable(hyp)
StuartMaxwellTest(x=d.hyp[,1], y=d.hyp[,2])

mc <- as.table(matrix(c(
732, 1524, 1575, 1577, 1602, 837, 1554, 1437,
1672, 1600, 841, 1363, 1385, 1484, 1524, 791), nrow=4))

StuartMaxwellTest(mc)

StuartTauC Stuart τ_c

Description

Calculate Stuart’s τc statistic, a measure of association for ordinal factors in a two-way table.
The function has interfaces for a table (matrix) and for single vectors.

Usage

StuartTauC(x, y = NULL, conf.level = NA, ...)

Arguments

x a numeric vector or a table. A matrix will be treated as table.

y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

... further arguments are passed to the function table, allowing i.e. to set useNA.
This refers only to the vector interface.

Details

Stuart’s τc makes an adjustment for table size in addition to a correction for ties. τc is appropriate
only when both variables lie on an ordinal scale.
It is estimated by

τc =
2m · (P −Q)

n2 · (m− 1)



564 StuartTauC

where P equals the number of concordances and Q the number of discordances, n is the total amount
of observations and m = min(R, C). The range of τc is [-1, 1].
See http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.
pdf, pp. 1739 for the estimation of the asymptotic variance.

The use of Stuart’s Tau-c versus Kendall’s Tau-b is recommended when the two ordinal variables
under consideration have different numbers of values, e.g. good, medium, bad versus high, low.

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, pp. 57–59.

Brown, M.B., Benedetti, J.K.(1977) Sampling Behavior of Tests for Correlation in Two-Way Con-
tingency Tables, Journal of the American Statistical Association, 72, 309-315.

Goodman, L. A., & Kruskal, W. H. (1954) Measures of association for cross classifications. Journal
of the American Statistical Association, 49, 732-764.

Goodman, L. A., & Kruskal, W. H. (1963) Measures of association for cross classifications III:
Approximate sampling theory. Journal of the American Statistical Association, 58, 310-364.

See Also

ConDisPairs yields concordant and discordant pairs

Other association measures:
GoodmanKruskalGamma, KendallTauA (τa), cor (method="kendall") for τb, SomersDelta
Lambda, GoodmanKruskalTau, UncertCoef, MutInf

Examples

# example in:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. S. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

StuartTauC(tab, conf.level=0.95)

http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf


SysInfo 565

SysInfo System Information

Description

SysInfo is a convenience function to compile some information about the computing system and
environment used.

Usage

SysInfo()
FindRProfile()

Details

The function SysInfo is mainly used to save the system environment information in ncdf files con-
taining the results of some calculations.

FindRProfile returns path candidates where the profile could be found.

Value

character string with all version and system information of the current R system

Author(s)

Jannis v. Buttlar <jbuttlar@bgc-jena.mpg.de>, Andri Signorell <andri@signorell.net>

TextContrastColor Choose Textcolor Depending on Background Color

Description

Text of a certain color when viewed against certain backgrounds can be hard to see. TextContrastColor
returns either black or white depending on which has the better contrast.

Usage

TextContrastColor(col, white = "white", black = "black", method = c("glynn", "sonego"))



566 TextContrastColor

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element
of colors()), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa" (see
rgb), or an integer i meaning palette()[i]. Non-string values are coerced to
integer.

white the color for the dark backgrounds, default is "white".

black the color for the bright backgrounds, default is "black"

method defines the algorithm to be used. Can be one out of "glynn" or "sonego". See
details.

Details

A simple heuristic in defining a text color for a given background color, is to pick the one that is
"farthest" away from "black" or "white". The way Glynn chooses to do this is to compute the color
intensity, defined as the mean of the RGB triple, and pick "black" (intensity 0) for text color if the
background intensity is greater than 127, or "white" (intensity 255) when the background intensity
is less than or equal to 127. Sonego calculates L <- c(0.2, 0.6, 0) %*% col2rgb(color)/255 and
returns "black" if L >= 0.2 and "white" else.

Value

a vector containing the contrast color (either black or white)

Author(s)

Andri Signorell <andri@signorell.net> based on code of Earl F. Glynn, Stowers Institute for Medi-
cal Research, 2004

Examples

# works fine for grays
PlotArea( y=matrix(rep(1, times=3, each=8), ncol=8), x=1:3,

col=gray(1:8 / 8), ylab="", xlab="", axes=FALSE )
text( x=2, y=1:8-0.5, levels(d.pizza$driver),

col=TextContrastColor(gray(1:8 / 8)))

# and not so fine, but still ok, for colors
par(mfrow=c(1,2))
PlotArea( y=matrix(rep(1, times=3, each=12), ncol=12), x=1:3,

col=rainbow(12), ylab="", xlab="", axes=FALSE, main="method = Glynn" )
text( x=2, y=1:12-0.5, levels(d.pizza$driver),

col=TextContrastColor(rainbow(12)))

PlotArea( y=matrix(rep(1, times=3, each=12), ncol=12), x=1:3,
col=rainbow(12), ylab="", xlab="", axes=FALSE, main="method = Sonego" )

text( x=2, y=1:12-0.5, levels(d.pizza$driver),
col=TextContrastColor(rainbow(12), method="sonego"))



TextToTable 567

TextToTable Converts String To a Table

Description

Try to convert a string to a table, by first creating a data frame using read.table. This can then be
coerced to a matrix first, and subsequently to a table. The names of the dimensions can be specified.

Usage

TextToTable(x, dimnames = NULL, check.names = FALSE, ...)

Arguments

x the string to be interpreted as table.

dimnames the names of the dimensions.

check.names passed on to read.table and determines, if invalid column names should be
adapted to valid ones. The default here is changed to FALSE.

... the dots will be passed to the function read.table and can be used for example
to specify header, sep and row.names arguments.

Value

a table

Author(s)

Andri Signorell <andri@signorell.net>

See Also

read.table, as.table, as.matrix

Examples

txt <- "
Democrat, Independent, Republican

M, 762, 327, 468
F, 484, 239, 477"

(tab <- TextToTable(txt, header=TRUE, sep=",", dimnames=c("gender", "party")))



568 TheilU

TheilU Theil’s U Index of Inequality

Description

Calculate Theil’s U index of inequality.

Usage

TheilU(a, p, type = c(2, 1), na.rm = FALSE)

Arguments

a a numeric vector with the actual observed values.

p a numeric vector containing the predictions.

type defining the type of Theil’s two U measures, see Details. Default is 2.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. If set to TRUE complete cases of cbind(x, y) will be used. Defaults
to FALSE.

Details

Theil proposed two error measures, but at different times and under the same symbol U, which
has caused some confusion. U type = 1 is taken from Theil (1958, pp. 31-42). The argument a
represents the actual observations and p the corresponding predictions. He left it open whether a
and p should be used as absolute values or as observed and predicted changes.
Theil (1966, chapter 2) proposed U type = 2 as a measure of forecast quality: "...where Ai and Pi

stand for a pair of predicted and observed changes. ..."
As U1 has some serious disadvantages (see Bliemel 1973) it is recommended to use U2.

Author(s)

Andri Signorell <andri@signorell.net>

References

Theil, H. (1958): Economic Forecasts and Policy. Amsterdam: North Holland.

Thiel, H. (1966): Applied Economic Forecasting. Chicago: Rand McNally.

Bliemel, F. (1973): Theil’s Forecast Accuracy Coefficient: A Clarification, Journal of Marketing
Research Vol. 10, No. 4 (Nov., 1973), pp. 444-446

See Also

Gini



TitleRect 569

Examples

TheilU(1:10, 2:11, type=1)
TheilU(1:10, 2:11, type=2)

TitleRect Plot Boxed Annotation

Description

The function can be used to add a title to a plot surrounded by a rectangular box. This is useful for
plotting several plots in narrow distances.

Usage

TitleRect(label, bg = "grey", border = 1, col = "black", xjust = 0.5,
line = 2, ...)

Arguments

label the main title

bg the background color of the box.

border the border color of the box

col the font color of the title

xjust the x-justification of the text. This can be c(0, 0.5, 1) for left, middle- and
right alignement.

line on which MARgin line, starting at 0 counting outwards

... the dots are passed to the text function, which can be used to change font and
similar arguments.

Value

nothing is returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

title

Examples

plot(pressure)
TitleRect("pressure")



570 TMod

TMod Comparison Table For Linear Models

Description

Collect the coefficients and some qualifying statistics of linear models and organize it in a table for
comparison and reporting. The function supports linear and general linear models.

Usage

TMod(..., FUN = NULL, order = NA)

ModSummary(x, ...)

## S3 method for class 'lm'
ModSummary(x, conf.level = 0.95, ...)
## S3 method for class 'glm'
ModSummary(x, conf.level = 0.95, use.profile = TRUE, ...)

## S3 method for class 'TMod'
plot(x, terms = NULL, intercept = FALSE, ...)
## S3 method for class 'TMod'
print(x, digits = 3, na.form = "-", ...)

Arguments

x a (general) linear model object.
... a list of (general) linear models.
conf.level the level for the confidence intervals.
FUN function with arguments est, se, tval, pval, lci, uci to display the coeffi-

cients. The default function will display the coefficient and significance stars
for the p-values.

order row of the results table to be used as order for the models (as typically "AIC").
Can be any label in the first column of the results table. Default is NA for no
special order.

terms a vector with the terms of the model formula to be plotted. By default this will
be all of them.

use.profile logical. Defines if profile approach should be used, which normally is a good
choice for small datasets. Calculating profile can however take ages for large
datasets and not be necessary there. So we can fallback to normal confidence
intervals.

intercept logical, defining whether the intercept should be plotted (default is FALSE).
digits integer, the desired (fixed) number of digits after the decimal point. Unlike

formatC you will always get this number of digits even if the last digit is 0.
na.form character, string specifying how NAs should be specially formatted. If set to NULL

(default) no special action will be taken.



TMod 571

Details

In order to compare the coefficients of linear models, the user is left to his own devices. R offers
no support in this respect. TMod() jumps into the breach and displays the coefficients of several
models in tabular form. For this purpose, different quality indicators for the models are displayed,
so that a comprehensive comparison of the models is possible. In particular, it is easy to see the
effect that adding or omitting variables has on forecast quality.

A plot function for a TMod object will produce a dotchart with the coefficients and their confidence
intervals.

Value

character table

Author(s)

Andri Signorell <andri@signorell.net>

See Also

help

Examples

r.full <- lm(Fertility ~ . , swiss)
r.nox <- lm(Fertility ~ . -Examination - Catholic, swiss)
r.grp <- lm(Fertility ~ . -Education - Catholic + CutQ(Catholic), swiss)
r.gam <- glm(Fertility ~ . , swiss, family=Gamma(link="identity"))
r.gama <- glm(Fertility ~ .- Agriculture , swiss, family=Gamma(link="identity"))
r.gaml <- glm(Fertility ~ . , swiss, family=Gamma(link="log"))

TMod(r.full, r.nox, r.grp, r.gam, r.gama, r.gaml)

# display confidence intervals
TMod(r.full, r.nox, r.gam, FUN = function(est, se, tval, pval, lci, uci){

gettextf("%s [%s, %s]",
Format(est, fmt=Fmt("num")),
Format(lci, digits=3),
Format(uci, digits=2)
)

})

# cbind interface is not supported!!
# d.titanic <- reshape(as.data.frame(Titanic),
# idvar = c("Class","Sex","Age"),
# timevar="Survived",
# direction = "wide")
#
# r.glm0 <- glm(cbind(Freq.Yes, Freq.No) ~ 1, data=d.titanic, family="binomial")
# r.glm1 <- glm(cbind(Freq.Yes, Freq.No) ~ Class, data=d.titanic, family="binomial")
# r.glm2 <- glm(cbind(Freq.Yes, Freq.No) ~ ., data=d.titanic, family="binomial")



572 ToLong, ToWide

d.titanic <- Untable(Titanic)

r.glm0 <- glm(Survived ~ 1, data=d.titanic, family="binomial")
r.glm1 <- glm(Survived ~ Class, data=d.titanic, family="binomial")
r.glm2 <- glm(Survived ~ ., data=d.titanic, family="binomial")

TMod(r.glm0, r.glm1, r.glm2)

# plot OddsRatios
d.pima <- MASS::Pima.tr2

r.a <- glm(type ~ npreg + bp + skin + bmi + ped + age, data=d.pima, family=binomial)
r.b <- glm(type ~ npreg + glu + bp + skin, data=d.pima, family=binomial)
r.c <- glm(type ~ npreg + age, data=d.pima, family=binomial)

or.a <- OddsRatio(r.a)
or.b <- OddsRatio(r.b)
or.c <- OddsRatio(r.c)

# create the model table
tm <- TMod(m_A=or.a, m_B=or.b, m_C=or.c)
# .. and plotit
plot(tm, main="ORs for Models A, B, C", intercept=FALSE,

pch=15, col=c(DescTools::hred, DescTools::hblue, DescTools::horange),
panel.first=abline(v=1, col="grey30"))

ToLong, ToWide Reshape a Vector From Long to Wide Shape Or Vice Versa

Description

Simple reshaping a vector from long to wide or from wide to long shape by means of a single factor.

Usage

ToLong(x, varnames = NULL)
ToWide(x, g, by = NULL, varnames = NULL)

Arguments

x the vector to be reshaped

g the grouping vector to be used for the new columns. The resulting data.frame
will return one column per grouplevel.

by a vector to be used to merge the pieces of x. If this is left to NULL the pieces will
be merged by rownames in the order they are supplied.

varnames the variable names if not the grouping levels should be used.



TOne 573

Details

ToLong expects x as a matrix or a data.frame and reshapes it to a (long) factor representation.
ToWide expects the vectors x, g, by, wheras x being the variable, g the splitting factor and by a
vector for rowwise merging.

Value

the reshaped object

Author(s)

Andri Signorell <andri@signorell.net>

See Also

reshape

Examples

d.x <- read.table(header=TRUE, text="
AA BB CC DD EE FF GG
7.9 18.1 13.3 6.2 9.3 8.3 10.6
9.8 14.0 13.6 7.9 2.9 9.1 13.0
6.4 17.4 16.0 10.9 8.6 11.7 17.5
")

ToLong(d.x)

# ToWide by row numbers (by = NULL)
ToWide(PlantGrowth$weight, PlantGrowth$group)

# To wide aligned by key
set.seed(41)
PlantGrowth$nr <- c(sample(12, 10), sample(12, 10), sample(12, 10))
head(PlantGrowth)

ToWide(PlantGrowth$weight, PlantGrowth$group, by=PlantGrowth$nr)

TOne Create Table One Describing Baseline Characteristics

Description

Create a table summarizing continuous, categorical and dichotomous variables, optionally stratified
by one or more variables, while performing adequate statistical tests.



574 TOne

Usage

TOne(
x,
grp = NA,
add.length = TRUE,
colnames = NULL,
vnames = NULL,
total = TRUE,
align = "\\l",
FUN = NULL,
TEST = NULL,
intref = "high",
fmt = list(abs = Fmt("abs"), num = Fmt("num"), per = Fmt("per"), pval = as.fmt(fmt =

"*", na.form = " "))
)

Arguments

x a data.frame containing all the variables to be included in the table.

grp the grouping variable.

add.length logical. If set to TRUE (default), a row with the group sizes will be inserted as
first row of the table.

colnames a vector of column names for the result table.

vnames a vector of variable names to be placed in the first column instead of the real
names.

total logical (default TRUE), defines whether the results should also be displayed for
the whole, ungrouped variable.

align the character on whose position the strings will be aligned. Left alignment can
be requested by setting sep = "\l", right alignment by "\r" and center align-
ment by "\c". Mind the backslashes, as if they are omitted, strings would be
aligned to the character l, r or c respectively. Default value is "\l", thus left
alignment.

FUN the function to be used as location and dispersion measure for numeric (includ-
ing integer) variables (mean/sd is default, alternatives as median/IQR are possi-
ble by defining a function). See examples.

TEST a list of functions to be used to test the variables. Must be named as "num",
"cat" and "dich" and be defined as function with arguments (x, g), generating
something similar to a p-value. Use TEST=NA to suppress test. (See examples.)

intref one out of "high" (default) or "low", defining which value of a dichotomous
numeric or logical variable should be reported. Usually this will be 1 or TRUE.
Setting it to "low" will report the lower value 0 or FALSE.

fmt format codes for absolute, numeric and percentage values, and for the p-values
of the tests.



TOne 575

Details

In research the characteristics of study populations are often characterised through some kind of a
"Table 1", containing descriptives of the used variables, as mean/standard deviation for continuous
variables, and proportions for categorical variables. In many cases, a comparison is made between
groups within the framework of the scientific question.

var Brent Camden Westminster n 474 (39.5
(31.8
Butcher 72 (15.2
(58.2
11 (2.9
77 (20.3
(50.3
exact test, "') Chi-Square test Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1

Creating such a table can be very time consuming and there’s a need for a flexible function that
helps us to solve the task. TOne() is designed to be easily used with sensible defaults, and yet
flexible enough to allow free definition of the essential design elements.

This is done by breaking down the descriptive task to three types of variables: quantitative (numeric,
integer), qualitative (factor, characters) and dichotomous variables (the latter having exactly two
values or levels). Depending on the variable type, the descriptives and the according sensible tests
are chosen. By default mean/sd are chosen to describe numeric variables.

FUN = function(x) gettextf("
Format(mean(x, na.rm = TRUE), digits = 1), Format(sd(x, na.rm = TRUE),
digits = 3))

Their difference is tested with the Kruskal-Wallis test. For categorical variables the absolute and
relative frequencies are calculated and tested with a chi-square test.
The tests can be changed with the argument TEST. These must be organised as list containing ele-
ments named "num", "cat" and "dich". Each of them must be a function with arguments (x, g),
returning something similar to a p-value.

TEST = list( num = list(fun = function(x,
g){summary(aov(x ~ g))[[1]][1, "Pr(>F)"]}, lbl = "ANOVA"), cat = list(fun =
function(x, g){chisq.test(table(x, g))$p.val}, lbl = "Chi-Square test"),
dich = list(fun = function(x, g){fisher.test(table(x, g))$p.val}, lbl =
"Fisher exact test"))

The legend text of the test, which is appended to the table together with the significance codes, can
be set with the variable lbl.

Great importance was attached to the free definition of the number formats. By default, the option-
ally definable format templates of DescTools are used. Deviations from this can be freely passed as
arguments to the function. Formats can be defined for integers, floating point numbers, percentages
and for the p-values of statistical tests. All options of the function Format() are available and can
be provided as a list. See examples which show several different implementations.



576 TOne

fmt = list(abs = Fmt("abs"), num = Fmt("num"), per = Fmt("per"), pval =
as.fmt(fmt = "*", na.form = " "))

The function returns a character matrix as result, which can easily be subset or combined with other
matrices. An interface for ToWrd() is available such that the matrix can be transferred to MS-Word.
Both font and alignment are freely selectable in the Word table.

Value

a character matrix

Author(s)

Andri Signorell andri@signorell.net

See Also

WrdTable(), ToWrd.TOne()

Examples

options(scipen = 8)
opt <- DescToolsOptions()

# define some special formats for count data, percentages and numeric results
# (those will be supported by TOne)
Fmt(abs = as.fmt(digits = 0, big.mark = "'")) # counts
Fmt(per = as.fmt(digits = 1, fmt = "%")) # percentages
Fmt(num = as.fmt(digits = 1, big.mark = "'")) # numeric

TOne(x = d.pizza[, c("temperature", "delivery_min", "driver", "wine_ordered")],
grp = d.pizza$quality)

# the same but no groups now...
TOne(x = d.pizza[, c("temperature", "delivery_min", "driver", "wine_ordered")])

# define median/IQR as describing functions for the numeric variables
TOne(iris[, -5], iris[, 5],

FUN = function(x) {
gettextf("%s / %s",

Format(median(x, na.rm = TRUE), digits = 1),
Format(IQR(x, na.rm = TRUE), digits = 3))

}
)

# replace kruskal.test by ANOVA and report the p.value
# Change tests for all the types
TOne(x = iris[, -5], grp = iris[, 5],

FUN = function(x) gettextf("%s / %s",
Format(mean(x, na.rm = TRUE), digits = 1),
Format(sd(x, na.rm = TRUE), digits = 3)),

mailto:andri@signorell.net


TOne 577

TEST = list(
num = list(fun = function(x, g){summary(aov(x ~ g))[[1]][1, "Pr(>F)"]},

lbl = "ANOVA"),
cat = list(fun = function(x, g){chisq.test(table(x, g))$p.val},

lbl = "Chi-Square test"),
dich = list(fun = function(x, g){fisher.test(table(x, g))$p.val},

lbl = "Fisher exact test")),
fmt = list(abs = Fmt("abs"), num = Fmt("num"), per = Fmt("per"),

pval = as.fmt(fmt = "*", na.form = " "))
)

t1 <- TOne(x = d.pizza[,c("temperature", "driver", "rabate")],
grp = d.pizza$area,
align = " ",
total = FALSE,

FUN = function(x) gettextf("%s / %s (%s)",
Format(mean(x, na.rm = TRUE), digits = 1),
Format(sd(x, na.rm = TRUE), digits = 3),
Format(median(x, na.rm = TRUE), digits = 1)),

TEST = NA,

fmt = list(abs = as.fmt(big.mark = " ", digits=0),
num = as.fmt(big.mark = " ", digits=1),
per = as.fmt(fmt=function(x)

StrPad(Format(x, fmt="%", d=1), width=5, adj = "r")),
pval = as.fmt(fmt = "*", na.form = " "))

)
# add a userdefined legend
attr(t1, "legend") <- "numeric: mean / sd (median)), factor: n (n%)"

t1

# dichotomous integer or logical values can be reported by the high or low value
x <- sample(x = c(0, 1), size = 100, prob = c(0.3, 0.7), replace = TRUE)
y <- sample(x = c(0, 1), size = 100, prob = c(0.3, 0.7), replace = TRUE) == 1
z <- factor(sample(x = c(0, 1), size = 100, prob = c(0.3, 0.7), replace = TRUE))
g <- sample(x = letters[1:4], size = 100, replace = TRUE)
d.set <- data.frame(x = x, y = y, z = z, g = g)

TOne(d.set[1:3], d.set$g, intref = "low")

TOne(d.set[1:3], d.set$g, intref = "high")

# intref would not control factors, use relevel to change reported value
TOne(data.frame(z = relevel(z, "1")), g)

TOne(data.frame(z = z), g)

options(opt)



578 ToWrd

## Not run:

# Send the whole stuff to Word
wrd <- GetNewWrd()
ToWrd(

TOne(x = d.pizza[, c("temperature", "delivery_min", "driver", "wine_ordered")],
grp = d.pizza$quality,
fmt = list(num=Fmt("num", digits=1))
),

font = list(name="Arial narrow", size=8),
align = c("l","r") # this will be recycled: left-right-left-right ...

)

## End(Not run)

ToWrd Send Objects to Word

Description

Send objects like tables, ftables, lm tables, TOnes or just simple texts to a MS-Word document.

Usage

ToWrd(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"))

## S3 method for class 'Freq'
ToWrd(x, font = NULL, main = NULL, ..., wrd = DescToolsOptions("lastWord"))

## S3 method for class 'table'
ToWrd(x, font = NULL, main = NULL, align = NULL,

tablestyle = NULL, autofit = TRUE,
row.names = TRUE, col.names = TRUE, ..., wrd = DescToolsOptions("lastWord"))

## S3 method for class 'data.frame'
ToWrd(x, font = NULL, main = NULL, row.names = NULL, ...,

wrd = DescToolsOptions("lastWord"))

## S3 method for class 'ftable'
ToWrd(x, font = NULL, main = NULL, align = NULL,

method = "compact", ..., wrd = DescToolsOptions("lastWord"))

## S3 method for class 'TOne'
ToWrd(x, font = NULL, para = NULL, main = NULL, align = NULL,

autofit = TRUE, ..., wrd = DescToolsOptions("lastWord"))



ToWrd 579

## S3 method for class 'TMod'
ToWrd(x, font = NULL, para = NULL, main = NULL, align = NULL,

split = " ", fixed=TRUE, autofit = TRUE, digits = 3, na.form = "-", ...,
wrd = DescToolsOptions("lastWord"))

## S3 method for class 'lm'
ToWrd(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"))

## S3 method for class 'character'
ToWrd(x, font = NULL, para = NULL, style = NULL, bullet = FALSE,

..., wrd = DescToolsOptions("lastWord"))

## Default S3 method:
ToWrd(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"))

Arguments

x the object to be transferred to Word.

font the font to be used to the output. This should be defined as a list containing
fontname, fontsize, bold and italic flags:
list(name="Arial", size=10, bold=FALSE, italic=TRUE).

para list containing paragraph format properties to be applied to the inserted text. For
right align the paragraph one can set:
list(alignment="r", LineBefore=0.5). See details for the full set of prop-
erties.

main a caption for a table. This will be inserted by WrdCaption in Word and can be
listed afterwards in a specific index. Default is NULL, which will insert nothing.
Ignored if x is not a table.

align character vector giving the alignment of the table columns. "l" means left,
"r" right and "c" center alignement. The code will be recyled to the length of
thenumber of columns.

method string specifying how the "ftable" object is formatted (and printed if used as in
write.ftable() or the print method). Can be abbreviated. Available methods
are (see the examples):

"non.compact" the default representation of an "ftable" object.
"row.compact" a row-compact version without empty cells below the column

labels.
"col.compact" a column-compact version without empty cells to the right of

the row labels.
"compact" a row- and column-compact version. This may imply a row and a

column label sharing the same cell. They are then separated by the string
lsep.

autofit logical, defining if the columns of table should be fitted to the length of their
content.



580 ToWrd

row.names logical, defining whether the row.names should be included in the output. De-
fault is FALSE.

col.names logical, defining whether the col.names should be included in the output. Default
is TRUE.

tablestyle either the name of a defined Word tablestyle or its index.

style character, name of a style to be applied to the inserted text.

... further arguments to be passed to or from methods.

bullet logical, defines if the text should be formatted as bullet points.

split character vector (or object which can be coerced to such) containing regular
expression(s) (unless fixed = TRUE) to use for splitting. If empty matches occur,
in particular if split has length 0, x is split into single characters. If split has
length greater than 1, it is re-cycled along x.

fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has
priority over perl.

digits integer, the desired (fixed) number of digits after the decimal point. Unlike
formatC you will always get this number of digits even if the last digit is 0.

na.form character, string specifying how NAs should be specially formatted. If set to NULL
(default) no special action will be taken.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Details

The paragraph format can be defined by means of these properties:

LeftIndent, RightIndent, SpaceBefore, SpaceBeforeAuto, SpaceAfter, SpaceAfterAuto, LineSpacingRule,
Alignment, WidowControl, KeepWithNext, KeepTogether, PageBreakBefore, NoLineNumber,
Hyphenation, FirstLineIndent, OutlineLevel, CharacterUnitLeftIndent, CharacterUnitRightIndent,
CharacterUnitFirstLineIndent, LineUnitBefore, LineUnitAfter, MirrorIndents.

Value

if x is a table a pointer to the table will be returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewWrd



ToWrd 581

Examples

## Not run:
# we can't get this through the CRAN test - run it with copy/paste to console

wrd <- GetNewWrd()
ToWrd("This is centered Text in Arial Black\n",

para=list(Alignment=wdConst$wdAlignParagraphCenter,
SpaceBefore=3, SpaceAfter=6),

font=list(name="Arial Black", size=14),
wrd=wrd)

sel <- wrd$Selection()$Borders(wdConst$wdBorderBottom)
sel[["LineStyle"]] <- wdConst$wdLineStyleSingle

t1 <- TOne(x = d.pizza[, c("temperature","delivery_min","driver","wine_ordered")],
grp=d.pizza$wine_delivered)

ToWrd(t1, font=list(name="Algerian"), wrd=wrd)

tab <- table(d.pizza$driver, d.pizza$area)

tab <- table(d.pizza$driver, d.pizza$area)
ToWrd(tab, font = list(size=15, name="Arial"), row.names = TRUE, col.names = TRUE,

main= "my Title", wrd=wrd)
ToWrd(tab, font = list(size=10, name="Arial narrow"),

row.names = TRUE, col.names=FALSE, wrd=wrd)
ToWrd(tab, font = list(size=15, name="Arial"), align="r",

row.names = FALSE, col.names=TRUE, wrd=wrd)
ToWrd(tab, font = list(size=15, name="Arial"),

row.names = FALSE, col.names=FALSE, wrd=wrd)

ToWrd(tab, tablestyle = "Mittlere Schattierung 2 - Akzent 4",
row.names=TRUE, col.names=TRUE, wrd=wrd)

ToWrd(Format(tab, big.mark = "'", digits=0), wrd=wrd)

zz <- ToWrd(Format(tab, big.mark = "'", digits=0), wrd=wrd)
zz$Rows(1)$Select()
WrdFont(wrd = wrd) <- list(name="Algerian", size=14, bold=TRUE)

# Send a TMod table to Word using a split to separate columns
r.ols <- lm(Fertility ~ . , swiss)
r.gam <- glm(Fertility ~ . , swiss, family=Gamma(link="identity"))

# Build the model table for some two models, creating a user defined
# reporting function (FUN) with | as column splitter
tm <- TMod(OLS=r.ols, Gamma=r.gam,

FUN=function(est, se, tval, pval, lci, uci){
gettextf("%s|[%s, %s]|%s",



582 ToWrdB

Format(est, fmt=Fmt("num"), digits=2),
Format(lci, fmt=Fmt("num"), digits=2),
Format(uci, fmt=Fmt("num"), digits=2),
Format(pval, fmt="*")

)})

# send it to Word, where we get a table with 3 columns per model
# coef | confint | p-val
wrd <- GetNewWrd()
ToWrd(tm, split="|", align=StrSplit("lrclrcl"))
)

## End(Not run)

ToWrdB Send Objects to Word and Bookmark Them

Description

Send objects like tables, ftables, lm tables, TOnes or just simple texts to a MS-Word document and
place a bookmark on them. This has the advantage, that objects in a Word document can be updated
later, provided the bookmark name has been stored.

Usage

ToWrdB(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"),
bookmark = gettextf("bmt%s", round(runif(1, min = 0.1) * 1e+09)))

Arguments

x the object to be transferred to Word.

font the font to be used to the output. This should be defined as a list containing
fontname, fontsize, bold and italic flags:
list(name="Arial", size=10, bold=FALSE, italic=TRUE).

... further arguments to be passed to or from methods.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

bookmark the name of the bookmark.

Details

This function encapsulates ToWrd, by placing a bookmark over the complete inserted results. The
given name can be questioned with bm$name().

Value

a handle to the set bookmark



ToWrdPlot 583

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ToWrd, WrdInsertBookmark

Examples

## Not run:
# we can't get this through the CRAN test - run it with copy/paste to console

wrd <- GetNewWrd()
bm <- ToWrdB("This is text to be possibly replaced later.")

# get the automatically created name of the bookmark
bm$name()

WrdGoto(bm$name())
UpdateBookmark(...)

## End(Not run)

ToWrdPlot Send a Plot to Word and Bookmark it

Description

Evaluate given plot code to a tiff() device and imports the created plot in the currently open MS-
Word document. The imported plot is marked with a bookmark that can later be used for a potential
update (provided the bookmark name has been stored).

Usage

ToWrdPlot(plotcode, width = NULL, height = NULL, scale = 100,
pointsize = 12, res = 300, crop = 0, title = NULL,
wrd = DescToolsOptions("lastWord"),
bookmark = gettextf("bmp%s", round(runif(1, min = 0.1) * 1e+09)))

Arguments

plotcode code chunk needed for producing the plot

bookmark character, the name of the bookmark

width the width in cm of the plot in the Word document (default 15)

height the height in cm of the plot in the Word document (default 9.3)

scale the scale of the plot (default 100)



584 ToWrdPlot

pointsize the default pointsize of plotted text, interpreted as big points (1/72 inch) at res
ppi. (default is 12)

res the resolution for the graphic (default 300)

crop a vector of 4 elements, the crop factor for all 4 sides of a picture in cm (default
all 0)

title character, the title of the plot to be inserted in the word document

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Details

An old and persistent problem that has existed for a long time is that as results once were loaded
into a Word document the connection broke so that no update was possible. It was only recently
that I realized that bookmarks in Word could be a solution for this. The present function evaluates
some given plot code chunk using a tiff device and imports the created plot in a word document.
The imported plot is given a bookmark, that can be used afterwards for changing or updating the
plot.

This function is designed for use with the DescToolsAddIns functions ToWrdPlotWithBookmark()
and ToWrdWithBookmark() allowing to assign keyboard shortcuts. The two functions will also
insert the newly defined bookmark in the source file in a format, which can be interpreted by the
function UpdateBookmark().

Value

a list

plot_hwnd a windows handle to the inserted plot

bookmark a windows handle to the bookmark

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ToWrdB, WrdInsertBookmark

Examples

## Not run:
# we can't get this through the CRAN test - run it with copy/paste to console

wrd <- GetNewWrd()
bm <- ToWrdB("This is text to be possibly replaced later.")

# get the automatically created name of the bookmark
bm$name()



Triangular 585

WrdGoto(bm$name())
UpdateBookmark(...)

## End(Not run)

Triangular The Triangular Distribution

Description

Density, distribution function, quantile function, and random generation for the triangular distribu-
tion with parameters min, max, and mode.

Usage

dTri(x, min = 0, max = 1, mode = 1/2)
pTri(q, min = 0, max = 1, mode = 1/2)
qTri(p, min = 0, max = 1, mode = 1/2)
rTri(n, min = 0, max = 1, mode = 1/2)

Arguments

x vector of quantiles. Missing values (NAs) are allowed.

q vector of quantiles. Missing values (NAs) are allowed.

p vector of probabilities between 0 and 1. Missing values (NAs) are allowed.

n sample size. If length(n) is larger than 1, then length(n) random values are
returned.

min vector of minimum values of the distribution of the random variable. The default
value is min=0.

max vector of maximum values of the random variable. The default value is max=1.

mode vector of modes of the random variable. The default value is mode=1/2.

Details

Let X be a triangular random variable with parameters min=a, max=b, and mode=c.

Probability Density and Cumulative Distribution Function
The density function of X is given by:

f(x; a, b, c) = 2(x−a)
(b−a)(c−a) for a ≤ x ≤ c

2(b−x)
(b−a)(b−c) for c ≤ x ≤ b

where a < c < b.

The cumulative distribution function of X is given by:



586 Triangular

F (x; a, b, c) = (x−a)2

(b−a)(c−a) for a ≤ x ≤ c

1− (b−x)2

(b−a)(b−c) for c ≤ x ≤ b

where a < c < b.

Quantiles
The pth quantile of X is given by:

xp = a+
√
(b− a)(c− a)p for 0 ≤ p ≤ F (c)

b−
√

(b− a)(b− c)(1− p for F (c) ≤ p ≤ 1

where 0 ≤ p ≤ 1.

Random Numbers
Random numbers are generated using the inverse transformation method:

x = F−1(u)

where u is a random deviate from a uniform [0, 1] distribution.

Mean and Variance
The mean and variance of X are given by:

E(X) =
a+ b+ c

3

V ar(X) =
a2 + b2 + c2 − ab− ac− bc

18

Value

dTri gives the density, pTri gives the distribution function, qTri gives the quantile function, and
rTri generates random deviates.

Note

The triangular distribution is so named because of the shape of its probability density function.
The average of two independent identically distributed uniform random variables with parameters
min=α and max=β has a triangular distribution with parameters min=α, max=β, and mode=(β−α)/2.

The triangular distribution is sometimes used as an input distribution in probability risk assessment.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.



Trim 587

See Also

Uniform, Probability Distributions and Random Numbers.

Examples

# Density of a triangular distribution with parameters
# min=10, max=15, and mode=12, evaluated at 12, 13 and 14:

dTri(12:14, 10, 15, 12)
#[1] 0.4000000 0.2666667 0.1333333

#----------

# The cdf of a triangular distribution with parameters
# min=2, max=7, and mode=5, evaluated at 3, 4, and 5:

pTri(3:5, 2, 7, 5)
#[1] 0.06666667 0.26666667 0.60000000

#----------

# The 25'th percentile of a triangular distribution with parameters
# min=1, max=4, and mode=3:

qTri(0.25, 1, 4, 3)
#[1] 2.224745

#----------

# A random sample of 4 numbers from a triangular distribution with
# parameters min=3 , max=20, and mode=12.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(10)
rTri(4, 3, 20, 12)
#[1] 11.811593 9.850955 11.081885 13.539496

Trim Trim a Vector

Description

Clean data by means of trimming, i.e., by omitting outlying observations.

Usage

Trim(x, trim = 0.1, na.rm = FALSE)



588 Trim

Arguments

x a numeric vector to be trimmed.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x. Values
of trim outside that range (and < 1) are taken as the nearest endpoint. If trim is
set to a value >1 it’s interpreted as the number of elements to be cut off at each
tail of x.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Details

A symmetrically trimmed vector x with a fraction of trim observations (resp. the given number)
deleted from each end will be returned. If trim is set to a value >0.5 or to an integer value > n/2
then the result will be NA.

Value

The trimmed vector x. The indices of the trimmed values will be attached as attribute named
"trim".

Note

This function is basically an excerpt from the base function mean, which allows the vector x to be
trimmed before calculating the mean. But what if a trimmed standard deviation is needed?

Author(s)

R-Core (function mean), Andri Signorell <andri@signorell.net>

See Also

Winsorize

Examples

## generate data
set.seed(1234) # for reproducibility
x <- rnorm(10) # standard normal
x[1] <- x[1] * 10 # introduce outlier

## Trim data
x
Trim(x, trim=0.1)

## Trim fixed number, say cut the 3 extreme elements from each end
Trim(x, trim=3)

## check function
s <- sample(10:20)
s.tr <- Trim(s, trim = 2)



TTestA 589

setequal(c(s[attr(s.tr, "trim")], s.tr), s)

TTestA Student’s t-Test Based on Sample Statistics

Description

Performs one and two sample t-tests based on user supplied summary information instead of data
as in t.test().

Usage

TTestA(mx, sx, nx, my = NULL, sy = NULL, ny = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

Arguments

mx a single number representing the sample mean of x.

my an optional single number representing the sample mean of y.

sx a single number representing the sample standard deviation of x.

sy an optional single number representing the sample standard deviation of y.

nx a single number representing the sample size of x.

ny an optional single number representing the sample size of y.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

mu a number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

paired paired = TRUE is not supported here and only present for consistency of argu-
ments. Use the one-sample-test for the differences instead.

var.equal a logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

... further arguments to be passed to or from methods.



590 TTestA

Details

alternative = "greater" is the alternative that x has a larger mean than y.

The option paired is not supported here, as the variance of the differences can’t be calculated on
the base of the variances of the two samples. However, for calculating the paired test we can simply
supply the mean and standard deviation of the differences and use the one-sample test with mu = 0.

If var.equal is TRUE then the pooled estimate of the variance is used. By default, if var.equal is
FALSE then the variance is estimated separately for both groups and the Welch modification to the
degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is
generated.

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate the estimated mean or difference in means depending on whether it was a one-
sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

See Also

t.test

Examples

## Classical example: Student's sleep data
mx <- 0.75
my <- 2.33
sx <- 1.789010
sy <- 2.002249
nx <- ny <- 10
TTestA(mx=mx, my=my, sx=sx, sy=sy, nx=nx, ny=ny)

# compare to
with(sleep, t.test(extra[group == 1], extra[group == 2]))

# use the one sample test for the differences instead of paired=TRUE option
x <- with(sleep, extra[group == 1])



TukeyBiweight 591

y <- with(sleep, extra[group == 2])

TTestA(mx=mean(x-y), sx=sd(x-y), nx=length(x-y))

# compared to
t.test(x, y, paired = TRUE)

TukeyBiweight Calculate Tukey’s Biweight Robust Mean

Description

This calculates a robust average that is unaffected by outliers.

Usage

TukeyBiweight(x, const = 9, na.rm = FALSE,
conf.level = NA, ci.type = "bca", R=1000, ...)

Arguments

x a numeric vector

const a constant. const is preassigned a value of 9 according to the Cook reference
below but other values are possible.

na.rm logical, indicating whether NA values should be stripped before the computation
proceeds. Defaults to FALSE.

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

ci.type The type of confidence interval required. The value should be any subset of the
values "basic", "stud", "perc", "bca" or simply "all" which will compute
all four types of intervals.

R The number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights.

... the dots are passed to the function boot, when confidence intervalls are calcu-
lated.

Details

This is a one step computation that follows the Affy whitepaper below, see page 22. const deter-
mines the point at which outliers are given a weight of 0 and therefore do not contribute to the
calculation of the mean. const = 9 sets values roughly +/-6 standard deviations to 0. const = 6 is
also used in tree-ring chronology development. Cook and Kairiukstis (1990) have further details.



592 TwoGroups

An exact summation algorithm (Shewchuk 1997) is used. When some assumptions about the round-
ing of floating point numbers and conservative compiler optimizations hold, summation error is
completely avoided. Whether the assumptions hold depends on the platform, i.e. compiler and
CPU.

Value

A numeric mean.

Author(s)

Mikko Korpela <mikko.korpela@aalto.fi>

References

Statistical Algorithms Description Document, 2002, Affymetrix.

Cook, E. R. and Kairiukstis, L. A. (1990) Methods of Dendrochronology: Applications in the Envi-
ronmental Sciences. Springer. ISBN-13: 978-0792305866.

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression: a second course in statistics.
Addison-Wesley. ISBN-13: 978-0201048544.

Shewchuk, J. R. (1997) Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates. Discrete and Computational Geometry, 18(3):305-363. Springer.

See Also

HuberM, Range, RobScale

Examples

TukeyBiweight(rnorm(100))

TwoGroups Describe a Variable by a Factor with Two Levels

Description

This function describes a numeric variable by a grouping factor with two levels. First, a descriptive
text listing the frequencies and means of the two groups and the results of the significance test is
generated. The results of Desc(x~g) are reported as they are provided by the function, followed by
a plot consisting of a density plot and a box plot. This description makes sense, for example, if the
age distribution of a collective is to be represented for both sexes.



TwoGroups 593

Usage

TwoGroups(x, ..., plotit = TRUE)

## Default S3 method:
TwoGroups(x, g, main = NULL, vname = NULL, ..., plotit = TRUE)

## S3 method for class 'formula'
TwoGroups(formula, data, subset, na.action, ...)

## S3 method for class 'TwoGroups'
ToWrd(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"))

Arguments

x the numeric variable to describe.

g the grouping factor (preferably with two levels.)

main the main title.

vname the variable names used in the description text.

plotit boolean. Should a plot be created? Default can be defined by DescToolsOptions(plotit=TRUE/FALSE),
if it does not exist then it’s set to FALSE.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

font the first font will be chosen for the introducing text, when sending the output to
Word, the second for the description.

wrd the pointer to a running MS Word instance, as created by GetNewWrd() (for a
new one) or by GetCurrWrd() for an existing one. Default is NULL, which will
report all results to the console.

... the dots are sent to the internally used function Phrase(). They can be used to
choose the language (lang) or provide variable name (xname).

Value

list with the results calculated by the used functions

Author(s)

Andri Signorell <andri@signorell.net>



594 UncertCoef

See Also

Desc, PlotMultiDens, Phrase

Examples

x <- d.pizza$temperature
g <- factor(d.pizza$rabate)

# we can change the colors for the plot by setting the DescToolsOptions
DescToolsOptions(col=c(DescTools::horange, DescTools::hgreen))
TwoGroups(x, g, main="Temperature ~ Rebate")

# for an output to Word simply define the wrd argument
# wrd <- GetNewWrd()
# TwoGroups(x, g, font.desc=list(name="Consolas", size=8),
# main="Temperature ~ Rebate", wrd=wrd)

UncertCoef Uncertainty Coefficient

Description

The uncertainty coefficient U(C|R) measures the proportion of uncertainty (entropy) in the column
variable Y that is explained by the row variable X. The function has interfaces for a table, a matrix,
a data.frame and for single vectors.

Usage

UncertCoef(x, y = NULL, direction = c("symmetric", "row", "column"),
conf.level = NA, p.zero.correction = 1/sum(x)^2, ...)

Arguments

x a numeric vector, a factor, matrix or data frame.

y NULL (default) or a vector, an ordered factor, matrix or data frame with compat-
ible dimensions to x.

direction direction of the calculation. Can be "row" (default) or "column", where "row"
calculates UncertCoef (R|C) ("column dependent").

conf.level confidence level of the interval. If set to NA (which is the default) no confidence
interval will be calculated.

p.zero.correction

slightly nudge zero values so that their logarithm can be calculated

... further arguments are passed to the function table, allowing i.e. to set useNA.
This refers only to the vector interface.



UncertCoef 595

Details

The uncertainty coefficient is computed as

U(C|R) =
H(X) +H(Y )−H(XY )

H(Y )

and ranges from [0, 1].

Value

Either a single numeric value, if no confidence interval is required,
or a vector with 3 elements for estimate, lower and upper confidence intervall.

Author(s)

Andri Signorell <andri@signorell.net> strongly based on code from Antti Arppe <antti.arppe@helsinki.fi>

References

Theil, H. (1972), Statistical Decomposition Analysis, Amsterdam: North-Holland Publishing Com-
pany.

See Also

Entropy, Lambda, Assocs

Examples

# example from Goodman Kruskal (1954)

m <- as.table(cbind(c(1768,946,115), c(807,1387,438), c(189,746,288), c(47,53,16)))
dimnames(m) <- list(paste("A", 1:3), paste("B", 1:4))
m

# direction default is "symmetric"
UncertCoef(m)
UncertCoef(m, conf.level=0.95)

UncertCoef(m, direction="row")
UncertCoef(m, direction="column")



596 UnirootAll

UnirootAll Finds many (all) roots of one equation within an interval

Description

The function UnirootAll searches the interval from lower to upper for several roots (i.e., zero’s)
of a function f with respect to its first argument.

Usage

UnirootAll(f, interval, lower = min(interval), upper = max(interval),
tol = .Machine$double.eps^0.5, maxiter = 1000, n = 100, ...)

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the root.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

tol the desired accuracy (convergence tolerance).

maxiter the maximum number of iterations.

n number of subintervals in which the root is sought.

... additional named or unnamed arguments to be passed to f (but beware of partial
matching to other arguments).

Details

f will be called as f(x, ...) for a numeric value of x.

Run demo(Jacobandroots) for an example of the use of UnirootAll for steady-state analysis.

See also second example of gradient This example is discussed in the book by Soetaert and Her-
man (2009).

Value

a vector with the roots found in the interval

Note

This is a verbatim copy from rootSolve::uniroot.all (v. 1.7).



UnirootAll 597

Note

The function calls uniroot, the basic R-function.

It is not guaranteed that all roots will be recovered.

This will depend on n, the number of subintervals in which the interval is divided.

If the function "touches" the X-axis (i.e. the root is a saddle point), then this root will generally not
be retrieved. (but chances of this are pretty small).

Whereas unitroot passes values one at a time to the function, UnirootAll passes a vector of
values to the function. Therefore f should be written such that it can handle a vector of values. See
last example.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

uniroot for more information about input.

Examples

## =======================================================================
## Mathematical examples
## =======================================================================

# a well-behaved case...
fun <- function (x) cos(2*x)^3

curve(fun(x), 0, 10,main = "UnirootAll")

All <- UnirootAll(fun, c(0, 10))
points(All, y = rep(0, length(All)), pch = 16, cex = 2)

# a difficult case...
f <- function (x) 1/cos(1+x^2)
AA <- UnirootAll(f, c(-5, 5))
curve(f(x), -5, 5, n = 500, main = "UnirootAll")
points(AA, rep(0, length(AA)), col = "red", pch = 16)

f(AA) # !!!

## =======================================================================
## Vectorisation:
## =======================================================================
# from R-help Digest, Vol 130, Issue 27
# https://stat.ethz.ch/pipermail/r-help/2013-December/364799.html

integrand1 <- function(x) 1/x*dnorm(x)
integrand2 <- function(x) 1/(2*x-50)*dnorm(x)
integrand3 <- function(x, C) 1/(x+C)



598 Untable

res <- function(C) {
integrate(integrand1, lower = 1, upper = 50)$value +
integrate(integrand2, lower = 50, upper = 100)$value -
integrate(integrand3, C = C, lower = 1, upper = 100)$value

}

# uniroot passes one value at a time to the function, so res can be used as such
uniroot(res, c(1, 1000))

# Need to vectorise the function to use UnirootAll:
res <- Vectorize(res)
UnirootAll(res, c(1,1000))

Untable Recover Original Data From Contingency Table

Description

Recreates the data.frame out of a contingency table x.

Usage

Untable(x, ...)

## S3 method for class 'data.frame'
Untable(x, freq = "Freq", rownames = NULL, ...)

## Default S3 method:
Untable(x, dimnames = NULL, type = NULL, rownames = NULL, colnames = NULL, ...)

Arguments

x a numeric vector, a matrix, a table or a data.frame. If x is a vector, a matrix or a
table it is interpreted as frequencies which are to be inflated to the original list.
If x is a data.frame it is interpreted as a table in frequency form (containing one
or more factors and a frequency variable).

dimnames the dimension names of x to be used for expanding. Can be used to expand a
weight vector to its original values. If set to NULL (default) the dimnames of x
will be used.

type defines the data type generated. This allows to directly define factors or ordered
factors, but also numeric values. See examples.

rownames A names vector for the rownames of the resulting data.frame. If set to NULL
(default) the names will be defined according to the table’s dimnames.



Untable 599

colnames A names vector for the colnames of the resulting data.frame. If set to NULL
(default) the names will be defined according to the table’s dimnames.

freq character, the name of the frequency variable in case x is a data.frame.

... further arguments passed to or from functions (not used here).

Details

For x being a vector this reduces to rep(..., n) with n as vector (which is not supported by rep()).
NAs in the table will be treated as 0 without raising an error.

Value

a data.frame with the detailed data (even if x was a 1-dimensional table)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

expand.grid, rep, gl, xtabs

Examples

d.titanic <- Untable(Titanic)
str(d.titanic)

# ... not the same as:
data.frame(Titanic)

tab <- table(set1=sample(letters[1:5], size=40, replace=TRUE),
set2=sample(letters[11:15], size=40, replace=TRUE))

Untable(tab)

# return a numeric vector by setting type and coerce to a vector by [,]
Untable(c(6,2,2), type="as.numeric")[,]

# how to produce the original list based on frequencies, given as a data.frame
d.freq <- data.frame(xtabs(Freq ~ Sex + Survived, data=Titanic))

# a data list with each individual
d.data <- Untable( xtabs(c(1364, 126, 367, 344) ~ .,

expand.grid(levels(d.freq$Sex),levels(d.freq$Survived))))
head(d.data)

# expand a weights vector
Untable(c(1,4,5), dimnames=list(c("Zurich","Berlin","London")))



600 Unwhich

# and the same with a numeric vector
Untable(c(1,4,5), dimnames=list(c(5,10,15)), type="as.numeric")[,]
# ... which again is nothing else than
rep(times=c(1,4,5), x=c(5,10,15))

# the data.frame interface
d.freq <- data.frame(f1=c("A","A","B","B"), f2=c("C","D","C","D"), Freq=c(1,2,3,4))
Untable(d.freq)

Unwhich Inverse Which

Description

The inverse function to which creates a logical vector/matrix from indices.

Usage

Unwhich(idx, n = max(idx), useNames = TRUE)

Arguments

idx the indices as returned by which.
n integer, the length of the original vector. This must not be less than max(idx),

which is also the default.
useNames logical, determining if the names of the indices should be preserved.

Value

a logical vector of the length n, with TRUE on the positions i.

Author(s)

Nick Sabbe

References

https://stackoverflow.com/questions/7659833/inverse-of-which

See Also

which

Examples

ll <- c(TRUE, FALSE, TRUE, NA, FALSE, FALSE, TRUE)
names(ll) <- letters[seq(ll)]
i <- which(ll)
# back again (loosing the names of the FALSEs)
Unwhich(i, length(ll))

https://stackoverflow.com/questions/7659833/inverse-of-which


VanWaerdenTest 601

VanWaerdenTest van der Waerden Test

Description

Performs a van der Waerden normal scores test.

Usage

VanWaerdenTest(x, ...)

## Default S3 method:
VanWaerdenTest(x, g, ...)

## S3 method for class 'formula'
VanWaerdenTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors. Non-numeric
elements of a list will be coerced, with a warning.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored with a warning if x is a list.

formula a formula of the form response ~ group where response gives the data values
and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

VanWaerdenTest performs a van der Waerden test of the null that the location parameters of the
distribution of x are the same in each group (sample). The alternative is that they differ in at least
one.

The van der Waerden rank scores are defined as the ranks of data, i.e., R[i], i = 1, 2, ..., n, divided
by 1 + n transformed to a normal score by applying the inverse of the normal distribution function,
i.e., Φ( − 1)(R[i]/(1 + n)). The ranks of data are obtained by ordering the observations from all
groups (the same way as kruskal.test does it).

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric
data vectors. In this case, g is ignored, and one can simply use VanWaerdenTest(x) to perform the
test. If the samples are not yet contained in a list, use VanWaerdenTest(list(x, ...)).



602 VanWaerdenTest

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Value

A list with class "htest" containing the following components:

statistic the van der Waerden statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "van-der-Waerden normal scores test".

data.name a character string giving the names of the data.

References

Conover, W. J., Iman, R. L. (1979). On multiple-comparisons procedures, Tech. Rep. LA-7677-
MS, Los Alamos Scientific Laboratory.

Conover, W. J. (1999). Practical Nonparameteric Statistics (Third Edition ed.). Wiley. pp. 396406.

See Also

normal_test in package coin where the test is implemented in a more general context (but has a
quite unpractical interface).

Examples

## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

VanWaerdenTest(list(x, y, z))

## Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

VanWaerdenTest(x, g)

## Formula interface.
require(graphics)
boxplot(Ozone ~ Month, data = airquality)
VanWaerdenTest(Ozone ~ Month, data = airquality)

https://CRAN.R-project.org/package=coin


Var 603

Var Variance

Description

Var() computes the variance of x. If x is a matrix variances of the columns of x are computed.
Varn returns the uncorrected sample variance (which is biased estimator for the sample variance).

Usage

Var(x, ...)

## S3 method for class 'Freq'
Var(x, breaks, ...)

## Default S3 method:
Var(x, weights = NULL, na.rm = FALSE, method = c("unbiased", "ML"), ...)

VarN(x, na.rm = FALSE)

Arguments

x a numeric vector, matrix or data frame.

weights a numerical vector of weights the same length as x giving the weights to use for
elements of x.

na.rm logical. Should missing values be removed?

method determines the estimator type; if "unbiased" (the default) then the usual un-
biased estimate (using Bessel’s correction) is returned, if "ML" then it is the
maximum likelihood estimate for a Gaussian distribution. Uses stats:cov.wt for
both methods.

breaks breaks for calculating the variance for classified data as composed by Freq.

... further arguments passed to or from other methods.

Details

Var is just another interface to Cov.

The denominator n − 1 is used which gives an unbiased estimator of the (co)variance for i.i.d.
observations. These functions return NA when there is only one observation (whereas S-PLUS has
been returning NaN), and fail if x has length zero.

Value

For r <- Cor(*, use = "all.obs"), it is now guaranteed that all(abs(r) <= 1).



604 VarCI

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

cor, cov for covariance and correlation matrices

cor.test for confidence intervals (and tests).

cov.wt for weighted covariance computation.

sd for standard deviation (vectors).

Examples

Var(1:10) # 9.166667

Var(1:5, 1:5) # 2.5

# weighted Variance
set.seed(45)
(z <- as.numeric(names(w <- table(x <- sample(-10:20, size=50, replace=TRUE)))))
Var(z, w=w)

# check!
all.equal(Var(x), Var(z, w=w))

# Variance for frequency tables
Var(Freq(as.table(c(6,16,24,25,17))),

breaks=c(0, 10, 20, 30, 40, 50))

VarCI Confidence Intervals for the Variance

Description

Calculates confidence intervals for the variance. Available approachs are the classical one using
the ChiSquare distribution, a more robust version proposed by Bonett and the bootstrap options
available in the package boot.

Usage

VarCI(x, method = c("classic", "bonett", "norm", "basic", "stud", "perc", "bca"),
conf.level = 0.95, sides = c("two.sided", "left", "right"),
na.rm = FALSE, R = 999)



VarCI 605

Arguments

x a (non-empty) numeric vector of data values.

method vector of character strings representing the type of intervals required. The value
should be any subset of the values "classic", "bonett", "norm", "basic",
"stud", "perc", "bca". See boot.ci.

conf.level confidence level of the interval.

sides a character string specifying the side of the confidence interval, must be one
of "two.sided" (default), "left" or "right". You can specify just the initial
letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

na.rm logical. Should missing values be removed? Defaults to FALSE.

R number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights. See boot.

Details

The confidence interval for the variance is very sensitive to non-normality in the data. Bonett (2006)
has proposed an interval that is nearly exact when the data is normally distributed and provides good
performance for moderately non-normal data. See the references for the details.

Value

a numeric vector with 3 elements:

var variance

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

References

Bonett (2006) Approximate Confidence Interval for Standard Deviation of Nonnormal Distribu-
tions, Computational Statistics and Data Analysis, Vol. 50, pp. 775 - 782.
https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/sdconfli.htm (might be outdated)

See Also

MeanCI, MedianCI, VarTest, Var



606 VarTest

Examples

VarCI(d.pizza$price, na.rm=TRUE)
VarCI(d.pizza$price, conf.level=0.99, na.rm=TRUE)

x <- c(14.816, 14.863, 14.814, 14.998, 14.965, 14.824, 14.884, 14.838, 14.916,
15.021, 14.874, 14.856, 14.860, 14.772, 14.980, 14.919)

VarCI(x, conf.level=0.9)

# and for the standard deviation
sqrt(VarCI(x, conf.level=0.9))

# from Bonett's paper
# expected results:
# ------------------------------------
# conf.lvl sd lci uci
# ------------------------------------
# 90.0 0.5168 0.3592 0.9359
# 95.0 0.5168 0.3263 1.0841
# 99.0 0.5168 0.2607 1.5109

p <- c(15.83, 16.01, 16.24, 16.42, 15.33, 15.44, 16.88, 16.31)
sqrt(VarCI(p, method="bonett", conf.level=0.9))
sqrt(VarCI(p, method="bonett"))
sqrt(VarCI(p, method="bonett", conf.level=0.99))

# some bootstrap intervals
VarCI(x, method="norm")
VarCI(x, method="perc")
VarCI(x, method="bca")

VarTest ChiSquare Test for One Variance and F Test to Compare Two Vari-
ances

Description

Performs either a one sample chi-squared test to compare the variance of a vector with a given value
or an F test to compare the variances of two samples from normal populations.

Usage

VarTest(x, ...)

## Default S3 method:
VarTest(x, y,

alternative = c("two.sided", "less", "greater"),
ratio = 1, sigma.squared = 1,
conf.level = 0.95, ...)



VarTest 607

## S3 method for class 'formula'
VarTest(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

ratio the hypothesized ratio of the population variances of x and y.

sigma.squared a number indicating the true value of the variance, if one sample test is requested.

conf.level confidence level for the returned confidence interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample tests.

The null hypothesis is that the ratio of the variances of the populations from which x and y were
drawn, or in the data to which the linear models x and y were fitted, is equal to ratio.

Value

A list with class "htest" containing the following components:

statistic the value of the F test statistic.

parameter the degrees of the freedom of the F distribution of the test statistic.

p.value the p-value of the test.

conf.int a confidence interval for the ratio of the population variances.

estimate the ratio of the sample variances of x and y.

null.value the ratio of population variances under the null.

alternative a character string describing the alternative hypothesis.

method the character string "F test to compare two variances".

data.name a character string giving the names of the data.



608 VecRot

Author(s)

Andri Signorell <andri@signorell.net> (One sample test)
Two Sample test and help text from R-Core.

See Also

var.test, bartlett.test for testing homogeneity of variances in more than two samples from
normal distributions; ansari.test and mood.test for two rank based (nonparametric) two-sample
tests for difference in scale.

Examples

x <- rnorm(50, mean = 0, sd = 2)

# One sample test
VarTest(x, sigma.squared = 2.5)

# two samples
y <- rnorm(30, mean = 1, sd = 1)
VarTest(x, y) # Do x and y have the same variance?
VarTest(lm(x ~ 1), lm(y ~ 1)) # The same.

VecRot Vector Rotation (Shift Elements)

Description

Shift the elements of a vector in circular mode by k elements to the right (for positive k) or to the
left (for negative k), such that the first element is at the (k+1)th position of the new vector and the
last k elements are appended to the beginning.
VecShift does not attach the superfluous elements on one side to the other, but fills the resulting
gaps with NAs.

Usage

VecRot(x, k = 1)
VecShift(x, k = 1)

Arguments

x a vector of any type.

k the number of elements to shift.

Details

The function will repeat the vector two times and select the appropriate number of elements from
the required shift on.



VIF 609

Value

the shifted vector in the same dimensions as x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

[, rep, lag

Examples

VecRot(c(1,1,0,0,3,4,8), 3)

VecRot(letters[1:10], 3)
VecRot(letters[1:10], -3)

VecShift(letters[1:10], 3)
VecShift(letters[1:10], -3)

VIF Variance Inflation Factors

Description

Calculates variance-inflation and generalized variance-inflation factors for linear and generalized
linear models. It’s a measure describing how much the variance of an estimated coefficient is
increased because of collinearity.

Usage

VIF(mod)

Arguments

mod an object that responds to coef, vcov, and model.matrix, such as an lm or glm
object.

Details

If all terms in an unweighted linear model have 1 df, then the usual variance-inflation factors are
calculated.

The vif are defined as
vifj =

1

1−R2
j



610 VIF

where R2
j equals the coefficient of determination for regressing the explanatory variable j in ques-

tion on the other terms in the model. This is one of the well-known collinearity diagnostics.

If any terms in an unweighted linear model have more than 1 df, then generalized variance-inflation
factors (Fox and Monette, 1992) are calculated. These are interpretable as the inflation in size of
the confidence ellipse or ellipsoid for the coefficients of the term in comparison with what would
be obtained for orthogonal data.

The generalized vifs are invariant with respect to the coding of the terms in the model (as long as
the subspace of the columns of the model matrix pertaining to each term is invariant). To adjust for
the dimension of the confidence ellipsoid, the function also prints GV IF 1/(2×df) where df is the
degrees of freedom associated with the term.

Through a further generalization, the implementation here is applicable as well to other sorts of
models, in particular weighted linear models and generalized linear models.

Values of vif up to 5 are usually interpreted as uncritical, values above 5 denote a considerable
multicollinearity.

Value

A vector of vifs, or a matrix containing one row for each term in the model, and columns for the
GVIF, df, and GV IF 1/(2×df).

Note

This is a verbatim copy from the function car::vif.

Author(s)

Henric Nilsson and John Fox <jfox@mcmaster.ca>

References

Fox, J. and Monette, G. (1992) Generalized collinearity diagnostics. JASA, 87, 178–183.

Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.

Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage.

Examples

VIF(lm(Fertility ~ Agriculture + Education, data=swiss))
VIF(lm(Fertility ~ ., data=swiss))



Vigenere 611

Vigenere Vigenere Cypher

Description

Implements a Vigenere cypher, both encryption and decryption. The function handle keys and text
of unequal length and discards non-alphabetic characters.

Usage

Vigenere(x, key = NULL, decrypt = FALSE)

Arguments

x the text to be encrypted

key the key to be used. If this remains to NULL the PasswordDlg will be presented
and the key can be entered there.

decrypt boolean defining if the text should be encrypted or decrypted.

Details

All characters beside charlist = c(LETTERS, letters, 0:9) will be discarded from the text and from
the key.

Value

the encrypted, resp. decrypted text

Author(s)

Andri Signorell <andri@signorell.net>
strongly based on code found at https://rosettacode.org/wiki/Vigen%C3%A8re_cipher#R
(credits to the unknown soldier)

Examples

key <- "My FavoriteKey452"
(xenc <- Vigenere("Beware the Jabberwock, my son! The jaws that bite, the claws that catch!", key))

Vigenere(xenc, key, decrypt = TRUE)
# note that everything besides the characters in the list will be discarded

https://rosettacode.org/wiki/Vigen%C3%A8re_cipher#R


612 VonNeumannTest

VonNeumannTest Von Neumann’s Successive Difference Test

Description

A popular statistic to test for independence is the von Neumann ratio.

Usage

VonNeumannTest(x, alternative = c("two.sided", "less", "greater"), unbiased = TRUE)

Arguments

x a numeric vector containing the observations

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

unbiased logical. In order for VN to be an unbiased estimate of the true population value,
the calculated value is multiplied by n/(n− 1). Default is TRUE.

Details

The VN test statistic is in the unbiased case

V N =

∑n−1
i=1 (xi − xi+1)

2 · n∑n
i=1 (xi − x̄)

2 · (n− 1)

It is known that (V N − µ)/σ is asymptotically standard normal, where µ = 2n
n−1 and σ2 =

4 · n2 (n−2)
(n+1)(n−1)3 .

The VN test statistic is in the original (biased) case

V N =

∑n−1
i=1 (xi − xi+1)

2∑n
i=1 (xi − x̄)

2

The test statistic (V N − 2)/σ is asymptotically standard normal, where σ2 = 4·(n−2)
(n+1)(n−1) .

Missing values are silently removed.

Value

A list with class "htest" containing the components:

statistic the value of the VN statistic and the normalized statistic test.

parameter, n the size of the data, after the remotion of consecutive duplicate values.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method a character string indicating the test performed.

data.name a character string giving the name of the data.



wdConst 613

Author(s)

Andri Signorell <andri@signorell.net>

References

von Neumann, J. (1941) Distribution of the ratio of the mean square successive difference to the
variance. Annals of Mathematical Statistics 12, 367-395.

See Also

BartelsRankTest

Examples

VonNeumannTest(d.pizza$temperature)

wdConst Word VBA Constants

Description

This is a list with all VBA constants for MS Word 2010, which is useful for writing R functions
based on recorded macros in Word. This way the constants need not be replaced by their numeric
values and can only be complemented with the list’s name, say the VBA-constant wd10Percent for
example can be replaced by wdConst$wd10Percent. A handful constants for Excel are consolidated
in xlConst.

Usage

data(wdConst)
data(xlConst)

Format

The format is:
List of 2755
$ wd100Words: num -4
$ wd10Percent: num -6
$ wd10Sentences: num -2
...

Source

Microsoft



614 Winsorize

Winsorize Winsorize (Replace Extreme Values by Less Extreme Ones)

Description

Winsorizing a vector means that a predefined quantum of the smallest and/or the largest values are
replaced by less extreme values. Thereby the substitute values are the most extreme retained values.

Usage

Winsorize(x, val = quantile(x, probs = c(0.05, 0.95), na.rm = FALSE))

Arguments

x a numeric vector to be winsorized.

val the low border, all values being lower than this will be replaced by this value.
The default is set to the 5%-quantile of x.

Details

The winsorized vector is obtained by

g(x) =

 −c for x ≤ c
x for |x| < c
c for x ≥ c

You may also want to consider standardizing (possibly robustly) the data before you perform a
winsorization.

Value

A vector of the same length as the original data x containing the winsorized data.

Author(s)

Andri Signorell andri@signorell.net

See Also

winsorize from the package robustHD contains an option to winsorize multivariate data

scale, RobScale

mailto:andri@signorell.net


WithOptions 615

Examples

library(DescTools)

## generate data
set.seed(9128)
x <- round(runif(100) * 100, 1)

(d.frm <- DescTools::Sort(data.frame(
x,
default = Winsorize(x),
quantile = Winsorize(x, quantile(x, probs=c(0.1, 0.8), na.rm = FALSE)),
fixed_val = Winsorize(x, val=c(15, 85)),
fixed_n = Winsorize(x, val=c(Small(x, k=3)[3], Large(x, k=3)[1])),
closest = Winsorize(x, val=unlist(Closest(x, c(30, 70))))

)))[c(1:10, 90:100), ]

# use Large and Small, if a fix number of values should be winsorized (here k=3)

PlotLinesA(SetNames(d.frm, rownames=NULL), lwd=2, col=Pal("Tibco"),
main="Winsorized Vector")

z <- 0:10
# twosided (default):
Winsorize(z, val=c(2,8))

# onesided:
# ... replace all values > 8 with 8
Winsorize(z, val=c(min(z), 8))
# ... replace all values < 4 with 4
Winsorize(z, val=c(4, max(z)))

WithOptions Execute Function with Temporary Options

Description

Setting and resetting options is lengthy in command mode. WithOptions() allows to evaluate a
function with temporary set options.

Usage

WithOptions(optlist, expr)

Arguments

optlist a list with new option settings.

expr the expression to be evaluated



616 WoolfTest

Value

the function result

Author(s)

Thomas Lumley <t.lumley@auckland.ac.nz>

See Also

options, getOption

Examples

# original:
print((1:10)^-1)

# with new options
WithOptions(list(digits=3), print((1:10)^-1))

WoolfTest Woolf Test For Homogeneity in 2x2xk Tables

Description

Test for homogeneity on 2× 2× k tables over strata (i.e., whether the log odds ratios are the same
in all strata).

Usage

WoolfTest(x)

Arguments

x a 2× 2× k table, where the last dimension refers to the strata.

Value

A list of class "htest" containing the following components:

statistic the chi-squared test statistic.

parameter degrees of freedom of the approximate chi-squared distribution of the test statis-
tic.

p.value p-value for the test.

method a character string indicating the type of test performed.

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.



WrdBookmark 617

Note

This function was previously published as woolf_test() in the vcd package and has been inte-
grated here without logical changes.

Author(s)

David Meyer, Achim Zeileis, Kurt Hornik, Michael Friendly

References

Woolf, B. 1955: On estimating the relation between blood group and disease. Ann. Human Genet.
(London) 19, 251-253.

See Also

mantelhaen.test, BreslowDayTest

Examples

migraine <- xtabs(freq ~ .,
cbind(expand.grid(treatment=c("active","placebo"),

response=c("better","same"),
gender=c("female","male")),

freq=c(16,5,11,20,12,7,16,19))
)

WoolfTest(migraine)

WrdBookmark Some Functions to Handle MS-Word Bookmarks

Description

Accessing bookmarks by name is only possible by browsing the bookmark names. WrdBookmark re-
turns a handle to a bookmark by taking its name as argument. WrdInsertBookmark, WrdDeleteBookmark
inserts/deletes a bookmark in a Word document. WrdGotoBookmark allows to place the cursor on
the bookmark and WrdUpdateBookmark replaces the content within the range of the bookmark in a
Word document with the given text.

Usage

WrdBookmark(name, wrd = DescToolsOptions("lastWord"))

WrdInsertBookmark(name, wrd = DescToolsOptions("lastWord"))
WrdDeleteBookmark(name, wrd = DescToolsOptions("lastWord"))

WrdGoto(name, what = wdConst$wdGoToBookmark, wrd = DescToolsOptions("lastWord"))

WrdUpdateBookmark(name, text, what = wdConst$wdGoToBookmark,
wrd = DescToolsOptions("lastWord"))



618 WrdBookmark

Arguments

name the name of the bookmark.

text the text of the bookmark.

what a word constant, defining the type of object to be used to place the cursor.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Details

Bookmarks are useful to build structured documents, which can be updated later.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdFont, WrdPlot, GetNewWrd, GetCurrWrd

Examples

## Not run: # we can't get this through the CRAN test - run it with copy/paste to console
wrd <- GetNewWrd()
WrdText("a)\n\n\nb)", fontname=WrdGetFont()$name, fontsize=WrdGetFont()$size)
WrdInsertBookmark("chap_b")
WrdText("\n\n\nc)\n\n\n", fontname=WrdGetFont()$name, fontsize=WrdGetFont()$size)

WrdGoto("chap_b")
WrdUpdateBookmark("chap_b", "Goto chapter B and set text")

WrdInsertBookmark("mybookmark")
ToWrd("A longer text\n\n\n")

# Now returning the bookmark
bm <- WrdBookmark("mybookmark")

# get the automatically created name of the bookmark
bm$name()

## End(Not run)



WrdCaption 619

WrdCaption Insert Caption to Word

Description

Insert a caption in a given level to a Word document. The caption is inserted at the current cursor
position.

Usage

WrdCaption(x, index = 1, wrd = DescToolsOptions("lastWord"))

Arguments

x the text of the caption.

index integer from 1 to 9, defining the number of the heading style.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ToWrd, WrdPlot, GetNewWrd, GetCurrWrd

Examples

## Not run: # Windows-specific example
wrd <- GetNewWrd()

# insert a title in level 1
WrdCaption("My First Caption level 1", index=1, wrd=wrd)

# works as well for several levels
sapply(1:5, function(i)

WrdCaption(gettextf("My First Caption level %s",i), index=i, wrd=wrd)
)

## End(Not run)



620 WrdCellRange

WrdCellRange Return the Cell Range Of a Word Table

Description

Return a handle of a cell range of a word table. This is useful for formating the cell range.

Usage

WrdCellRange(wtab, from, to)

Arguments

wtab a handle to the word table as returned i.g. by WrdTable

from a vector containing row- and column number of the left/upper cell of the cell
range.

to a vector containing row- and column number of the right/lower cell of the cell
range.

Details

Cell range selecting might be complicated. This function makes it easy.

Value

a handle to the range.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdTable

Examples

## Not run:

# Windows-specific example
wrd <- GetNewWrd()
WrdTable(nrow=3, ncol=3, wrd=wrd)
crng <- WrdCellRange(from=c(1,2), to=c(2,3))
crng$Select()

## End(Not run)



WrdFont 621

WrdFont Get or Set the Font in Word

Description

WrdFont can be used to get and set the font in Word for the text to be inserted. WrdFont returns the
font at the current cursor position.

Usage

WrdFont(wrd = DescToolsOptions("lastWord"))
WrdFont(wrd) <- value

Arguments

value the font to be used to the output. This should be defined as a list containing
fontname, fontsize, bold and italic flags:
list(name="Arial", size=10, bold=FALSE, italic=TRUE, color=wdConst$wdColorBlack).

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Details

The font color can be defined by a Word constant beginning with wdConst$wdColor. The defined
colors can be listed with grep("wdColor", names(wdConst), val=TRUE).

Value

a list of the attributes of the font in the current cursor position:

name the fontname

size the fontsize

bold bold

italic italic

color the fontcolor

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ToWrd, WrdPlot, GetNewWrd, GetCurrWrd



622 WrdFormatCells

Examples

## Not run: # Windows-specific example

wrd <- GetNewWrd()

for(i in seq(10, 24, 2))
ToWrd(gettextf("This is Arial size %s \n", i), font=list(name="Arial", size=i))

for(i in seq(10, 24, 2))
ToWrd(gettextf("This is Times size %s \n", i), font=list(name="Times", size=i))

## End(Not run)

WrdFormatCells Format Cells Of a Word Table

Description

Format cells of a Word table.

Usage

WrdFormatCells(wtab, rstart, rend, col = NULL, bg = NULL,
font = NULL, border = NULL, align = NULL)

Arguments

wtab a handle to the word table as returned i.g. by WrdTable

rstart the left/upper cell of the cell range

rend the right/lower cell of the cell range

col the foreground colour

bg the background colour

font the font to be used to the output. This should be defined as a list containing
fontname, fontsize, bold and italic flags:
list(name="Arial", size=10, bold=FALSE, italic=TRUE, color=wdConst$wdColorBlack).

border the border of the cell range, defined as a list containing arguments for border,
linestyle, linewidth and color. border is a vector containing the parts of the
border defined by the Word constants wdConst$wdBorder..., being $wdBor-
derBottom, $wdBorderLeft, $wdBorderTop, $wdBorderRight, $wdBorderHori-
zontal, $wdBorderVertical, $wdBorderDiagonalUp, $wdBorderDiagonalDown.
linestyle, linewidth and color will be recycled to the required dimension.

align a character out of "l", "c", "r" setting the horizontal alignment of the cell
range.



WrdMergeCells 623

Details

Cell range selecting might be complicated. This function makes it easy.

Value

a handle to the range.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdTable

Examples

## Not run: # Windows-specific example

m <- matrix(rnorm(12)*100, nrow=4,
dimnames=list(LETTERS[1:4], c("Variable","Value","Remark")))

wrd <- GetNewWrd()
wt <- ToWrd(m)

WrdFormatCells(wt, rstart=c(3,1), rend=c(4,3),
bg=wdConst$wdColorGold, font=list(name="Arial Narrow", bold=TRUE),
align="c", border=list(color=wdConst$wdColorTeal,

linewidth=wdConst$wdLineWidth300pt))

## End(Not run)

WrdMergeCells Merges Cells Of a Defined Word Table Range

Description

Merges a cell range of a word table.

Usage

WrdMergeCells(wtab, rstart, rend)

Arguments

wtab a handle to the word table as returned i.g. by WrdTable

rstart the left/upper cell of the cell range.

rend the right/lower cell of the cell range.



624 WrdPageBreak

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdTable, WrdCellRange

Examples

## Not run:

# Windows-specific example
wrd <- GetNewWrd()
wtab <- WrdTable(nrow=3, ncol=3, wrd=wrd)
WrdMergeCells(wtab, rstart=c(1,2), rend=c(2,3))

## End(Not run)

WrdPageBreak Insert a Page Break

Description

Insert a page break in a MS-Word (R) document at the position of the cursor.

Usage

WrdPageBreak(wrd = DescToolsOptions("lastWord"))

Arguments

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdFont, WrdPlot, GetNewWrd, GetCurrWrd



WrdParagraphFormat 625

Examples

## Not run: # Windows-specific example
wrd <- GetNewWrd()
WrdText("This is text on page 1.\n\n")
WrdPageBreak()
WrdText("This is text on another page.\n\n")

## End(Not run)

WrdParagraphFormat Get or Set the Paragraph Format in Word

Description

WrdParagraphFormat can be used to get and set the font in Word for the text to be inserted.

Usage

WrdParagraphFormat(wrd = DescToolsOptions("lastWord"))
WrdParagraphFormat(wrd) <- value

Arguments

value a list defining the paragraph format. This can contain any combination of:
LeftIndent, RightIndent, SpaceBefore, SpaceBeforeAuto, SpaceAfter, SpaceAfterAuto,
LineSpacingRule, Alignment, WidowControl, KeepWithNext, KeepTogether,
PageBreakBefore, NoLineNumber, Hyphenation, FirstLineIndent, OutlineLevel,
CharacterUnitLeftIndent, CharacterUnitRightIndent, CharacterUnitFirstLineIndent,
LineUnitBefore, LineUnitAfter and/or MirrorIndents. The possible values
of the arguments are found in the Word constants with the respective name.
The alignment for example can be set to wdAlignParagraphLeft, wdAlignParagraphRight,
wdAlignParagraphCenter and so on.
Left alignment with indentation would be set as:
list(Alignment=wdConst$wdAlignParagraphLeft, LeftIndent=42.55).

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Value

an object with the class paragraph, basically a list with the attributes of the paragraph in the current
cursor position:

LeftIndent left indentation in (in points) for the specified paragraphs.

RightIndent right indent (in points) for the specified paragraphs.

SpaceBefore spacing (in points) before the specified paragraphs.



626 WrdParagraphFormat

SpaceBeforeAuto

TRUE if Microsoft Word automatically sets the amount of spacing before the
specified paragraphs.

SpaceAfter amount of spacing (in points) after the specified paragraph or text column.

SpaceAfterAuto TRUE if Microsoft Word automatically sets the amount of spacing after the spec-
ified paragraphs.

LineSpacingRule

line spacing for the specified paragraph formatting. Use wdLineSpaceSingle,
wdLineSpace1pt5, or wdLineSpaceDouble to set the line spacing to one of
these values. To set the line spacing to an exact number of points or to a multiple
number of lines, you must also set the LineSpacing property.

Alignment WdParagraphAlignment constant that represents the alignment for the specified
paragraphs.

WidowControl TRUE if the first and last lines in the specified paragraph remain on the same page
as the rest of the paragraph when Word repaginates the document. Can be TRUE,
FALSE or wdUndefined.

KeepWithNext TRUE if the specified paragraph remains on the same page as the paragraph that
follows it when Microsoft Word repaginates the document. Read/write Long.

KeepTogether TRUE if all lines in the specified paragraphs remain on the same page when Mi-
crosoft Word repaginates the document.

PageBreakBefore

TRUE if a page break is forced before the specified paragraphs. Can be TRUE,
FALSE, or wdUndefined.

NoLineNumber TRUE if line numbers are repressed for the specified paragraphs. Can be TRUE,
FALSE, or wdUndefined.

Hyphenation TRUE if the specified paragraphs are included in automatic hyphenation. FALSE
if the specified paragraphs are to be excluded from automatic hyphenation.

FirstLineIndent

value (in points) for a first line or hanging indent. Use a positive value to set a
first-line indent, and use a negative value to set a hanging indent.

OutlineLevel outline level for the specified paragraphs.
CharacterUnitLeftIndent

left indent value (in characters) for the specified paragraphs.
CharacterUnitRightIndent

right indent value (in characters) for the specified paragraphs.

LineUnitBefore amount of spacing (in gridlines) before the specified paragraphs.

LineUnitAfter amount of spacing (in gridlines) after the specified paragraphs.

MirrorIndents Long that represents whether left and right indents are the same width. Can be
TRUE, FALSE, or wdUndefined.

Author(s)

Andri Signorell <andri@signorell.net>



WrdPlot 627

See Also

ToWrd, WrdPlot, GetNewWrd, GetCurrWrd

Examples

## Not run:
# Windows-specific example
wrd <- GetNewWrd() # get the handle to a new word instance

WrdParagraphFormat(wrd=wrd) <- list(Alignment=wdConst$wdAlignParagraphLeft,
LeftIndent=42.55)

ToWrd("Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.
At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est.\n", wrd=wrd)

# reset
WrdParagraphFormat(wrd=wrd) <- list(LeftIndent=0)

## End(Not run)

WrdPlot Insert Active Plot to Word

Description

This function inserts the plot on the active plot device to Word. The image is transferred by saving
the picture to a file in R and inserting the file in Word. The format of the plot can be selected, as
well as crop options and the size factor for inserting.

Usage

WrdPlot(type = "png", append.cr = TRUE, crop = c(0, 0, 0, 0), main = NULL,
picscale = 100, height = NA, width = NA, res = 300,
dfact = 1.6, wrd = DescToolsOptions("lastWord"))

Arguments

type the format for the picture file, default is "png".

append.cr should a carriage return be appended? Default is TRUE.

crop crop options for the picture, defined by a 4-elements-vector. The first element is
the bottom side, the second the left and so on.

main a caption for the plot. This will be inserted by InserCaption in Word. Default is
NULL, which will insert nothing.

picscale scale factor of the picture in percent, default ist 100.

height height in cm, this overrides the picscale if both are given.



628 WrdPlot

width width in cm, this overrides the picscale if both are given.

res resolution for the png file, defaults to 300.

dfact the size factor for the graphic.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Value

Returns a pointer to the inserted picture.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ToWrd, WrdCaption, GetNewWrd

Examples

## Not run: # Windows-specific example
# let's have some graphics
plot(1,type="n", axes=FALSE, xlab="", ylab="", xlim=c(0,1), ylim=c(0,1), asp=1)
rect(0,0,1,1,col="black")
segments(x0=0.5, y0=seq(0.632,0.67, length.out=100),

y1=seq(0.5,0.6, length.out=100), x1=1, col=rev(rainbow(100)))
polygon(x=c(0.35,0.65,0.5), y=c(0.5,0.5,0.75), border="white",

col="black", lwd=2)
segments(x0=0,y0=0.52, x1=0.43, y1=0.64, col="white", lwd=2)
x1 <- seq(0.549,0.578, length.out=50)
segments(x0=0.43, y0=0.64, x1=x1, y1=-tan(pi/3)* x1 + tan(pi/3) * 0.93,

col=rgb(1,1,1,0.35))

# get a handle to a new word instance
wrd <- GetNewWrd()
# insert plot with a specified height
WrdPlot(wrd=wrd, height=5)
ToWrd("Remember?\n", fontname="Arial", fontsize=14, bold=TRUE, wrd=wrd)
# crop the picture
WrdPlot(wrd=wrd, height=5, crop=c(9,9,0,0))

wpic <- WrdPlot(wrd=wrd, height=5, crop=c(9,9,0,0))
wpic

## End(Not run)



WrdSaveAs 629

WrdSaveAs Open and Save Word Documents

Description

Open and save MS-Word documents.

Usage

WrdOpenFile(fn, wrd = DescToolsOptions("lastWord"))
WrdSaveAs(fn, fileformat = "docx", wrd = DescToolsOptions("lastWord"))

Arguments

fn filename and -path for the document.

fileformat file format, one out of "doc", "htm", "pdf".

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Value

nothing returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewWrd()

Examples

## Not run:
# Windows-specific example
wrd <- GetNewWrd()
WrdCaption("A Report")
WrdSaveAs(fn="report", fileformat="htm")

## End(Not run)



630 WrdStyle

WrdStyle Get or Set the Style in Word

Description

WrdStyle can be used to get and set the style in Word for the text to be inserted. WrdStyle returns
the style at the current cursor position.

Usage

WrdStyle(wrd = DescToolsOptions("lastWord"))
WrdStyle(wrd) <- value

Arguments

value the name of the style to be used to the output. This should be defined an existing
name.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Value

character, name of the style

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ToWrd, WrdPlot, GetNewWrd, GetCurrWrd

Examples

## Not run: # Windows-specific example

wrd <- GetNewWrd()
# the current stlye
WrdStyle(wrd)

## End(Not run)



WrdTable 631

WrdTable Insert a Table in a Word Document

Description

Create a table with a specified number of rows and columns in a Word document at the current
position of the cursor.

Usage

WrdTable(nrow = 1, ncol = 1, heights = NULL, widths = NULL, main = NULL,
wrd = DescToolsOptions("lastWord"))

Arguments

nrow number of rows.

ncol number of columns.

heights a vector of the row heights (in [cm]). If set to NULL (which is the default) the
Word defaults will be used. The values will be recyled, if necessary.

widths a vector of the column widths (in [cm]). If set to NULL (which is the default) the
Word defaults will be used. The values will be recyled, if necessary.

main a caption for the plot. This will be inserted by InserCaption in Word. Default is
NULL, which will insert nothing.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Value

A pointer to the inserted table.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewWrd, ToWrd

Examples

## Not run: # Windows-specific example
wrd <- GetNewWrd()
WrdTable(nrow=3, ncol=3, wrd=wrd)

## End(Not run)



632 WrdTableBorders

WrdTableBorders Draw Borders to a Word Table

Description

Drawing borders in a Word table is quite tedious. This function allows to select any range and draw
border lines around it.

Usage

WrdTableBorders(wtab, from = NULL, to = NULL, border = NULL,
lty = wdConst$wdLineStyleSingle, col = wdConst$wdColorBlack,
lwd = wdConst$wdLineWidth050pt)

Arguments

wtab a pointer to a Word table as returned by WrdTable or TOne.

from integer, a vector with two elements specifying the left upper bound of the cell-
range.

to integer, a vector with two elements specifying the right bottom of the cellrange.

border a Word constant (wdConst$wdBorder...) defining the side of the border.

lty a Word constant (wdConst$wdLineStyle...) defining the line type.

col a Word constant (wdConst$wdColor...) defining the color of the border. See
examples for converting R colors to Word colors.

lwd a Word constant (wdConst$wdLineWidth...pt) defining the line width.

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdTable

Examples

## Not run:

# create table
tab <- table(op=d.pizza$operator, area=d.pizza$area)

# send it to Word
wrd <- GetNewWrd()



WrdTableHeading 633

wtab <- ToWrd(tab, wrd=wrd, tablestyle = NA)

# draw borders
WrdTableBorders(wtab, from=c(2,2), to=c(3,3), border=wdConst$wdBorderBottom, wrd=wrd)
WrdTableBorders(wtab, from=c(2,2), to=c(3,3), border=wdConst$wdBorderDiagonalUp, wrd=wrd)

# demonstrate linewidth and color
wtab <- ToWrd(tab, wrd=wrd, tablestyle = NA)
WrdTableBorders(wtab, col=RgbToLong(ColToRgb("olivedrab")),

lwd=wdConst$wdLineWidth150pt, wrd=wrd)

WrdTableBorders(wtab, border=wdConst$wdBorderBottom,
col=RgbToLong(ColToRgb("dodgerblue")),
lwd=wdConst$wdLineWidth300pt, wrd=wrd)

# use an R color in Word
RgbToLong(ColToRgb("olivedrab"))

# find a similar R-color for a Word color
ColToRgb(RgbToCol(LongToRgb(wdConst$wdColorAqua)))

## End(Not run)

WrdTableHeading Insert Headings for a Table in Word

Description

Inserting headings in a table can be hard, when column headings should span several columns. This
function helps to easily insert headings and merge cells.

Usage

WrdTableHeading(wtab, text, bold = TRUE,
alignment = wdConst$wdAlignParagraphCenter,
merge_cols = NULL, wrd = DescToolsOptions("lastWord"))

Arguments

wtab the handle to a table in a word document

text the text for the headings

bold logical, for setting bold column headings, will be recycled. Default is TRUE.

alignment the alignment in the column headings, must be one out of the Word constant list
wdConst$wdAlignParagraph.

merge_cols a vector consisting of entries to merge cells in the form "<first cell>:<last
cell>", example merge_cols=c("2:4", "7:8") would merge the column head-
ings 2:4 to one cell and 7:8 as well.



634 XLDateToPOSIXct

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Value

Nothing returned.

Author(s)

Andri Signorell <andri@signorell.net

See Also

WrdTable

Examples

## Not run: # Windows-specific example
wrd <- GetNewWrd()
wtab <- WrdTable(nrow=3, ncol=5, wrd=wrd)

# insert headings and merge 1:2 and 4:5, such as there are
# only 3 headings
WrdTableHeading(wtab, text=c("First","Second",

"Third"),
alignment=c(wdConst$wdAlignParagraphLeft,

rep(wdConst$wdAlignParagraphCenter, 2)),
merge_cols = c("1:2", "4:5"))

## End(Not run)

XLDateToPOSIXct Convert Excel Dates to POSIXct

Description

As I repeatedly forgot how to convert Excel dates to POSIX here’s the specific function.

Usage

XLDateToPOSIXct(x, tz = "GMT", xl1904 = FALSE)

Arguments

x the integer vector to be converted.
tz a time zone specification to be used for the conversion, if one is required. See

as.POSIXct.
xl1904 logical, defining if the unspeakable 1904-system should be used. Default is

FALSE.



XLGetRange 635

Details

XLGetRange will return dates as integer values, because XL stores them as integers. An Excel date
can be converted with the (unusual) origin of as.Date(myDate, origin="1899-12-30"), which
is implemented here.

Microsoft Excel supports two different date systems, the 1900 date system and the 1904 date sys-
tem. In the 1900 date system, the first day that is supported is January 1, 1900. A date is converted
into a serial number that represents the number of elapsed days since January 1, 1900. In the
1904 date system, the first day that is supported is January 1, 1904. By default, Microsoft Ex-
cel for the Macintosh uses the 1904 date system, Excel for Windows the 1900 system. See also:
https://support.microsoft.com/en-us/kb/214330.

Value

return an object of the class POSIXct. Date-times known to be invalid will be returned as NA.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

as.POSIXct

Examples

XLDateToPOSIXct(41025)
XLDateToPOSIXct(c(41025.23, 41035.52))

XLGetRange Import Data Directly From Excel

Description

The package RDCOMClient is used to open an Excel workbook and return the content (value) of one
(or several) given range(s) in a specified sheet. This is helpful, whenever pathologically scattered
data on an Excel sheet, which can’t simply be saved as CSV-file, has to be imported in R.

XLGetWorkbook() does the same for all the sheets in an Excel workbook.

Usage

XLGetRange(file = NULL, sheet = NULL, range = NULL, as.data.frame = TRUE,
header = FALSE, stringsAsFactors = FALSE, echo = FALSE,
na.strings = NULL, skip = 0)

XLGetWorkbook(file, compactareas = TRUE)

XLCurrReg(cell)
XLNamedReg(x)



636 XLGetRange

Arguments

file the fully specified path and filename of the workbook. If it is left as NULL, the
function will look for a running Excel-Application and use its current sheet. The
parameter sheet will be ignored in this case.

sheet the name of the sheet containing the range(s) of interest.

range a scalar or a vector with the address(es) of the range(s) to be returned (charac-
ters). Use "A1"-address mode to specify the ranges, for example "A1:F10".
If set to NULL (which is the default), the function will look for a selection that
contains more than one cell. If found, the function will use this selection. If
there is no selection then the current region of the selected cell will be used.
Use XLCurrReg() if the current region of a cell, which is currently not selected,
should be used. Range names can be provided with XLNamedReg("name").

as.data.frame logical. Determines if the cellranges should be coerced into data.frames. De-
faults to TRUE, as this is probably the common use of this function.

header a logical value indicating whether the range contains the names of the variables
as its first line. Default is FALSE. header is ignored if as.data.frame has been
set to FALSE.

stringsAsFactors

logical. Should character columns be coerced to factors? The default is FALSE,
which will return character vectors.

echo logical. If set to TRUE, the function will print the full command used, such that
it can be copied into the R-script for future use.

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are always considered to be missing values. Default is NULL, meaning
none.

compactareas logical, defining if areas should be returned by XLGetWorkbook as list or as
matrix (latter is default).

cell range of the left uppe cell, when current region should be used.

x the name or the index of the XL-name to be used.

skip the number of lines of the data file to skip before beginning to read data.

Details

The result consists of a list of lists, if as.data.frame is set to FALSE. Be then prepared to encounter
NULL values. Those will prevent from easily being able to coerce the square data structure to a
data.frame.

The following code will replace the NULL values by NA and coerce the data to a data.frame.

# get the range D1:J69 from an excel file
xlrng <- XLGetRange(file="myfile.xlsx", sheet="Tabelle1",

range="D1:J69", as.data.frame=FALSE)

# replace NULL values by NA
xlrng[unlist(lapply(xlrng, is.null))] <- NA



XLGetRange 637

# coerce the square data structure to a data.frame
d.lka <- data.frame(lapply(data.frame(xlrng), unlist))

This of course can be avoided by setting as.data.frame = TRUE.

The function will return dates as integers, because MS-Excel stores them internally as integers. Such
a date can subsequently be converted with the (unusual) origin of as.Date(myDate, origin="1899-12-30").
See also XLDateToPOSIXct, which does the job. The conversion can directly be performed by
XLGetRange() if datecols is used and contains the date columns in the sheet data.

Value

If as.data.frame is set to TRUE, a single data.frame or a list of data.frames will be returned. If set
to FALSE a list of the cell values in the specified Excel range, resp. a list of lists will be returned.

XLGetWorkbook() returns a list of lists of the values in the given workbook.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewXL, GetCurrXL, XLView

Examples

## Not run: # Windows-specific example

XLGetRange(file="C:/My Documents/data.xls",
sheet="Sheet1",
range=c("A2:B5","M6:X23","C4:D40"))

# if the current region has to be read (incl. a header), place the cursor in the interesting region
# and run:
d.set <- XLGetRange(header=TRUE)

# Get XL nameslist
nm <- xl$ActiveWorkbook()$names()

lst <- list()
for(i in 1:nm$count())

lst[[i]] <- c(name=nm[[i]]$name(),
address=nm[[i]]$refersToRange()$Address())

# the defined names
as.data.frame(do.call(rbind, lst), stringsAsFactors = FALSE)

## End(Not run)



638 XLSaveAs

XLSaveAs Save Excel File

Description

Save the current workbook under the given name and format.

Usage

XLSaveAs(fn, file_format = xlConst$XlFileFormat$xlWorkbookNormal,
xl = DescToolsOptions("lastXL"))

Arguments

fn the filename

file_format the file format using the xl constant.

xl the pointer to a MS-Excel instance. An new instance can be created with GetNewXL(),
returning the appropriate handle. A handle to an already running instance is re-
turned by GetCurrXL(). Default is the last created pointer stored in DescToolsOptions("lastXL").

Value

returns TRUE if the save operation has been successful

Author(s)

Andri Signorell <andri@signorell.net>

See Also

XLView

Examples

## Not run: # Windows-specific example
XLView(d.diamonds)
XLSaveAs("Diamonds")
xl$quit()

## End(Not run)



XLView 639

XLView Use MS-Excel as Viewer for a Data.Frame

Description

XLView can be used to view and edit a data.frame directly in MS-Excel, resp. to create a new
data.frame in MS-Excel.

Usage

XLView(x, col.names = TRUE, row.names = FALSE, na = "",
preserveStrings = FALSE, sep = ";")

ToXL(x, at, ..., xl=DescToolsOptions("lastXL"))
## S3 method for class 'data.frame'
ToXL(x, at, ..., xl=DescToolsOptions("lastXL"))
## S3 method for class 'matrix'
ToXL(x, at, ..., xl=DescToolsOptions("lastXL"))
## Default S3 method:
ToXL(x, at, byrow = FALSE, ..., xl=DescToolsOptions("lastXL"))

XLKill()

Arguments

x is a data.frame to be transferred to MS-Excel. If data is missing a new file will
be created.

row.names either a logical value indicating whether the row names of x are to be written
along with x, or a character vector of row names to be written.

col.names either a logical value indicating whether the column names of x are to be written
along with x, or a character vector of column names to be written. See the
section on ’CSV files’ write.table for the meaning of col.names = NA.

na the string to use for missing values in the data.
preserveStrings

logical, will preserve strings from being converted to numerics when imported
in MS-Excel. See details. Default is FALSE.

sep the field separator string used for export of the object. Values within each row
of x are separated by this string.

at can be a range adress as character (e.g. "A1"), a vector of 2 integers (e.g c(1,1))
or a cell object as it is returned by xl$Cells(1,1), denominating the left upper
cell, where the data.frame will be placed in the MS-Excel sheet.

byrow logical, defines if the vector should be inserted by row or by column (default).
xl the pointer to a MS-Excel instance. An new instance can be created with GetNewXL(),

returning the appropriate handle. A handle to an already running instance is re-
turned by GetCurrXL(). Default is the last created pointer stored in DescToolsOptions("lastXL").

... further arguments are not used.



640 XLView

Details

The data.frame will be exported in CSV format and then imported in MS-Excel. When import-
ing data, MS-Excel will potentially change characters to numeric values. If this seems undesirable
(maybe we’re loosing leading zeros) then you should enclose the text in quotes and preset a =. x <-
gettextf('="%s"', x) would do the trick.

Take care: Changes to the data made in MS-Excel will NOT automatically be updated in the orig-
inal data.frame. The user will have to read the csv-file into R again. See examples how to get this
done.

ToXL() is used to export data frames or vectors directly to MS-Excel, without export the data to
a csv-file and import it on the XL side. So it it possible to export several data.frames into one
Workbook and edit the tables after ones needs.

XLKill will kill a running XL instance (which might be invisible). Background is the fact, that the
simple XL$quit() command would not terminate a running XL task, but only set it invisible (observe
the TaskManager). This ghost version may sometimes confuse XLView and hinder to create a new
instance. In such cases you have to do the garbage collection...

Value

the name/path of the temporary file edited in MS-Excel.

Note

The function works only in Windows and requires RDCOMClient to be installed (see: Addi-
tional_repositories in DESCRIPTION of the package).

Author(s)

Andri Signorell <andri@signorell.net>, ToXL() is based on code of Duncan Temple Lang <duncan@r-
project.org>

See Also

GetNewXL, XLGetRange, XLGetWorkbook

Examples

## Not run:
# Windows-specific example
XLView(d.diamonds)

# edit an existing data.frame in MS-Excel, make changes and save there, return the filename
fn <- XLView(d.diamonds)
# read the changed file and store in new data.frame
d.frm <- read.table(fn, header=TRUE, quote="", sep=";")

# Create a new file, edit it in MS-Excel...
fn <- XLView()



YuenTTest 641

# ... and read it into a data.frame when in R again
d.set <- read.table(fn, header=TRUE, quote="", sep=";")

# Export a ftable object, quite elegant...
XLView(format(ftable(Titanic), quote=FALSE), row.names = FALSE, col.names = FALSE)

# Export a data.frame directly to XL, combined with subsequent formatting

xl <- GetNewXL()
owb <- xl[["Workbooks"]]$Add()
sheet <- xl$Sheets()$Add()
sheet[["name"]] <- "pizza"

ToXL(d.pizza[1:10, 1:10], xl$Cells(1,1))

obj <- xl$Cells()$CurrentRegion()
obj[["VerticalAlignment"]] <- xlConst$xlTop

row <- xl$Cells()$CurrentRegion()$rows(1)
# does not work: row$font()[["bold"]] <- TRUE
# works:
obj <- row$font()
obj[["bold"]] <- TRUE

obj <- row$borders(xlConst$xlEdgeBottom)
obj[["linestyle"]] <- xlConst$xlContinuous

cols <- xl$Cells()$CurrentRegion()$columns(1)
cols[["HorizontalAlignment"]] <- xlConst$xlLeft

xl$Cells()$CurrentRegion()[["EntireColumn"]]$AutoFit()
cols <- xl$Cells()$CurrentRegion()$columns(4)
cols[["WrapText"]] <- TRUE
cols[["ColumnWidth"]] <- 80
xl$Cells()$CurrentRegion()[["EntireRow"]]$AutoFit()

sheet <- xl$Sheets()$Add()
sheet[["name"]] <- "whisky"
ToXL(d.whisky[1:10, 1:10], xl$Cells(1,1))
## End(Not run)

YuenTTest Yuen t-Test For Trimmed Means

Description

Performs one and two sample Yuen t-tests for trimmed means on vectors of data.



642 YuenTTest

Usage

YuenTTest(x, ...)

## Default S3 method:
YuenTTest(x, y = NULL, alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE, conf.level = 0.95, trim = 0.2, ... )

## S3 method for class 'formula'
YuenTTest(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will
be omitted.

y an optional numeric vector of data values: as with x non-finite values will be
omitted.

alternative is a character string, one of "greater", "less", or "two.sided", or the initial
letter of each, indicating the specification of the alternative hypothesis. For one-
sample tests, alternative refers to the true median of the parent population in
relation to the hypothesized value of the mean.

paired a logical indicating whether you want a paired z-test.

mu a number specifying the hypothesized mean of the population.

conf.level confidence level for the interval computation.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Value

An object of class htest containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic and the trim percentage used.

p.value the p-value for the test.



YuenTTest 643

conf.int a confidence interval for the trimmed mean appropriate to the specified alterna-
tive hypothesis.

estimate the estimated trimmed mean or difference in trimmed means depending on whether
it was a one-sample test or a two-sample test.

null.value the specified hypothesized value of the trimmed mean or trimmed mean differ-
ence depending on whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

Author(s)

Andri Signorell <andri@signorell.net>, based on R-Core code of t.test

References

Wilcox, R. R. (2005) Introduction to robust estimation and hypothesis testing. Academic Press.
Yuen, K. K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61,
165-170.

See Also

t.test, print.htest

Examples

x <- rnorm(25, 100, 5)
YuenTTest(x, mu=99)

# the classic interface
with(sleep, YuenTTest(extra[group == 1], extra[group == 2]))

# the formula interface
YuenTTest(extra ~ group, data = sleep)

# Stahel (2002), pp. 186, 196
d.tyres <- data.frame(A=c(44.5,55,52.5,50.2,45.3,46.1,52.1,50.5,50.6,49.2),

B=c(44.9,54.8,55.6,55.2,55.6,47.7,53,49.1,52.3,50.7))
with(d.tyres, YuenTTest(A, B, paired=TRUE))

d.oxen <- data.frame(ext=c(2.7,2.7,1.1,3.0,1.9,3.0,3.8,3.8,0.3,1.9,1.9),
int=c(6.5,5.4,8.1,3.5,0.5,3.8,6.8,4.9,9.5,6.2,4.1))

with(d.oxen, YuenTTest(int, ext, paired=FALSE))



644 ZeroIfNA

ZeroIfNA Replace NAs by 0

Description

Replace NAs in a numeric vector x with 0. This function has the same logic as the zeroifnull
function in SQL. NAIfZero() does replace zeros with NA. BlankIfNA() and NAIfBlank() do the
same, but for character vectors.

Usage

ZeroIfNA(x)
NAIfZero(x)
NAIf(x, what)

BlankIfNA(x, blank="")
NAIfBlank(x)

Impute(x, FUN = function(x) median(x, na.rm = TRUE))

Arguments

x the vector x, whose NAs should be overwritten with 0s.

blank a character to be used for "blank". Default is an empty string ("").

what a vector of elements to be set to NA in x.

FUN the name of a function to be used as imputation. Can as well be a self defined
function or a constant value. Default is median.

Value

the edited vector x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

replace

Examples

z <- c(8, NA, 9, NA, 3)

ZeroIfNA(z)
# [1] 8 0 9 0 3



Zodiac 645

# set 8 and 9 to NA
NAIf(ZeroIfNA(z), what=c(8, 9))

Impute(z)
# [1] 8 8 9 8 3

z <- c("a", NA, "", NA, "k")

BlankIfNA(z)
# [1] "a" "" "" "" "k"

Zodiac Calculate the Zodiac of a Date

Description

Calculate the sign of zodiac of a date.

Usage

Zodiac(x, lang = c("engl", "deu"), stringsAsFactors = TRUE)

Arguments

x the date to be transformed.
lang the language of the zodiac names, can be english (default) or german ("deu").
stringsAsFactors

logical. If set to TRUE (default) the result will consist of a factor with zodiac
signs as levels.

Details

The really relevant things can sometimes hardly be found. You just discovered such a function... ;-)
The following rule to determine zodiac symbols is implemented:

Dec. 22 - Jan. 19 : Capricorn
Jan. 20 - Feb. 17 : Aquarius
Feb. 18 - Mar. 19 : Pisces
March 20 - April 19 : Aries
April 20 - May 19 : Taurus
May 20 - June 20 : Gemini
June 21 - July 21 : Cancer
July 22 - Aug. 22 : Leo
Aug 23 - Sept. 21 : Virgo
Sept. 22 - Oct. 22 : Libran
Oct. 23 - Nov. 21 : Scorpio
Nov. 22 - Dec. 21 : Sagittarius



646 ZTest

Value

character vector or factor with the zodiac.

Author(s)

Andri Signorell <andri@signorell.net>, based on code from Markus Naepflin

See Also

Year and other date functions

Examples

Zodiac(as.Date(c("1937-07-28", "1936-06-01", "1966-02-25",
"1964-11-17", "1972-04-25")), lang="deu")

d <- sample(seq(as.Date("2015-01-01"), as.Date("2015-12-31"), 1), 120)
z <- Zodiac(d)
Desc(z)

ZTest Z Test for Known Population Standard Deviation

Description

Compute the test of hypothesis and compute confidence interval on the mean of a population when
the standard deviation of the population is known.

Usage

ZTest(x, ...)

## Default S3 method:
ZTest(x, y = NULL, alternative = c("two.sided", "less", "greater"),

paired = FALSE, mu = 0, sd_pop, conf.level = 0.95, ... )

## S3 method for class 'formula'
ZTest(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will
be omitted.

y an optional numeric vector of data values: as with x non-finite values will be
omitted.

mu a number specifying the hypothesized mean of the population.



ZTest 647

sd_pop a number specifying the known standard deviation of the population.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.
For one-sample tests, alternative refers to the true mean of the parent popu-
lation in relation to the hypothesized value of the mean.

paired a logical indicating whether you want a paired z-test.

conf.level confidence level for the interval computation.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs a factor
with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

Most introductory statistical texts introduce inference by using the z-test and z-based confidence
intervals based on knowing the population standard deviation. However statistical packages often
do not include functions to do z-tests since the t-test is usually more appropriate for real world
situations. This function is meant to be used during that short period of learning when the student is
learning about inference using z-procedures, but has not learned the t-based procedures yet. Once
the student has learned about the t-distribution the t.test() function should be used instead of this
one (but the syntax is very similar, so this function should be an appropriate introductory step to
learning t.test()).

The formula interface is only applicable for the 2-sample tests.

Value

A list with class "htest" containing the following components:

statistic the value of the z-statistic.

p.value the p-value for the test

conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate the estimated mean or difference in means depending on whether it was a one-
sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.



648 %like%

Author(s)

Andri Signorell <andri@signorell.net>, based on R-Core code of t.test,
documentation partly from Greg Snow <greg.snow@imail.org>

References

Stahel, W. (2002) Statistische Datenanalyse, 4th ed, vieweg

See Also

t.test, print.htest

Examples

x <- rnorm(25, 100, 5)
ZTest(x, mu=99, sd_pop=5)

# the classic interface
with(sleep, ZTest(extra[group == 1], extra[group == 2], sd_pop=2))

# the formula interface
ZTest(extra ~ group, data = sleep, sd_pop=2)

# Stahel (2002), pp. 186, 196

d.tyres <- data.frame(A=c(44.5,55,52.5,50.2,45.3,46.1,52.1,50.5,50.6,49.2),
B=c(44.9,54.8,55.6,55.2,55.6,47.7,53,49.1,52.3,50.7))

with(d.tyres, ZTest(A, B, sd_pop=3, paired=TRUE))

d.oxen <- data.frame(ext=c(2.7,2.7,1.1,3.0,1.9,3.0,3.8,3.8,0.3,1.9,1.9),
int=c(6.5,5.4,8.1,3.5,0.5,3.8,6.8,4.9,9.5,6.2,4.1))

with(d.oxen, ZTest(int, ext, sd_pop=1.8, paired=FALSE))

%like% Like Operator

Description

The like operator is a simple wrapper for grep(..., value=TRUE), whose complexity is hard to
crack for R-newbies.

Usage

x %like% pattern

x %like any% pattern



%nin% 649

Arguments

x a vector, typically of character or factor type

pattern simple character string to be matched in the given character vector.

Details

Follows the logic of simple SQL or basic commands.

Value

a vector (numeric, character, factor), matching the mode of x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

match, pmatch, grep, %[]%, %overlaps%

Examples

# find names ending on "or"
names(d.pizza) %like% "%or"

# find names starting with "d"
names(d.pizza) %like% "d%"

# ... containing er?
names(d.pizza) %like% "%er%"

# and combined, search for a name containing "un", ending on "or"
# or beginning with "F"
levels(d.pizza$driver) %like any% c("%un%", "%or", "F%")

# the positions on the vector
match(names(d.pizza) %like% "%er%", names(d.pizza))

%nin% Find Matching (or Non-Matching) Elements

Description

%nin% is a binary operator, which returns a logical vector indicating if there is a match or not for its
left operand. A true vector element indicates no match in left operand, false indicates a match.

Usage

x %nin% table



650 %overlaps%

Arguments

x a vector (numeric, character, factor)

table a vector (numeric, character, factor), matching the mode of x

Value

vector of logical values with length equal to length of x.

Author(s)

Frank E Harrell Jr <f.harrell@vanderbilt.edu>

See Also

match, %in%

Examples

c('a','b','c') %nin% c('a','b')

%overlaps% Determines If And How Extensively Two Date Ranges Overlap

Description

%overlaps% determines if two date ranges overlap at all and returns a logical value. Interval returns
the number of days of the overlapping part of the two date periods. Inspired by the eponymous
SQL-functions.

Usage

x %overlaps% y

Overlap(x, y)

Interval(x, y)

Arguments

x range 1, vector of 2 numeric values or matrix with 2 columns, the first defining
the left point the second the right point of the range.

y range 2, vector of 2 numeric values or matrix with 2 columns, the first defining
the left point the second the right point of the range.



%overlaps% 651

Details

%overlaps% returns TRUE or FALSE depending on if the two ranges overlap. The function Overlap
returns the range of the overlapping region as numeric value. This will be 0, if the ranges do not
overlap.
Interval returns the width of the empty space between 2 ranges. Again this will be 0 if the ranges
overlap.

To handle overlapping ranges there are 4 cases to consider:

range a: |--------------|
range b: |-----|
range c: |--------|
range d: |-----|

1 2 3 4 5 6 7 8

Ranges a and b overlap, the function Overlap will return the absolute value of the overlapping
region (which will be 3 - 2 = 1 in this case). The result will be the same for Overlap(a, b) and
Overlap(b, a).
Interval will have a direction. Ranges b and c do not overlap, Overlap will return 0, %overlaps%
FALSE. Interval will return 2 for the case Interval(a, b) and -2 for Interval(b, a).

This functions can be of value, if one has to decide, whether confidence intervals overlap or not.

Value

returns a logical vector (match or not for each element of x).
Interval and Overlap return a numeric vector.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

similar operators: Between, %like%
for calculating the overlapping time: difftime

Examples

as.Date(c("2012-01-03", "2012-02-03")) %overlaps%
as.Date(c("2012-03-01", "2012-03-03"))

as.Date(c("2012-01-03", "2012-02-03")) %overlaps%
as.Date(c("2012-01-15", "2012-01-21"))

Interval(as.Date(c("2012-01-03", "2012-02-03")), as.Date(c("2012-03-01", "2012-03-03")))

# both ranges are recyled if necessary
as.Date("2012-01-03") %overlaps% as.Date(c("2012-03-01", "2012-03-03"))

# works with numerics as well
c(1, 18) %overlaps% c(10, 45)



652 %c%

%c% Concatenates Two Strings Without Any Separator

Description

%c% is just a short operator implementation for paste(x, y, separator="").

Usage

x %c% y

Arguments

x first string

y second string, which will be pasted behind the first one.

Details

R-Core does not consider it a good idea to use + as an operator not being commutative. So we use
c here.
See the discussion: https://stat.ethz.ch/pipermail/r-devel/2006-August/039013.html
and https://stackoverflow.com/questions/1319698/why-doesnt-operate-on-characters-in-r?
lq=1

Still the paste syntax seems sometimes clumsy in daily life and so %c% might spare some keys.

Value

returns the concatenation as string.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Between, %like%

Examples

"foo" %c% "bar"

# works with numerics as well
345 %c% 457

https://stat.ethz.ch/pipermail/r-devel/2006-August/039013.html
https://stackoverflow.com/questions/1319698/why-doesnt-operate-on-characters-in-r?lq=1
https://stackoverflow.com/questions/1319698/why-doesnt-operate-on-characters-in-r?lq=1


Index

∗ Desc
Abstract, 29
Desc, 166

∗ IO
AllIdentical, 35
Format, 226
IQRw, 284
ParseSASDatalines, 381
RndPairs, 488
Sample, 500
TOne, 573

∗ MS-Office
PowerPoint Interface, 459
SendOutlookMail, 506
WrdBookmark, 617
WrdCaption, 619
WrdCellRange, 620
WrdFont, 621
WrdFormatCells, 622
WrdMergeCells, 623
WrdPageBreak, 624
WrdParagraphFormat, 625
WrdPlot, 627
WrdSaveAs, 629
WrdStyle, 630
WrdTable, 631
WrdTableBorders, 632
XLDateToPOSIXct, 634
XLGetRange, 635
XLSaveAs, 638
XLView, 639

∗ Statistical summary functions
Abstract, 29
Desc, 166

∗ aplot
Asp, 43
AxisBreak, 51
axTicks.POSIXct, 52
BarText, 58

BoxedText, 83
BubbleLegend, 91
ColorLegend, 114
ConnLines, 128
DrawArc, 190
DrawBand, 191
DrawBezier, 192
DrawCircle, 193
DrawEllipse, 195
DrawRegPolygon, 197
ErrBars, 210
GeomTrans, 243
lines.lm, 315
lines.loess, 317
LineToUser, 319
PolarGrid, 454
Rotate, 491
Shade, 509
Stamp, 535
TitleRect, 569

∗ arith
Base Conversions, 60
CartToPol, 94
ConvUnit, 133
DegToRad, 164
DigitSum, 181
Divisors, 185
Extremes, 215
Factorize, 218
Frac, 231
Gmean, 253
Hmean, 267
IsDichotomous, 286
IsEuclid, 287
IsOdd, 288
matpow, 331
NPV, 366
PMT, 451
Primes, 463

653



654 INDEX

Quot, 470
RomanToInt, 490

∗ array
Abind, 26
Cor, 135
Cross, 147
CrossN, 148
Dot, 189
matpow, 331
MultMerge, 360
Var, 603

∗ attribute
CollapseTable, 112
Unwhich, 600

∗ category
BinomDiffCI, 73
split.formula, 529
SplitAt, 530

∗ character
%nin%, 649
Phrase, 391
SplitToCol, 532
StrAbbr, 539
StrAlign, 540
StrCap, 544
StrChop, 545
StrCountW, 546
StrDist, 547
StrExtract, 549
StrIsNumeric, 551
StrLeft, StrRight, 552
StrPad, 553
StrPos, 554
StrRev, 555
StrSpell, 555
StrSplit, 556
StrTrim, 557
StrTrunc, 559
StrVal, 560

∗ chron
AddMonths, 31
as.ym, 41
axTicks.POSIXct, 52
CountWorkDays, 142
Date Functions, 161
HmsToSec, 268
IsDate, 285
XLDateToPOSIXct, 634

Zodiac, 645
∗ color

ColToGrey, 116
ColToHex, 117
ColToHsv, 118
ColToOpaque, 119
ColToRgb, 120
DescTools Palettes, 177
FindColor, 221
HexToCol, 265
HexToRgb, 266
MixColor, 353
RgbToCol, 487
SetAlpha, 507
TextContrastColor, 565

∗ combinatorics
CombPairs, 122
GenRandGroups, 241
Permn, 390

∗ confidence interval
BinomCIn, 71
MeanCIn, 337
QuantileCI, 468

∗ confidence
BrierScoreCI, 90
CstatCI, 150
RSqCI, 495

∗ datagen
Triangular, 585

∗ datasets
CourseData, 143
d.countries, 154
d.diamonds, 155
d.periodic, 156
d.pizza, 157
d.whisky, 158
Datasets for Simulation, 160
day.name, 164
wdConst, 613

∗ data
MultMerge, 360
Rank, 472
SplitAt, 530

∗ dates
Date Functions, 161

∗ dictionary sort
SortMixed, 525

∗ distribution



INDEX 655

Benford, 61
ExtrVal, 217
Frechet, 232
Freq2D, 236
GenExtrVal, 238
GenPareto, 240
Gompertz, 255
GTest, 260
Gumbel, 262
IQRw, 284
Order, 370
pRevGumbel, 461
RevWeibull, 485
RndPairs, 488
Sample, 500
Triangular, 585

∗ documentation
Keywords, 301

∗ dplot
CartToPol, 94
Clockwise, 98
ColToOpaque, 119
FindColor, 221
Freq2D, 236

∗ file
SaveAs, 502

∗ goodness-of-fit
GTest, 260

∗ hplot
Canvas, 93
identify.formula, 280
PlotACF, 392
PlotArea, 393
PlotBag, 395
PlotBubble, 399
PlotCandlestick, 401
PlotCirc, 404
PlotCorr, 407
PlotDot, 410
PlotECDF, 413
PlotFaces, 414
PlotFdist, 417
PlotFun, 420
PlotLinesA, 422
PlotLog, 424
PlotMarDens, 425
PlotMiss, 427
PlotMonth, 428

PlotMosaic, 429
PlotMultiDens, 430
PlotPairs, 432
PlotPolar, 433
PlotPyramid, 438
PlotQQ, 440
PlotTernary, 442
PlotTreemap, 443
PlotVenn, 445
PlotViolin, 447
PlotWeb, 449

∗ htest
AndersonDarlingTest, 36
BarnardTest, 53
BartelsRankTest, 56
BhapkarTest, 67
BreslowDayTest, 85
BreuschGodfreyTest, 87
CochranArmitageTest, 102
CochranQTest, 103
ConoverTest, 129
Contrasts, 132
CramerVonMisesTest, 144
DunnettTest, 200
DunnTest, 202
DurbinWatsonTest, 205
EtaSq, 211
GTest, 260
HoeffD, 271
HotellingsT2Test, 274
JarqueBeraTest, 290
JonckheereTerpstraTest, 292
LehmacherTest, 310
LeveneTest, 312
LillieTest, 314
MHChisqTest, 350
MosesTest, 355
NemenyiTest, 362
PageTest, 375
PearsonTest, 384
PostHocTest, 455
power.chisq.test, 458
RunsTest, 497
ScheffeTest, 503
ShapiroFranciaTest, 510
SiegelTukeyTest, 511
SignTest, 514
StuartMaxwellTest, 561



656 INDEX

TTestA, 589
VanWaerdenTest, 601
VarTest, 606
VonNeumannTest, 612
WoolfTest, 616
YuenTTest, 641
ZTest, 646

∗ interval
BrierScoreCI, 90
CstatCI, 150
RSqCI, 495

∗ iteration
AllIdentical, 35

∗ list
BinTree, 78
SetNames, 508

∗ logic
AllIdentical, 35
Between, Outside, 63
Closest, 99
CompleteColumns, 123
IsDate, 285
Some numeric checks, 520
Unwhich, 600

∗ manipulate
as.matrix.xtabs, 40

∗ manipulation
StripAttr, 550

∗ manip
%c%, 652
%like%, 648
%nin%, 649
%overlaps%, 650
Abind, 26
AllDuplicated, 33
Append, 37
AscToChar, 42
Between, Outside, 63
Coalesce, 100
CollapseTable, 112
CombPairs, 122
CutQ, 153
FctArgs, 219
FindCorr, 223
FixToTable, 225
Freq2D, 236
IdentifyA, 281
InDots, 283

MultMerge, 360
PairApply, 378
ParseFormula, 380
Recode, 474
Rename, 479
reorder.factor, 480
Rev, 482
RoundTo, 492
Some, 519
Sort, 523
SortMixed, 525
SplitPath, 531
StrLeft, StrRight, 552
StrTrim, 557
TextToTable, 567
ToLong, ToWide, 572
Untable, 598
VecRot, 608
XLGetRange, 635
XLSaveAs, 638
XLView, 639
ZeroIfNA, 644

∗ math
AUC, 49
DigitSum, 181
Divisors, 185
Dummy, 198
Factorize, 218
lines.lm, 315
lines.loess, 317
Logit, 324
LogSt, 325
Measures of Shape, 343
Permn, 390
Primes, 463
StrDist, 547
Vigenere, 611

∗ methods1
MultMerge, 360

∗ methods
LOF, 323

∗ misc
BoxedText, 83
GetCurrWrd, 245
GetNewWrd, 246
GetNewXL, 248
KrippAlpha, 302
Label, Unit, 303



INDEX 657

PlotBag, 395
SpreadOut, 534

∗ models
BrierScore, 89
CorPolychor, 139
Eps, 209
FisherZ, 224
ImputeKnn, 282
OddsRatio, 368
StdCoef, 536

∗ model
Measures of Accuracy, 341
PseudoR2, 464

∗ mod
Cstat, 149
TMod, 570

∗ multivariate
Association measures, 44
Assocs, 46
ConDisPairs, 123
Cor, 135
CorPart, 138
Desc, 166
DivCoef, 182
DivCoefMax, 183
ExpFreq, 214
FisherZ, 224
Freq2D, 236
HotellingsT2Test, 274
ICC, 277
PercTable, 387
PlotCorr, 407
PlotViolin, 447
PlotWeb, 449
RelRisk, 477
UncertCoef, 594
Var, 603

∗ multivar
CohenKappa, 109
Conf, 124
CronbachAlpha, 145
GoodmanKruskalGamma, 256
GoodmanKruskalTau, 258
KappaM, 294
KendallTauA, 296
KendallTauB, 297
KendallW, 299
OddsRatio, 368

SomersDelta, 522
SpearmanRho, 527
StuartTauC, 563
TheilU, 568

∗ natural sort
SortMixed, 525

∗ nonparametric
BarnardTest, 53
BootCI, 80
GoodmanKruskalGamma, 256
GoodmanKruskalTau, 258
HodgesLehmann, 269
HoeffD, 271
KendallTauA, 296
KendallTauB, 297
SomersDelta, 522
StuartTauC, 563

∗ optimize
UnirootAll, 596

∗ package
DescTools-package, 13

∗ print
Abstract, 29
CatTable, 95
ColumnWrap, 121
Desc, 166
PowerPoint Interface, 459
ToWrd, 578
ToWrdB, 582
ToWrdPlot, 583
WrdBookmark, 617
WrdCaption, 619
WrdCellRange, 620
WrdFont, 621
WrdFormatCells, 622
WrdMergeCells, 623
WrdPageBreak, 624
WrdParagraphFormat, 625
WrdPlot, 627
WrdSaveAs, 629
WrdStyle, 630
WrdTable, 631
WrdTableBorders, 632

∗ programming
AllIdentical, 35

∗ regression
Eps, 209
VIF, 609



658 INDEX

∗ robust location
HuberM, 276

∗ robust
HodgesLehmann, 269
HuberM, 276
IQRw, 284
MAD, 327
Median, 346
RobScale, 489
Trim, 587
TukeyBiweight, 591
Winsorize, 614

∗ smooth
SmoothSpline, 517

∗ string
StrAbbr, 539
StrAlign, 540
StrCap, 544
StrChop, 545
StrCountW, 546
StrDist, 547
StrExtract, 549
StripAttr, 550
StrIsNumeric, 551
StrLeft, StrRight, 552
StrPad, 553
StrPos, 554
StrRev, 555
StrSpell, 555
StrSplit, 556
StrTrim, 557
StrTrunc, 559
StrVal, 560

∗ survey
SampleTwins, 501
Strata, 542

∗ test
HosmerLemeshowTest, 272
PostHocTest, 455

∗ ts
BoxCoxLambda, 82

∗ univar
Agree, 32
Atkinson, 48
BinomCI, 68
BootCI, 80
BoxCox, 81
CCC, 96

CoefVar, 105
Cor, 135
CutQ, 153
Desc, 166
DoBy, 186
Entropy, 207
Freq, 234
Gini, 249
GiniSimpson, 251
Herfindahl, 264
HodgesLehmann, 269
HosmerLemeshowTest, 272
HuberM, 276
IQRw, 284
Lambda, 305
Lc, 307
LinScale, 320
LOCF, 322
MAD, 327
Mean, 332
MeanAD, 333
MeanCI, 335
MeanDiffCI, 338
MeanSE, 340
Median, 346
MedianCI, 348
Midx, 352
Mode, 353
MoveAvg, 357
MultinomCI, 358
ORToRelRisk, 372
Outlier, 374
PercentRank, 386
PlotQQ, 440
PoissonCI, 452
Quantile, 467
Range, 471
RobScale, 489
SD, 505
SortMixed, 525
Trim, 587
TukeyBiweight, 591
Var, 603
VarCI, 604
Winsorize, 614

∗ utilities
Label, Unit, 303
List Variety Of Objects, 321



INDEX 659

Mar and Mgp, 330
PasswordDlg, 383
Recycle, 476
Str, 538
StrAbbr, 539
StrCap, 544
StrCountW, 546
StrDist, 547
StrExtract, 549
StrPos, 554
StrTrunc, 559
StrVal, 560

[, 609
%)[% (Between, Outside), 63
%::% (Between, Outside), 63
%:% (Between, Outside), 63
%[)% (Between, Outside), 63
%[]% (Between, Outside), 63
%^% (matpow), 331
%][% (Between, Outside), 63
%like any% (%like%), 648
%()%, 14
%)(%, 14
%*%, 332
%[]%, 649
%^%, 14
%c%, 652
%in%, 650
%like any%, 14
%like%, 14, 648, 651, 652
%nin%, 14, 649
%overlaps%, 14, 649, 650

abbreviate, 539
ABCCoords, 24
Abind, 15, 26
abline, 315
Abstract, 21, 29, 173
addmargins, 389
AddMonths, 21, 31, 41
AddMonths.ym (as.ym), 41
adist, 548
adjustcolor, 507
aggregate, 187
Agree, 32
AIC, 465
alist, 219
AllDuplicated, 15, 33
AllIdentical, 35

AndersonDarlingTest, 20, 36, 145, 291, 315,
385, 511

Anova, 212
anova, 212
ansari.test, 512, 513, 608
ansari_test, 313
aov, 209, 212, 457, 503
aovlDetails (EtaSq), 211
aovlErrorTerms (EtaSq), 211
Append, 15, 37, 39
append, 38
AppendRowNames, 39
apply, 348
areaplot, 394
args, 219
array, 28
arrows, 210, 211
as.CDateFmt (Format), 226
as.character, 549
as.Date, 31, 176
as.Date.ym (as.ym), 41
as.factor, 186, 529
as.fmt (Format), 226
as.integer, 232, 331
as.matrix, 40, 567
as.matrix.xtabs, 40
as.numeric, 176, 410
as.POSIXct, 634, 635
as.POSIXlt, 163
as.roman, 491
as.table, 567
as.ym, 32, 41
AscToChar, 16, 42
Asp, 17, 43
Association measures, 44
Assocs, 19, 45, 46, 595
Atkinson, 19, 48, 265, 309
AUC, 14, 49
ave, 187
axis, 51, 52, 425
axis.POSIXct, 52
AxisBreak, 17, 51
axTicks, 52
axTicks.Date (axTicks.POSIXct), 52
axTicks.POSIXct, 52

BarnardTest, 21, 53
barplot, 59, 128, 394, 439, 444
BartelsRankTest, 20, 56, 613



660 INDEX

BarText, 17, 58
bartlett.test, 313, 608
Base Conversions, 60
base::plot(), 173
base::summary(), 30, 173
basename, 531
Benford, 61
Between, 651, 652
Between (Between, Outside), 63
Between, Outside, 63
Bg, 66
BhapkarTest, 67, 562
BIC, 465
binconf, 71
binom.test, 71, 75, 516
BinomCI, 19, 68, 71, 72, 75, 78, 126, 453
BinomCI(), 172
BinomCIn, 71, 337
BinomDiffCI, 19, 71, 73, 78
BinomRatioCI, 19, 71, 75, 75
BinToDec, 16
BinToDec (Base Conversions), 60
BinTree, 15, 78
BlankIfNA (ZeroIfNA), 644
body, 219
bondyield, 205
boot, 90, 151, 253, 267, 335, 338, 339, 344,

495, 591, 605
boot.ci, 80, 253, 267, 276, 335, 338, 339,

348, 469, 605
BootCI, 80
BoxCox, 14, 81, 83
boxcox, 82
BoxCoxInv, 14
BoxCoxInv (BoxCox), 81
BoxCoxLambda, 14, 82, 82
boxed.labels, 85
BoxedText, 17, 25, 59, 83
boxplot, 375, 398, 418, 419, 448
BreslowDayTest, 20, 67, 85, 562, 617
BreuschGodfreyTest, 21, 87
BrierScore, 19, 89, 91, 150, 151, 495
BrierScoreCI, 90
BubbleLegend, 17, 91, 115, 400
bw.nrd, 447

call, 509
Canvas, 16, 79, 93
cards, 23

cards (Datasets for Simulation), 160
CartToPol, 16, 94
CartToSph, 16
CartToSph (CartToPol), 94
CatTable, 21, 95
cbind, 28, 38
CCC, 19, 96
cdplot, 406
ceiling, 493
CharToAsc, 16
CharToAsc (AscToChar), 42
charToRaw, 43
chisq.test, 45, 67, 215, 262, 351, 562
chisq.test(), 170
choose, 391
class.ind, 199
Clockwise, 15, 98
Closest, 15, 99
CmToPts (ConvUnit), 133
CmykToCmy (RgbToCmy), 486
CmykToRgb (RgbToCmy), 486
CmyToCmyk (RgbToCmy), 486
Coalesce, 15, 100
CochranArmitageTest, 20, 102
CochranQTest, 20, 103
coef, 537, 609
CoefVar, 18, 105
CoefVarCI (CoefVar), 105
CohenD, 19, 108
CohenKappa, 19, 33, 109, 146, 295, 303
col2rgb, 119–121, 507
CollapseTable, 14, 112
colMeans, 333
ColorLegend, 16, 114, 407, 408
colorRamp, 353
colorRampPalette, 178
colors, 118, 120, 266
ColToGray, 16
ColToGray (ColToGrey), 116
ColToGrey, 16, 116
ColToHex, 16, 117, 120, 266, 507
ColToHsv, 16, 118
ColToOpaque, 119, 507
ColToRgb, 16, 117–119, 120, 266, 488
ColumnWrap, 121
ColumnWrap(), 30
CombN, 15, 241
CombN (Permn), 390



INDEX 661

combn, 122, 391
CombPairs, 15, 122, 379, 391
CombSet, 15, 241
CombSet (Permn), 390
Comparison, 64
complete.cases, 45, 123, 141, 283
CompleteColumns, 123, 141
compute.bagplot (PlotBag), 395
Concatenate Strings (%c%), 652
ConDisPairs, 19, 123, 257, 259, 297, 298,

523, 564
Conf, 20, 90, 124
confusionMatrix, 127
ConnLines, 17, 128
ConoverTest, 20, 129, 364
ContCoef, 19, 47
ContCoef (Association measures), 44
Contrasts, 19, 132
contrasts, 199
ConvUnit, 16, 133
Cor, 20, 135
cor, 45, 124, 139, 257, 259, 297, 298, 300,

306, 523, 528, 564, 604
cor.fk, 136
cor.test, 137, 225, 604
CorCI, 19
CorCI (FisherZ), 224
CorPart, 19, 138
CorPolychor, 19, 139
corr, 351
corrgram, 408
CountCompCases, 141, 427
CountWorkDays, 142
CourseData, 143
Cov (Cor), 135
cov, 604
cov.wt, 137, 604
CramerV, 19, 47
CramerV (Association measures), 44
CramerVonMisesTest, 20, 144, 291, 315, 385,

511
createCOMReference (GetNewWrd), 246
CronbachAlpha, 19, 111, 145, 300, 303
Cross, 147, 148, 190
CrossN, 147, 148
Cstat, 19, 149
CstatCI, 150
cumsum, 235

currencysubstitution, 205
curve, 418, 421, 437, 510
cut, 152, 153, 234, 235, 237, 407
CutAge, 152
CutQ, 14, 153

d.countries, 23, 154
d.diamonds, 155
d.periodic, 23, 156
d.pizza, 22, 157
d.prefix, 23, 229
d.prefix (ConvUnit), 133
d.units, 23
d.units (ConvUnit), 133
d.whisky, 22, 158
data.frame, 143
data.table, 473
Datasets for Simulation, 160
Date, 21, 346
date, 332
Date Functions, 161
date-time, 332
DateTimeClasses, 163
Day, 21
Day (Date Functions), 161
day.abb, 21
day.abb (day.name), 164
day.name, 21, 164
Day<- (Date Functions), 161
DB, 21
DB (Depreciation), 165
dBenf, 18
dBenf (Benford), 61
DecToBin, 16
DecToBin (Base Conversions), 60
DecToHex, 16, 120
DecToHex (Base Conversions), 60
DecToOct, 16
DecToOct (Base Conversions), 60
DegToRad, 16, 94, 164, 196
density, 406, 418, 419, 426, 431, 447, 448
Depreciation, 165
Desc, 21, 30, 166, 594
Desc(), 30, 172
Desc.formula, 380, 381
DescTools (DescTools-package), 13
DescTools Aliases, 176
DescTools Palettes, 177
DescTools-package, 13



662 INDEX

DescToolsOptions, 22, 178, 230, 389
DescToolsOptions(digits=x), 170
dexp, 256
dExtrVal, 18
dExtrVal (ExtrVal), 217
dFrechet, 18
dFrechet (Frechet), 232
dGenExtrVal, 18
dGenExtrVal (GenExtrVal), 238
dGenPareto, 18
dGenPareto (GenPareto), 240
dGompertz, 18
dGompertz (Gompertz), 255
dGumbel, 18
dGumbel (Gumbel), 262
diff, 470
DiffDays360, 21
DiffDays360 (Date Functions), 161
difftime, 651
DigitSum, 14, 181
dirname, 531
dist, 548
DivCoef, 19, 182, 252
DivCoefMax, 19, 183
Divisors, 14, 185, 218
dNegWeibull, 18
dNegWeibull (RevWeibull), 485
do.call, 188, 414
DoBy, 186
DoCall, 188
dOrder, 18
dOrder (Order), 370
Dot, 147, 148, 189
dotchart, 410, 412
DrawArc, 17, 190, 193, 194, 196, 197, 243, 492
DrawBand, 17, 191, 308, 316, 318, 441
DrawBezier, 17, 192
DrawCircle, 17, 191, 193, 193, 196, 197
DrawEllipse, 17, 194, 195, 243, 492
DrawRegPolygon, 17, 193, 194, 196, 197, 243,

492
dRevGumbel, 18
dRevGumbel (pRevGumbel), 461
dRevWeibull, 18
dRevWeibull (RevWeibull), 485
dTri (Triangular), 585
Dummy, 14, 198
DunnettTest, 20, 200

DunnTest, 20, 130, 131, 202, 364
duplicated, 33, 34
DurbinWatsonTest, 20, 88, 205
dweibull, 256

ecdf, 419
Encoding, 557
Entropy, 19, 207, 252, 595
Eps, 209
ErrBars, 17, 210, 411
EtaSq, 19, 211
EX, 213
expand.grid, 122, 599
ExpFreq, 18, 214
expression, 509
Extremes, 215
ExtrVal, 217

factor, 199, 362, 365, 386, 475, 481
factorial, 391
Factorize, 14, 218, 238, 289, 463
factorize, 218
Fade (SetAlpha), 507
FctArgs, 22, 219
Fibonacci, 14, 220
filter, 357
FindColor, 16, 92, 115, 221
FindCorr, 19, 223
findInterval, 222
FindRProfile (SysInfo), 565
fisher.test, 55
FisherZ, 15, 224
FisherZInv, 15
FisherZInv (FisherZ), 224
fit.fkml, 329
FixToTable, 16, 225, 545
Flags (IsDichotomous), 286
fligner.test, 313
floor, 493
Fmt, 21, 179, 388, 389
Fmt (Format), 226
forder, 473
formalArgs, 219
formals, 219
Format, 21, 179, 180, 226, 388, 541, 575
format, 230
format.info, 232
format.pval, 229
formatC, 227, 230, 570, 580



INDEX 663

formula, 236, 281, 381, 394
Frac, 14, 231
fractions, 229
frankv, 473
Frechet, 232
Freq, 18, 234, 237, 332, 346, 388, 389, 603
Freq(), 173
Freq2D, 235, 236
friedman.test, 299, 300, 377
ftable, 389
function, 518

GCD, 14, 185, 218, 463
GCD (GCD, LCM), 237
GCD, LCM, 237
GenExtrVal, 238
GenPareto, 240
GenRandGroups, 241
GeomSn, 242
GeomTrans, 243
GetCalls, 244
GetCurrPP, 22, 290
GetCurrPP (PowerPoint Interface), 459
GetCurrWrd, 22, 245, 290, 618, 619, 621, 624,

627, 630
GetCurrWrd(), 170
GetCurrXL, 22, 290, 637
GetCurrXL (GetCurrWrd), 245
GetNewPP, 22, 247
GetNewPP (PowerPoint Interface), 459
GetNewWrd, 22, 245, 246, 580, 618, 619, 621,

624, 627–631
GetNewWrd(), 170
GetNewXL, 22, 247, 248, 637, 640
getOption, 616
Gini, 19, 249, 252, 265, 309, 568
GiniDeltas (GiniSimpson), 251
GiniSimpson, 19, 251
GKgamma, 257
gl, 599
glm, 90, 273
Gmean, 18, 253, 268, 367
Gompertz, 255
GoodmanKruskalGamma, 19, 47, 256, 259, 297,

298, 306, 523, 564
GoodmanKruskalTau, 19, 124, 257, 258, 298,

306, 523, 564
graphical parameters, 411
grep, 555, 557–559, 648, 649

grey, 117
grid, 424
growthofmoney, 205
Gsd, 18
Gsd (Gmean), 253
gsub, 350, 479, 555, 558, 559
GTest, 21, 260
Gumbel, 262

hblue (DescTools Palettes), 177
hclust, 427
head, 520
hecru (DescTools Palettes), 177
help, 301, 571
Herfindahl, 19, 49, 251, 252, 264
hetcor, 140
HexToCol, 16, 118, 265, 267
HexToDec, 16
HexToDec (Base Conversions), 60
HexToRgb, 16, 266
hgreen (DescTools Palettes), 177
HighLow, 14
HighLow (Extremes), 215
hist, 234, 235, 413, 417, 419
Hmean, 18, 254, 267
HmsToMinute (Date Functions), 161
HmsToSec, 21, 268
HodgesLehmann, 18, 269, 349
HoeffD, 18, 271
horange (DescTools Palettes), 177
HosmerLemeshowTest, 21, 272
HotellingsT2Test, 20, 274
Hour, 21
Hour (Date Functions), 161
hred (DescTools Palettes), 177
huber, 276
HuberM, 18, 276, 592
hubers, 277
HunterGaston (GiniSimpson), 251
hyellow (DescTools Palettes), 177

ICC, 19, 97, 277, 300
identical, 35
identify, 17, 280, 282
identify.formula, 17, 280
IdentifyA, 17, 281
if, 64
ifelse, 64
image, 407, 408



664 INDEX

Impute, 15
Impute (ZeroIfNA), 644
ImputeKnn, 282
InDots, 22, 283
ineq, 49, 251, 265
integrate, 50
intersect, 34
Interval, 14, 64
Interval (%overlaps%), 650
IPMT (PMT), 451
IQR, 285, 328
IQRw, 20, 284, 328
IRR, 21
IRR (NPV), 366
is.finite, 101
is.integer, 521
is.na, 101, 123, 141
is.numeric, 136, 410
IsDate, 21, 285
IsDichotomous, 15, 286
IsEuclid, 15, 287
IsLeapYear, 21
IsLeapYear (Date Functions), 161
IsNumeric, 15
IsNumeric (Some numeric checks), 520
IsOdd, 15, 288
IsPrime, 15, 182, 185, 218, 238, 288, 463
IsValidHwnd, 22, 245, 289
IsWeekend, 21
IsWeekend (Date Functions), 161
IsWhole, 15, 288
IsWhole (Some numeric checks), 520
IsZero, 15
IsZero (Some numeric checks), 520

JarqueBeraTest, 20, 290
JonckheereTerpstraTest, 20, 292

KappaM, 19, 33, 111, 146, 294, 300, 303
KendallTauA, 19, 124, 257, 259, 296, 298,

306, 523, 564
KendallTauB, 19, 47, 257, 296, 297, 306, 523
KendallW, 19, 97, 299
Keywords, 22, 301
KrippAlpha, 19, 111, 302
kruskal.test, 129, 131, 204, 601
ks.test, 357
Kurt, 19
Kurt (Measures of Shape), 343

Kurt(), 173

Label, 15
Label (Label, Unit), 303
label, 304
Label(), 30
Label, Unit, 303
Label<- (Label, Unit), 303
Labels (Label, Unit), 303
Labels<- (Label, Unit), 303
lag, 609
Lambda, 19, 47, 124, 257, 259, 297, 298, 305,

523, 564, 595
Large, 14
Large (Extremes), 215
LastDayOfMonth, 21
LastDayOfMonth (Date Functions), 161
layout, 419, 426
Lc, 19, 251, 307, 309
LCM, 14, 185, 218, 463
LCM (GCD, LCM), 237
legend, 92, 115
LehmacherTest, 20, 310
length, 185, 462
levels, 362, 475
LeveneTest, 20, 312, 513
LillieTest, 20, 145, 291, 314, 385, 511
lines, 316
lines.Lc (Lc), 307
lines.lm, 17, 315
lines.loess, 17, 211, 316, 317
lines.smooth.spline, 17, 519
lines.smooth.spline (lines.loess), 317
lines.SmoothSpline (lines.loess), 317
LineToUser, 17, 319
LinScale, 14, 320
list, 218
List Variety Of Objects, 321
lm, 199, 206, 316, 343, 495
locator, 280, 282
LOCF, 15, 322
loess, 318
LOF, 19, 323
log, 327
log10, 327
Logit, 14, 324
logit, 325
LogitInv, 14
LogitInv (Logit), 324



INDEX 665

logLik, 465
LogSt, 14, 325
LogStInv, 14
LogStInv (LogSt), 325
LongToRgb, 16
LongToRgb (RgbToCol), 487
Lorenz curve (Lc), 307
lower.tri, 122
ls, 321, 322
ls.str, 321, 322
lsf.str, 321, 322
LsFct, 22, 244
LsFct (List Variety Of Objects), 321
LsObj, 22
LsObj (List Variety Of Objects), 321

ma, 358
MAD, 20, 327, 329
mad, 277, 327–329, 334, 489, 505
MADCI, 328, 328
MAE, 20
MAE (Measures of Accuracy), 341
mantelhaen.test, 617
MAPE, 20
MAPE (Measures of Accuracy), 341
mapply, 41
Mar, 16
Mar (Mar and Mgp), 330
Mar and Mgp, 330
margin.table, 113, 388
Margins, 18
Margins (PercTable), 387
match, 555, 558, 559, 649, 650
matplot, 423, 424
matpow, 331
matrix, 331
max, 216, 463, 472
MaxDigits, 14
MaxDigits (Frac), 231
mcnemar.test, 67, 126, 311, 562
Mean, 20, 108, 332, 333, 334, 336, 355
mean, 109, 254, 345, 489, 588
mean.POSIXct, 333
MeanAD, 18, 290, 333
MeanCI, 18, 81, 268, 335, 339, 340, 349, 605
MeanCIn, 336, 337
MeanDiffCI, 18, 336, 338
MeanSE, 18, 340
MeanSE(), 173

Measures of Accuracy, 341
Measures of Shape, 343
Median, 18, 285, 346, 355, 468
median, 270, 328, 349, 489, 644
MedianCI, 18, 81, 270, 336, 339, 348, 469, 605
merge, 361
Mgp (Mar and Mgp), 330
Mgsub, 349
MHChisqTest, 20, 67, 350, 562
Midx, 15, 352, 358
min, 472
Minute, 21
Minute (Date Functions), 161
MixColor, 16, 353
mixedsort, 481
Mode, 18, 353
model.frame, 104, 130, 186, 199, 201, 203,

274, 292, 308, 312, 338, 356, 363,
376, 381, 388, 399, 431, 497, 503,
512, 515, 593, 601, 607, 642, 647

model.matrix, 609
ModSummary (TMod), 570
moneydemand, 205
Month, 21, 32, 41, 230, 286
Month (Date Functions), 161
month.abb, 164
month.name, 164
MonthDays (Date Functions), 161
mood.test, 313, 512, 513, 608
mosaicplot, 430, 444
MosesTest, 20, 355
MoveAvg, 18, 352, 357
MSE, 20
MSE (Measures of Accuracy), 341
mtext, 319
MultinomCI, 19, 71, 75, 358, 453
MultMerge, 360
MutInf, 19, 47, 124, 257, 259, 297, 298, 523,

564
MutInf (Entropy), 207

N, 365
N (DescTools Aliases), 176
NA, 136, 470, 603
na.omit, 123, 141, 283
NAIf (ZeroIfNA), 644
NAIfBlank (ZeroIfNA), 644
NAIfZero, 15
NAIfZero (ZeroIfNA), 644



666 INDEX

NALevel, 362
names, 467
nchar, 546, 555, 557–559
Ndec, 14
Ndec (Frac), 231
NemenyiTest, 20, 131, 362
Nf, 365
NMAE, 20
NMAE (Measures of Accuracy), 341
NMSE, 20
NMSE (Measures of Accuracy), 341
normal_test, 602
normalizePath, 531
Now, 21
Now (Date Functions), 161
NPV, 21, 166, 366, 403, 451
NPVFixBond, 21
NPVFixBond (NPV), 366
NZ, 367

OctToDec, 16
OctToDec (Base Conversions), 60
OddsRatio, 19, 127, 368, 372, 478
OPR, 21
OPR (NPV), 366
optim, 140
options, 616
options(width), 30
Order, 370
order, 386, 483, 524–526
ordered, 480
OrderMixed, 14
OrderMixed (SortMixed), 525
ORToRelRisk, 19, 372
outer, 122, 379
Outlier, 19, 374
Overlap, 21, 64
Overlap (%overlaps%), 650

p.adjust, 130, 131, 203, 204, 311, 455, 457
PageTest, 20, 375
PairApply, 22, 45, 305, 378
pairs, 432, 433
pairwise.t.test, 457, 504
pairwise.table, 379
Pal, 16, 180
Pal (DescTools Palettes), 177
par, 59, 115, 331, 411, 418, 423, 424, 434, 534
ParseFormula, 22, 380

ParseSASDatalines, 22, 381
PartialSD (StdCoef), 536
PasswordDlg, 21, 383
paste, 95, 557
pBenf (Benford), 61
PDFManual, 22, 383
PearsonTest, 20, 145, 291, 315, 384, 511
PercentRank, 14, 386
PercTable, 18, 235, 237, 387
Permn, 14, 390
pExtrVal (ExtrVal), 217
pFrechet (Frechet), 232
pGenExtrVal (GenExtrVal), 238
pGenPareto (GenPareto), 240
pGompertz (Gompertz), 255
pGumbel (Gumbel), 262
Phi, 19, 47, 258
Phi (Association measures), 44
Phrase, 391, 593, 594
plot, 280, 400, 423, 426, 427
plot.bagplot (PlotBag), 395
plot.Conf (Conf), 124
plot.default, 316, 420
plot.Desc (Desc), 166
plot.ecdf, 414, 418
plot.Lc (Lc), 307
plot.Lclist (Lc), 307
plot.palette (DescTools Palettes), 177
plot.PostHocTest (PostHocTest), 455
plot.TMod (TMod), 570
plot.window, 93, 411, 420, 421
PlotACF, 17, 392
PlotArea, 17, 393
PlotBag, 17, 395
PlotBagPairs, 17
PlotBagPairs (PlotBag), 395
PlotBinTree, 15
PlotBinTree (BinTree), 78
PlotBubble, 17, 399, 402
PlotCandlestick, 17, 401
PlotCashFlow, 402
PlotCirc, 17, 404, 444
PlotConDens, 405
PlotCorr, 17, 45, 407, 450
PlotDot, 17, 410
PlotDotCI, 412
PlotDotCI (PlotDot), 410
PlotECDF, 18, 413



INDEX 667

PlotFaces, 17, 414
PlotFdist, 17, 414, 417
PlotFun, 17, 420
PlotGACF, 17
PlotGACF (PlotACF), 392
PlotLinesA, 18, 422
PlotLog, 18, 424
PlotMarDens, 17, 425
PlotMiss, 18, 141, 427
PlotMonth, 17, 428
PlotMosaic, 18, 429
PlotMultiDens, 17, 406, 430, 448, 594
PlotPairs, 432
PlotPolar, 17, 99, 405, 433, 454
PlotProbDist, 436
PlotPyramid, 17, 438
PlotQQ, 18, 440
PlotTernary, 18, 442
PlotTreemap, 18, 443
PlotVenn, 18, 445
PlotViolin, 18, 431, 447
PlotWeb, 18, 408, 449
pmatch, 649
PMT, 451
pNegWeibull (RevWeibull), 485
points, 423, 426, 434, 443, 449
poisson.test, 453
PoissonCI, 19, 452
PolarGrid, 17, 434, 454
PolToCart, 16
PolToCart (CartToPol), 94
polygon, 191, 193, 194, 196, 197, 243, 394,

437, 447, 492, 509, 510
polyserial, 140
pOrder (Order), 370
PostHocTest, 20, 202, 455
power.anova.test, 458
power.chisq.test, 458
power.t.test, 459
PowerPoint Interface, 459
PpAddSlide, 22
PpAddSlide (PowerPoint Interface), 459
PPMT (PMT), 451
PpPlot, 22
PpPlot (PowerPoint Interface), 459
PpText, 22
PpText (PowerPoint Interface), 459
Prec, 14

Prec (Frac), 231
predict.Lc (Lc), 307
pretty, 236
prettyNum, 230
pRevGumbel, 461
pRevWeibull (RevWeibull), 485
Primes, 14, 185, 218, 238, 289, 463
primes, 463
print.abstract (Abstract), 29
print.Assocs (Assocs), 46
print.Conf (Conf), 124
print.CorPolychor, 140
print.CorPolychor (CorPolychor), 139
print.CountCompCases (CountCompCases),

141
print.default, 311
print.Desc (Desc), 166
print.DunnTest (DunnTest), 202
print.Freq (Freq), 234
print.HoeffD (HoeffD), 271
print.htest, 643, 648
print.ICC (ICC), 277
print.mtest (LehmacherTest), 310
print.PercTable (PercTable), 387
print.PostHocTest (PostHocTest), 455
print.table, 237
print.TMod (TMod), 570
printTable2, 389
prop.table, 235, 389
prop.test, 69, 75
prop.trend.test, 103
PseudoR2, 20, 464
PtInPoly, 17, 466
pTri (Triangular), 585
PtsToCm (ConvUnit), 133

qBenf, 18
qBenf (Benford), 61
qExtrVal (ExtrVal), 217
qFrechet (Frechet), 232
qGenExtrVal (GenExtrVal), 238
qGenPareto (GenPareto), 240
qGompertz (Gompertz), 255
qGumbel (Gumbel), 262
qNegWeibull (RevWeibull), 485
qqline, 291, 441, 442
qqnorm, 145, 291, 315, 385, 442, 511
qqplot, 442
qRevGumbel (pRevGumbel), 461



668 INDEX

qRevGumbelExp (pRevGumbel), 461
qRevWeibull (RevWeibull), 485
qTri (Triangular), 585
Quantile, 20, 284, 285, 346, 467, 469
quantile, 153, 285, 347, 441, 468, 469
quantile(x, probs =

c(.05,.10,.25,.5,.75,.9,.95),
na.rm = TRUE), 173

QuantileCI, 468, 468
Quarter, 21
Quarter (Date Functions), 161
Quot, 470

RadToDeg, 16
RadToDeg (DegToRad), 164
Random, 489
Range, 19, 471, 592
range, 472
Rank, 14, 386, 472
rank, 216, 386, 473
rank.test, 57
RBAL (PMT), 451
rBenf, 18
rBenf (Benford), 61
rbind, 28, 38
rcorr, 272
read.table, 143, 567
read_spss, 474
ReadSPSS, 474
Recode, 14, 474, 480, 484
rect, 66
Recycle, 22, 476
regexpr, 549, 554, 555, 558, 559
regmatches, 549
regular expression, 532, 557
RelRisk, 19, 127, 369, 477
Rename, 14, 479, 508
rename, 480
reorder, 481
reorder.factor, 15, 480
rep, 477, 599, 609
replace, 644
replicate, 477
reshape, 573
resid, 343
Rev, 14, 369, 478, 482
rev, 483
RevCode, 483
RevWeibull, 485

rExtrVal, 371
rExtrVal (ExtrVal), 217
rFrechet, 239, 263, 486
rFrechet (Frechet), 232
rgb, 353, 566
rgb2hsv, 119
RgbToCmy, 486
RgbToCol, 16, 121, 487, 487
RgbToHex, 120
RgbToHex (ColToHex), 117
RgbToLong, 16
RgbToLong (RgbToCol), 487
rGenExtrVal, 218, 233, 241, 263, 371, 486
rGenExtrVal (GenExtrVal), 238
rGenPareto (GenPareto), 240
rGompertz (Gompertz), 255
rGumbel, 233, 239, 486
rGumbel (Gumbel), 262
rle, 499
RMSE, 20
RMSE (Measures of Accuracy), 341
RndPairs, 15, 488
RndWord, 15
RndWord (RndPairs), 488
rNegWeibull (RevWeibull), 485
rnorm, 489
RobScale, 18, 320, 489, 592, 614
RomanToInt, 16, 490
rOrder, 218
rOrder (Order), 370
Rosenbluth, 19, 49, 251
Rosenbluth (Herfindahl), 264
Rotate, 17, 491
roulette, 23
roulette (Datasets for Simulation), 160
round, 493
RoundTo, 14, 492, 493
rRevGumbel (pRevGumbel), 461
rRevWeibull, 233, 239, 263
rRevWeibull (RevWeibull), 485
RSessionAlive, 494
RSqCI, 495
rSum21, 496
RTempdirAlive (RSessionAlive), 494
rTri (Triangular), 585
rug, 419
runif, 489, 496
runmean, 358



INDEX 669

RunsTest, 20, 57, 497

Sample, 160, 500
sample, 160, 500, 501, 543
SampleTwins, 15, 501
sapply, 268, 348
save, 502
SaveAs, 502
scale, 320, 614
scan, 382
scatter.smooth, 318
ScheffeTest, 20, 132, 457, 503
SD, 20, 108, 137, 505
sd, 345, 489, 604
SDN (SD), 505
Second, 21
Second (Date Functions), 161
SecToHms, 21
SecToHms (HmsToSec), 268
SendOutlookMail, 506
Sens, 20
Sens (Conf), 124
seq, 152, 483
SetAlpha, 16, 507
SetAttr (StripAttr), 550
setdiff, 34
setequal, 34
setkey, 473
SetNames, 15, 480, 508, 550
setNames, 508
setorder, 473
Shade, 17, 437, 509
shapiro.test, 37, 145, 291, 315, 385, 511
ShapiroFranciaTest, 20, 145, 291, 315, 385,

510
SiegelTukeyRank, 20
SiegelTukeyRank (SiegelTukeyTest), 511
SiegelTukeyTest, 20, 511
SIGN.test, 516
SignTest, 20, 348, 514
Skew, 19
Skew (Measures of Shape), 343
Skew(), 173
Skye, 443
SLN, 21, 451
SLN (Depreciation), 165
Small, 14
Small (Extremes), 215
SMAPE, 20

SMAPE (Measures of Accuracy), 341
smooth.spline, 318, 518, 519
SmoothSpline, 318, 517
Some, 15, 519
Some numeric checks, 520
somers2, 523
SomersDelta, 19, 47, 124, 257, 298, 306, 522,

564
Sort, 14, 523
sort, 216, 386, 483, 525, 526
SortMixed, 14, 525
SpearmanRho, 19, 47, 527
Spec, 20
Spec (Conf), 124
SphToCart, 16
SphToCart (CartToPol), 94
spineplot, 406
splinefun, 50
split, 34, 430, 529, 530
split.formula, 15, 529
SplitAt, 15, 530
SplitPath, 15, 531
SplitToCol, 15, 532
SplitToDummy, 533
SpreadOut, 17, 85, 534
sprintf, 230
Stamp, 17, 535
stars, 402
stats::mad(), 173
StdCoef, 20, 536
Str, 15, 538
str, 538
StrAbbr, 16, 539
StrAlign, 16, 228, 230, 540, 559
Strata, 19, 501, 542
StrCap, 16, 544
StrChop, 16, 226, 545, 554
StrCountW, 15, 546
StrDist, 16, 547, 555, 558, 559
StrExtract, 16, 549
StrExtractBetween (StrExtract), 549
strheight, 534
StripAttr, 550
StrIsNumeric, 16, 551
StrLeft, 16, 545
StrLeft (StrLeft, StrRight), 552
StrLeft, StrRight, 552
StrPad, 16, 230, 540, 541, 553



670 INDEX

StrPos, 16, 554
strptime, 163
StrRev, 16, 555
StrRight, 16
StrRight (StrLeft, StrRight), 552
StrSpell, 555
StrSplit, 556
strsplit, 530, 532, 533, 556, 557
strtoi, 61
StrTrim, 16, 539, 541, 552, 557, 559
StrTrunc, 16, 539, 551, 555, 558, 559
StrVal, 16, 560
strwrap(), 122
StuartMaxwellTest, 20, 67, 311, 561
StuartTauC, 19, 47, 124, 257, 259, 297, 298,

306, 523, 563
sub, 350, 555, 557–559
substr, 545, 552, 555, 557–559
sum, 242
summary.dist (IsEuclid), 287
sunflowerplot, 400
sweep, 136, 320
SYD, 21
SYD (Depreciation), 165
symbol, 399
symbols, 400
symnum, 230
Sys.getenv, 494
Sys.setlocale, 42, 230
SysInfo, 22, 565

t, 478
t.test, 336, 339, 392, 516, 590, 643, 648
table, 44, 45, 95, 110, 125, 207, 234, 235,

237, 257, 258, 296, 298, 305, 368,
389, 477, 522, 563, 594

table2d_summary, 389
tapply, 187
tarot, 23
tarot (Datasets for Simulation), 160
terms, 381
text, 25, 280, 536, 569
TextContrastColor, 16, 565
TextToTable, 15, 567
TheilU, 19, 568
tiff, 583
time interval, 332
times, 269
Timezone, 21

Timezone (Date Functions), 161
title, 393, 411, 426, 428, 434, 569
TitleRect, 17, 569
TMod, 21, 570
Today, 21
Today (Date Functions), 161
ToLong, 15
ToLong (ToLong, ToWide), 572
ToLong, ToWide, 572
TOne, 22, 179, 230, 573, 632
ToWide, 15
ToWide (ToLong, ToWide), 572
ToWrd, 22, 247, 576, 578, 582, 583, 619, 621,

627, 628, 630, 631
ToWrd.TOne, 576
ToWrd.TwoGroups (TwoGroups), 592
ToWrdB, 582, 584
ToWrdPlot, 583
ToXL, 22, 506
ToXL (XLView), 639
Triangular, 585
Trim, 14, 587
trunc, 232, 493
truncString, 559
ts, 393, 428
TschuprowT, 19
TschuprowT (Association measures), 44
TTestA, 20, 589
TukeyBiweight, 18, 591
TukeyHSD, 457, 504
TwoGroups, 592

UncertCoef, 19, 47, 124, 257, 259, 297, 298,
523, 564, 594

unclass, 40
unemployment, 205
Uniform, 587
union, 34
unique, 34
uniroot, 71, 337, 368, 458, 597
UnirootAll, 366, 596
Unit, 15
Unit (Label, Unit), 303
Unit<- (Label, Unit), 303
unname, 550
Untable, 14, 113, 598
Unwhich, 15, 600
utils::str(), 30



INDEX 671

VanWaerdenTest, 601
Var, 20, 137, 603, 605
var, 109, 328, 505
var.test, 313, 608
VarCI, 18, 336, 339, 604
varclus, 272
VarN (Var), 603
VarTest, 20, 605, 606
VarX (EX), 213
vcov, 609
VecRot, 15, 608
VecShift, 15
VecShift (VecRot), 608
VIF, 20, 609
Vigenere, 15, 611
violinplot, 448
VonNeumannTest, 21, 612

wages, 205
wdConst, 613
Week, 21
Week (Date Functions), 161
Weekday, 21, 230
Weekday (Date Functions), 161
weekdays, 142
Weibull, 462
weighted.mean, 333
which, 15, 99, 600
wilcox.test, 131, 204, 270, 349, 357, 512,

513, 516
Winsorize, 14, 588, 614
winsorize, 614
WithOptions, 615
WoolfTest, 20, 86, 311, 616
WrdBookmark, 617
WrdCaption, 22, 579, 619, 628
WrdCellRange, 22, 620, 624
WrdDeleteBookmark, 22
WrdDeleteBookmark (WrdBookmark), 617
WrdFont, 22, 618, 621, 624
WrdFont<- (WrdFont), 621
WrdFormatCells, 22, 622
WrdGoto, 22
WrdGoto (WrdBookmark), 617
WrdInsertBookmark, 22, 583, 584
WrdInsertBookmark (WrdBookmark), 617
WrdKill, 22
WrdKill (GetNewWrd), 246
WrdMergeCells, 22, 623

WrdOpenFile (WrdSaveAs), 629
WrdPageBreak, 624
WrdParagraphFormat, 22, 625
WrdParagraphFormat<-

(WrdParagraphFormat), 625
WrdPlot, 22, 460, 618, 619, 621, 624, 627,

627, 630
WrdSaveAs, 22, 629
WrdStyle, 22, 630
WrdStyle<- (WrdStyle), 630
WrdTable, 22, 247, 576, 620, 622–624, 631,

632, 634
WrdTableBorders, 22, 632
WrdTableHeading, 633
WrdUpdateBookmark, 22
WrdUpdateBookmark (WrdBookmark), 617
write.table, 639

xlConst (wdConst), 613
XLCurrReg (XLGetRange), 635
XLDateToPOSIXct, 22, 634, 637
XLGetRange, 22, 249, 635, 635, 640
XLGetWorkbook, 22, 249, 640
XLGetWorkbook (XLGetRange), 635
XLKill, 22
XLKill (XLView), 639
XLNamedReg (XLGetRange), 635
XLSaveAs, 638
XLView, 22, 249, 637, 638, 639
xtabs, 40, 599
xtfrm, 136
xy.coords, 243, 399, 492

Year, 21, 32, 41, 286, 646
Year (Date Functions), 161
YearDay, 21
YearDay (Date Functions), 161
YearDays (Date Functions), 161
YearMonth, 21
YearMonth (Date Functions), 161
YTM, 21
YTM (NPV), 366
YuenTTest, 21, 641
YuleQ, 19, 257
YuleQ (Association measures), 44
YuleY, 19
YuleY (Association measures), 44

ZeroIfNA, 15, 644



672 INDEX

Zodiac, 21, 645
ZTest, 20, 516, 646


	DescTools-package
	ABCCoords
	Abind
	Abstract
	AddMonths
	Agree
	AllDuplicated
	AllIdentical
	AndersonDarlingTest
	Append
	AppendRowNames
	as.matrix.xtabs
	as.ym
	AscToChar
	Asp
	Association measures
	Assocs
	Atkinson
	AUC
	AxisBreak
	axTicks.POSIXct
	BarnardTest
	BartelsRankTest
	BarText
	Base Conversions
	Benford
	Between, Outside
	Bg
	BhapkarTest
	BinomCI
	BinomCIn
	BinomDiffCI
	BinomRatioCI
	BinTree
	BootCI
	BoxCox
	BoxCoxLambda
	BoxedText
	BreslowDayTest
	BreuschGodfreyTest
	BrierScore
	BrierScoreCI
	BubbleLegend
	Canvas
	CartToPol
	CatTable
	CCC
	Clockwise
	Closest
	Coalesce
	CochranArmitageTest
	CochranQTest
	CoefVar
	CohenD
	CohenKappa
	CollapseTable
	ColorLegend
	ColToGrey
	ColToHex
	ColToHsv
	ColToOpaque
	ColToRgb
	ColumnWrap
	CombPairs
	CompleteColumns
	ConDisPairs
	Conf
	ConnLines
	ConoverTest
	Contrasts
	ConvUnit
	Cor
	CorPart
	CorPolychor
	CountCompCases
	CountWorkDays
	CourseData
	CramerVonMisesTest
	CronbachAlpha
	Cross
	CrossN
	Cstat
	CstatCI
	CutAge
	CutQ
	d.countries
	d.diamonds
	d.periodic
	d.pizza
	d.whisky
	Datasets for Simulation
	Date Functions
	day.name
	DegToRad
	Depreciation
	Desc
	DescTools Aliases
	DescTools Palettes
	DescToolsOptions
	DigitSum
	DivCoef
	DivCoefMax
	Divisors
	DoBy
	DoCall
	Dot
	DrawArc
	DrawBand
	DrawBezier
	DrawCircle
	DrawEllipse
	DrawRegPolygon
	Dummy
	DunnettTest
	DunnTest
	DurbinWatsonTest
	Entropy
	Eps
	ErrBars
	EtaSq
	EX
	ExpFreq
	Extremes
	ExtrVal
	Factorize
	FctArgs
	Fibonacci
	FindColor
	FindCorr
	FisherZ
	FixToTable
	Format
	Frac
	Frechet
	Freq
	Freq2D
	GCD, LCM
	GenExtrVal
	GenPareto
	GenRandGroups
	GeomSn
	GeomTrans
	GetCalls
	GetCurrWrd
	GetNewWrd
	GetNewXL
	Gini
	GiniSimpson
	Gmean
	Gompertz
	GoodmanKruskalGamma
	GoodmanKruskalTau
	GTest
	Gumbel
	Herfindahl
	HexToCol
	HexToRgb
	Hmean
	HmsToSec
	HodgesLehmann
	HoeffD
	HosmerLemeshowTest
	HotellingsT2Test
	HuberM
	ICC
	identify.formula
	IdentifyA
	ImputeKnn
	InDots
	IQRw
	IsDate
	IsDichotomous
	IsEuclid
	IsOdd
	IsPrime
	IsValidHwnd
	JarqueBeraTest
	JonckheereTerpstraTest
	KappaM
	KendallTauA
	KendallTauB
	KendallW
	Keywords
	KrippAlpha
	Label, Unit
	Lambda
	Lc
	LehmacherTest
	LeveneTest
	LillieTest
	lines.lm
	lines.loess
	LineToUser
	LinScale
	List Variety Of Objects
	LOCF
	LOF
	Logit
	LogSt
	MAD
	MADCI
	Mar and Mgp
	matpow
	Mean
	MeanAD
	MeanCI
	MeanCIn
	MeanDiffCI
	MeanSE
	Measures of Accuracy
	Measures of Shape
	Median
	MedianCI
	Mgsub
	MHChisqTest
	Midx
	MixColor
	Mode
	MosesTest
	MoveAvg
	MultinomCI
	MultMerge
	NALevel
	NemenyiTest
	Nf
	NPV
	NZ
	OddsRatio
	Order
	ORToRelRisk
	Outlier
	PageTest
	PairApply
	ParseFormula
	ParseSASDatalines
	PasswordDlg
	PDFManual
	PearsonTest
	PercentRank
	PercTable
	Permn
	Phrase
	PlotACF
	PlotArea
	PlotBag
	PlotBubble
	PlotCandlestick
	PlotCashFlow
	PlotCirc
	PlotConDens
	PlotCorr
	PlotDot
	PlotECDF
	PlotFaces
	PlotFdist
	PlotFun
	PlotLinesA
	PlotLog
	PlotMarDens
	PlotMiss
	PlotMonth
	PlotMosaic
	PlotMultiDens
	PlotPairs
	PlotPolar
	PlotProbDist
	PlotPyramid
	PlotQQ
	PlotTernary
	PlotTreemap
	PlotVenn
	PlotViolin
	PlotWeb
	PMT
	PoissonCI
	PolarGrid
	PostHocTest
	power.chisq.test
	PowerPoint Interface
	pRevGumbel
	Primes
	PseudoR2
	PtInPoly
	Quantile
	QuantileCI
	Quot
	Range
	Rank
	ReadSPSS
	Recode
	Recycle
	RelRisk
	Rename
	reorder.factor
	Rev
	RevCode
	RevWeibull
	RgbToCmy
	RgbToCol
	RndPairs
	RobScale
	RomanToInt
	Rotate
	RoundTo
	RSessionAlive
	RSqCI
	rSum21
	RunsTest
	Sample
	SampleTwins
	SaveAs
	ScheffeTest
	SD
	SendOutlookMail
	SetAlpha
	SetNames
	Shade
	ShapiroFranciaTest
	SiegelTukeyTest
	SignTest
	SmoothSpline
	Some
	Some numeric checks
	SomersDelta
	Sort
	SortMixed
	SpearmanRho
	split.formula
	SplitAt
	SplitPath
	SplitToCol
	SplitToDummy
	SpreadOut
	Stamp
	StdCoef
	Str
	StrAbbr
	StrAlign
	Strata
	StrCap
	StrChop
	StrCountW
	StrDist
	StrExtract
	StripAttr
	StrIsNumeric
	StrLeft, StrRight
	StrPad
	StrPos
	StrRev
	StrSpell
	StrSplit
	StrTrim
	StrTrunc
	StrVal
	StuartMaxwellTest
	StuartTauC
	SysInfo
	TextContrastColor
	TextToTable
	TheilU
	TitleRect
	TMod
	ToLong, ToWide
	TOne
	ToWrd
	ToWrdB
	ToWrdPlot
	Triangular
	Trim
	TTestA
	TukeyBiweight
	TwoGroups
	UncertCoef
	UnirootAll
	Untable
	Unwhich
	VanWaerdenTest
	Var
	VarCI
	VarTest
	VecRot
	VIF
	Vigenere
	VonNeumannTest
	wdConst
	Winsorize
	WithOptions
	WoolfTest
	WrdBookmark
	WrdCaption
	WrdCellRange
	WrdFont
	WrdFormatCells
	WrdMergeCells
	WrdPageBreak
	WrdParagraphFormat
	WrdPlot
	WrdSaveAs
	WrdStyle
	WrdTable
	WrdTableBorders
	WrdTableHeading
	XLDateToPOSIXct
	XLGetRange
	XLSaveAs
	XLView
	YuenTTest
	ZeroIfNA
	Zodiac
	ZTest
	like
	nin
	overlaps
	c
	Index

