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1 General Description 

Continuous time meta-analysis (CoTiMA) performs meta-analyses of correlation 
matrices and/or raw data of repeatedly measured variables. Since variables are meas-

ured at discrete time points (e.g., today at 4pm, next week on Monday etc.) this 

imposes a problem for meta-analysis of longitudinal studies because the time inter-

vals between measurements could vary across studies. However, so-called continu-

ous time math can be used to extrapolate or interpolate the results from all studies to 

any desired time interval. By this, effects obtained in studies that used different time 

intervals can be meta-analyzed1.  

A critical assumption is the validity of the underlying causal model that de-

scribes the investigated process. CoTiMA is based on a rather general model, which 

can be restricted on demand. For instance, for a causal system that describes how a 

single variable that is measured repeatedly (e.g., x0, x1, x2, etc.) develops over time, 

the default CoTiMA model assumes that x0 affects x1, x1 affects x2 and so forth. This 
is called a first order auto-regressive structure. In a two-variable model of x and y, 

the underlying CoTiMA model is a cross-lagged model with auto-regressive effects 

for x and y and, in addition, a cross-lagged effect of xt to yt+1 and of yt to xt+1. Random 

intercepts cross-lagged panel models (RI-CLPM; e.g., Hamaker et al., 2015) can 

performed with the CoTiMA R package, too, but certain assumptions have to be 

met. More complex models (e.g., including xt to yt+1 and xt to yt+2) can also be meta-

analyzed, but they require user-specific adaptations. Restricted versions of the de-

fault CoTiMA model (e.g., xt to yt+1 but not yt to xt+1) are easier to implement and 

several specific models (e.g., xt to yt+1 exactly of the same size as yt to xt+1) could be 

optionally requested. Correlations of primary studies and/or raw data serve as input 

for CoTiMA and synthesized (i.e., meta-analytically aggregated) effect sizes repre-
sent the output of CoTiMA.  

 
install.packages("CoTiMA") 
library(CoTiMA) 

Figure 1. Installing CoTiMA from CRAN 

CoTiMA is a package for R (R Core Team, 2020). It can be downloaded from CRAN 

(https://cran.r-project.org) using the code shown in Figure 1. All codes and examples 

 
1 In a nutshell, CoTiMA fits models to empirical data using the structural equation model (SEM) package 

ctsem. The effects specified in a SEM are related (constrained) to parameters that are not directly included 

in the model (i.e., continuous time parameters; together, they represent the continuous time structural 

equation model, CTSEM) which is done in a fashion similar to other SEM programs (e.g., like a = b × c 

to test for mediation in MPLUS) using matrix algebra functions (e.g., matrix exponentiation, which is not 

available in MPLUS), and statistical model comparisons and significance tests are performed on the con-

tinuous time parameter estimates. For details see Dormann et al. (2020).  
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shown in this User9s Guide were performed and tested with R version 4.3.4 and run 

using RStudio (Posit team, 2024). To get the most current beta version of the Co-

TiMA package consult Appendix A. 

The next pages show how to conduct a CoTiMA. This involves several steps 

starting with entering primary study information (correlations etc.), initial fitting of 

a CTSEM to each primary study, fitting the CoTiMA, and plotting the results. We 

also highlight some common problems frequently encountered during the CoTiMA 

process. 

2 A CoTiMA Example 

To prepare a CoTiMA, users have to supply information about i primary studies to 

be meta-analyzed. Primary study information is stored into objects (everything in R 

is an object). Some objects have pre-defined names and are either always mandatory 

(delta_ti), mostly mandatory (sampleSizei, empcovi), or optional 

(pairwiseNi, studyNumberi, moderatori, etc., with i indicating the study 

number). User-defined object names could be added (e.g., criticalRemarki). 

Let9s generate these objects in R with the code shown in Figure 2 and look closer at 

them in the next step2.  

The code in Figure 2 is sufficient for a small but nevertheless full CoTiMA 

based on two variables (Variable 1 = V1, Variable 2 = V2) measured in three primary 
studies. These studies are illustrated in Figure 3. The cross-lagged effects of earlier 

V1 on later V2 (V1toV2) and vice versa (V2toV1) are meant to be meta-analyzed. 

The first two studies are numbered 1 and 4 in our database. Note that the numeration 

itself could be arbitrarily chosen, but it should be assigned consistently within every 

study. Both studies 1 and 4 comprise two variables measured at two measurement 

occasions, which are represented in a correlation matrix with four rows (nrow = 

4) and four columns (ncol = 4; i.e., a 4×4 correlation matrix; see Figure 2). The 

correlations reported in primary studies are stored in the objects empcov1 and 

empcov4, respectively. The third Study 313 has three waves of measurement, and 

the empirical correlation matrix of Study 313 has, therefore, 6×6 entries. The order 

of the variables in the correlation matrices has to be V1 at Time 0, V2 at Time 0, V1 

at Time 1, V2 at Time 1, etc. Note that in the continuous time literature it is common 

 
2 When it is desired, all R objects created in the following examples (e.g., empocv1, delta_t1, etc. in 

Figure 2 or CoTiMAstudyList_3 in Figure 4) can be created in the user9s R environment in two ways. 

First, the code could be copied directly from this User Guide and then run. Second, the objects are invis-

ible but actually available in the package:CoTiMA environment. For example, empcov1 <- empcov1 

copies empcov1 from the package:CoTiMA environment into the global environment. Afterwards, 

rm(empcov1) removes empcov1 from the global environment, but it still available in the package:Co-

TiMA environment. Objects that are available in the package:CoTiMA environment only, but not in the 

global environment, are not used when the user performs any CoTiMA analyses. 
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to number time points starting with 0. In the output files generated later, these two 

variables are labeled V1 and V2. The matrices have to be symmetric. Lack of sym-

metry is automatically detected by CoTiMA, a warning is issued, and processing is 

interrupted.  

 
empcov1 <- matrix(c(1.00, 0.45, 0.57, 0.18, 
 0.45, 1.00, 0.31, 0.66, 

0.57, 0.31, 1.00, 0.40, 
0.18, 0.66, 0.40, 1.00), nrow = 4, ncol = 4) 

delta_t1 <- 3 
sampleSize1 <- 148 
empcov4 <- matrix(c(1.00, 0.43, 0.71, 0.37, 

0.43, 1.00, 0.34, 0.69, 
0.71, 0.34, 1.00, 0.50, 
0.37, 0.69, 0.50, 1.00), nrow = 4, ncol = 4) 

delta_t4 <- 3 
sampleSize4 <- 88 
empcov313 <- matrix(c(1.00, 0.38, 0.54, 0.34, 0.60, 0.28, 

0.38, 1.00, 0.34, 0.68, 0.28, 0.68, 
0.54, 0.34, 1.00, 0.47, 0.66, 0.39, 
0.34, 0.68, 0.47, 1.00, 0.38, 0.72, 
0.60, 0.28, 0.66, 0.38, 1.00, 0.38, 
0.28, 0.68, 0.39, 0.72, 0.38, 1.00), nrow = 6, ncol = 6) 

delta_t313 <- c(0.5, 0.5) 
sampleSize313 <- 335 

Figure 2. Entering information of three primary studies 

 

 
Figure 3. Visualization of a full CoTiMA 

In addition to correlation matrices, a CoTiMA requires further information. Re-

searchers need to provide time intervals (delta_ti) and sample sizes (sam-

pleSizei). Primary Study 1 has a time lag of 3 quarters, which is stored in the 

object delta_t1 (see Figure 2). One could also use 0.25 to indicate a quarter of a 
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one-year lag. Any time scale is possible, but it has to be used consistently across 

primary studies. It is recommended using a time scale that allows assigning a value 

of 6 or less to the longest of all time intervals3, which usually results in better model 

convergence as we show later. Since Study 313 had three waves of observations, the 

corresponding two time intervals have to be provided as vector (delta_t313 <- 

c(0.5, 0.5)).  

Primary Study 1 further had a sample size of 148, which is stored in the object 

sampleSize1 (not sampleSize01). In cases, in which correlation matrices in-

clude correlations based on pairwise deletion of missing values, sample sizes vary 

between correlations, too. This could be specified as explained later. 

 
activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAstudyList_3 <- ctmaPrep(selectedStudies = c(1, 4, 313), 

 activeDirectory = activeDirectory) 
saveRDS(CoTiMAstudyList_3, paste0(activeDirectory, "CoTiMAstudyList_3.rds")) 

Figure 4. Compiling a list of primary studies (ctmaPrep) 

After all primary study information was entered, the next step is to compile them 

into a list4 and store this list as an R object. This is done with the ctmaPrep func-

tion included in the CoTiMA R package. Before using ctmaPrep, define the ac-

tiveDirectory (where to save results); this can then be used in all subsequent 

function calls. The created list object (e.g., CoTiMAstudyList_3 in Figure 4) 

could be inspected as we demonstrate later. For the moment, it is sufficient to just 

have it available. Note that all functions provided by the CoTiMA R package start 

with ctma such as ctmaPrep. In general, we label the objects where results deliv-

ered by ctma-functions are stored starting with CoTiMA, such as CoTiMAstudyL-

ist_3. 

After a list of primary study information has been complied with ctmaPrep, 

the next step is to fit a CTSEM to each primary study in a series of separate models 

using ctmaInit. This step is mandatory for subsequent CoTiMA for several rea-

sons. One of the most important reasons is that at this stage one could check the 
results and identify possible problems with the data entered as, for example, the 

choice of a time scale that makes model convergence difficult.  

The use of ctmaInit is shown in Figure 5. Before using ctmaInit, define 

the activeDirectory (where to save results) if not done yet and the number of 

computer cores to be used with coresToUse. This can then be used in all subse-

quent function calls. ctmaInit generates a fit-object CoTiMAInitFit_3 from 

 
3 For example, if the longest time interval was 10 years, one could use 5-year intervals as the time scale, 

and to assign the value 2 to delta_ti if Study i had a 10-year interval. 
4 A list is a particular R object that is useful to collect a variety of information such as values, vectors, 

matrices, names etc. 
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the list of compiled studies CoTiMAstudyList_3. The fit-object Co-

TiMAstudyList_3 will be used later for aggregating (i.e., meta-analyzing) drift 

effects, performing moderator analyses, estimating publication bias, calculation of 

expected power and required samples sizes for different time intervals, plotting, and 

much more. In virtually all cases, the CoTiMA functions to perform these tasks re-

quire CoTiMAInitFit_3 as an argument. ctmaInit requires the number of la-

tent variables (n.latent) per measurement occasion to be provided by the user as 

well as an activeDirectory, which is where ctmaInit saves the fitted 

CTSEM models for each primary study. These separate CTSEM model fit files be-

come interesting later. More interesting at this stage it the complied list of all fitted 

models, which is stored in a fit-object named CoTiMAInitFit_3, and which can 

be saved to disk with saveRDS. Using summary(CoTiMAInitFit_3) dis-

plays the results, of which we selected the most interesting ones in Figure 6. 

 
activeDirectory <- "../../" # SET A VALID PATH  
CoTiMAInitFit_3 <- ctmaInit(primaryStudies = CoTiMAstudyList_3, 

n.latent = 2, 
activeDirectory = activeDirectory, 
coresToUse = 2) 

summary(CoTiMAInitFit_3)  
saveRDS(CoTiMAInitFit_3, paste0(activeDirectory, "CoTiMAInitFit_3.rds"))  

Figure 5. Fitting a ctsem model to each primary study (ctmaInit) 

[[1]] 
                                      V1toV1    SE       V2toV1   SE        
Study No 1   "Reference not provided" "-0.2048" "0.0465" "0.0343" "0.0398"  
Study No 4   "Reference not provided" "-0.132"  "0.0444" "0.0228" "0.0426"  
Study No 313 "Reference not provided" "-1.249"  "0.1266" "0.4289" "0.1215"  
 
  V1toV2    SE       V2toV2    SE       
  "-0.0784" "0.0358" "-0.1079" "0.0353" 
  "0.0438"  "0.0422" "-0.1486" "0.0444" 
  "0.2777"  "0.1056" "-0.8499" "0.0954" 
 
[[2]] 
              discrete time           V1toV1 discrete time V2toV1 discrete time  
Study No 1   "Reference not provided" "0.8137"             "0.0293"              
Study No 4   "Reference not provided" "0.8768"             "0.0198"              
Study No 313 "Reference not provided" "0.3066"             "0.1542"              
 
  V1toV2 discrete time V2toV2 discrete time 
  "-0.067"             "0.8965"             
  "0.0381"             "0.8623"             
  "0.0998"             "0.4501"             

Figure 6. CTSEM results (summary(CoTiMAInitFit_3)) 

The output shown in the first panel [[1]] of Figure 6 displays the so-called drift 

effects. The two auto effects (V1toV1 & V2toV2) are negative as one would expect 

in continuous time modeling - we explain this later in Section 6. The two cross ef-

fects are mostly positive. Note that an effect is regarded as significant if its magni-

tude is more than 1.96 times its standard error (SE). Furthermore, when auto effects 

(V1toV1 & V2toV2) were not significant, this represents a warning signal that proper 
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model fit might not be achieved. However, so-called credible intervals are available, 

too, and should be preferred (not shown in Figure 6). All of this 3 and a bit more 3 

is displayed after entering summary(CoTiMAInitFit_3). We do not show the 

full output here due to space reasons. The study numbers are repeated as row names. 

"Reference not provided" just indicates that, yes, we did not provide a 

reference for each study, which would improve readability of the table. We explain 

later how to provide references for labeling the output.  

The second panel [[2]] of Figure 6 displays the discrete time counterparts of 

the two auto and the two cross effects across one quarter, which was the time scale 

used when entering primary study information in Figure 2. We explain the relation 

between continuous time and discrete time effects further below. The reason why 

we already show the discrete time effects here is that they can be interpreted as or-

dinary standardized lagged regression coefficients across one quarter. Inspecting the 

V1toV1 and V2toV2 auto-regressive effects shows reasonable effects for all three 
studies. Experienced readers would usually expect here moderate to high auto-re-

gressive effects due to longitudinal analyses (e. g., .90 for personality variables or 

.80 for health variables). Small effects (e.g., .03), on the other hand, are very rare 

and unlikely.  

Potential estimation problems are also reported in this summary section. A 

common cause for potential estimation problems is the user9s choice of time scale 

for the values of delta_ti. While bigger time lags, for example, 12 months in-

stead of 1 year, are sometimes a bit too large to ensure proper convergence, CoTiMA 

works extremely well for time lags in the range of 0.1 to 6, regardless of the meas-

urement unit. The user is therefore usually well-advised to rescale the time lags when 

the numerical values used when performing ctmaPrep (see Figure 2) are larger 

than 6, which could be done in Figure 5 by adding the argument scaleTime (e.g., 

scaleTime = 1/12 for months) 3 we explain this later in more detail.  

A full CoTiMA, with full indicating that all drift parameters are simultaneously 

aggregated, is conducted by the code in Figure 7. The summary function displays a 

couple of results that we present here in reduced form and in two subsequent steps. 

Results not shown here are explained later.  

 
activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAFullFit_3 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_3, 

coresToUse = 2)  
saveRDS(CoTiMAFullFit_3, paste0(activeDirectory, "CoTiMAFullFit_3.rds")) 
summary(CoTiMAFullFit_3)   

Figure 7. Conducting a full CoTiMA (ctmaFit) 

We reduced the $estimates section in Figure 8 compared to the actual output 

displayed on screen. Reason is that among the whole lot of estimates presented, only 

the four drift effects are of major interest. These are the meta-analytically aggregated 

effects as indicated by the additional label invariant. Invariant means that an effect 



 
7 

does not vary among primary studies and only a single overall effect is estimated. 

This is similar to traditional fixed effect analysis, where it is also assumed that a 

single overall (true) effect exists. This is what one usually wants from CoTiMA. We 

are done. All drift effects are significant by means of the T-values as well as by 

virtue of their credible intervals. 

 
                         row col    Mean     sd    2.5%     50%   97.5% Tvalues 
DRIFT V1toV1 (invariant)   1   1 -1.0797 0.1436 -1.3652 -1.0772 -0.8114 -7.5170 
DRIFT V2toV1 (invariant)   1   2  0.5824 0.1048  0.3704  0.5826  0.7828  5.5567 
DRIFT V1toV2 (invariant)   2   1  0.2816 0.0994  0.0744  0.2832  0.4741  2.8322 
DRIFT V2toV2 (invariant)   2   2 -0.4370 0.0964 -0.6490 -0.4302 -0.2629 -4.5353 

Figure 8. First part of summary(CoTiMAFullFit_3) 

The second part of the output generated by summary(CoTiMAFullFit_3) is 

shown in Figure 9. It displays the minus 2 loglikelihood (-2ll) value, the number of 

estimated parameters (both are important if researchers want to compare nested 

models), and the optimal lag sensu Dormann and Griffin (2015), across which the 

effects become largest.  

 
$minus2ll 
[1] 7311.08 
 
$n.parameters 
[1] 22 
 
$opt.lag.orig.time 
     [,1] [,2] 
[1,]   NA    2 
[2,]    2   NA 
 
$max.effects 
       [,1]   [,2] 
[1,]     NA 0.3036 
[2,] 0.1468     NA 

Figure 9. Second part of summary(CoTiMAFullFit_3) 

The previous output in Figure 8 informed us that the effect of V1toV2 is located in 

Row 2 and Column 1 and, conversely, the effect of V2toV1 is located in Row 1 and 

Column 2. In this case, the optimal lag is two quarters for both effects, where the 

effects (see $max.effects) become .1468 for V2toV1 and .3036 for V1toV2. The 

former seems to be much smaller than the latter, and we explain later how to test if 

the difference between the two effects is statistically significant. 

Effects in continuous time are difficult to interpret. Therefore, they are usually 

translated into discrete time effects. More specifically, they are usually translated 

into the cross-lagged regression coefficients that can be expected across a range of 

different time intervals. This is achieved when plotting a CoTiMA fit-object (or sev-

eral of the CoTiMA fit-objects in the same plot). Figure 10 shows how to plot both 

the effects of the three separately fitted primary studies and the aggregated effect 

into single figures. Actually, since there are four effects (auto effect V1toV1, auto 
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effect V2toV2, cross effect V1toV2, and cross effect V2toV1), four figures will be 

created. 

 
plot(ctmaFitList(CoTiMAInitFit_3, CoTiMAFullFit_3),       
     timeUnit = "Quarters",       
     timeRange = c(1, 48, 1)) 

Figure 10. Plotting a full CoTiMA (plot) 

To inform the plot function that we want to plot multiple CoTiMA fit-objects sim-

ultaneously, they have to be combined using the CoTiMA function ctmaFitList. 

For labeling of the x-axis, the time unit is defined by timeUnit = "Quarters" 

ranging from 1 to 48 in 1-quarter steps (the smaller the steps, the smoother the plot). 

For the effect V1toV2, the resulting plot is shown in Figure 11. 

 
Figure 11. The cross-lagged effect V1toV2 across 1 to 48 quarters 
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As can be seen, the dashed black line that represents the aggregated effect reaches 

its maximum across time intervals of two quarters, where it can be expected to be 

.1468 (see Figure 11 and compare to the results shown in Figure 9), and then be-

comes smaller eventually approaching zero. It is noteworthy, albeit not occurring 

very often and probably limited to CoTiMAs with very few primary studies, that the 

aggregated effect does not always have to be somewhere in between the smallest 

and largest effects observed among the primary studies. CoTiMA does not aggregate 

by taking a (weighted) average of single effects. Rather, it optimizes estimates of all 
effects simultaneously by minimizing the loglikelihood value of the fit-function, and 

the single set of the two auto effects and the two cross effects best explains the ob-

served correlations across the three primary studies. 

CoTiMA could be used to answer much more research questions than demon-

strated up to this point. Capabilities include traditional fixed and random effects 

analyses, analyses of publication biases, assessing heterogeneity, comparing effect 

sizes within models, moderator analysis, and analysis of statistical power. However, 

for CoTiMA like for any kind of meta-analysis, the most time-consuming work is 

data collection and data management. Therefore, the two next sections deal with this 

topic. We make several recommendations of how to proceed and we introduce fur-

ther functions and capabilities of CoTiMA, which could make the life of a meta-

analyst more convenient. Subsequent sections then address additional types of anal-
yses that could be conducted after a full CoTiMA. 

3 EPIC-BiG-Power: A Recommended CoTiMA Work-

flow 

Our recommended CoTiMA workflow can be summarized with the acronym EPIC-

BiG-Power, which stands for Extract, Prepare, InitFit, CoTiMAs, Bias & General-

izability, and statistical Power. 

1. EPIC: Extract correlations from the literature and save them to disk. There is 

no particular ctma-function available supporting this step. It is hard work! 

We make some suggestions in Section 4. 

2. EPIC: In a Preparatory step, combine variables, correct correlations, add fur-

ther study information, and add raw data if available. Finally, combine all 

information by compiling a list of primary studies to be used for subsequent 

analysis using ctmaPrep (and ctmaEmpCov if useful). This is elaborated 

in Section 5. 

3. EPIC: Perform a series of Initial fits, in which each primary study out of the 

list of primary studies is used to fit a CTSEM using ctmaInit. This is 

demonstrated in Section 6. 

4. EPIC: The fit-object created in Step 3 is typically used to perform a CoTiMA 

using ctmaFit. This is the core of CoTiMA!  
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(a) We show how to perform a full CoTiMA in Subsection 7.1, in which an 

entire drift matrix is aggregated. 

(b) In Subsection 7.2 a partial CoTiMA is demonstrated, in which subsets 

of drift coefficients are aggregated. 

(c) To address the question whether two (or more) drift effects (e.g., the 2 

cross effects) estimated in Step 4(b) are identical, or if one effect is sig-

nificantly larger than the other one, use the CoTiMA fit-object delivered 

in Step 4(b) and ctmaEqual to test this. See Subsection 7.3 for details. 

(d) To address the question whether one (or more) drift effects are moder-

ated by certain characteristics of the primary studies (e.g., the year when 

they were published), use the CoTiMA fit-object delivered in Step 3 and 

ctmaFit to test this. See Subsection 7.4. 

5. BiG: Analysis of publication Bias including possible corrections can also be 

performed. Further, various measure of heterogeneity, which allow answer-

ing the question if effects could be Generalized, are reported. This also in-

volves z-curve analysis. Classical fixed and random effects of each single 

drift effect (not as a set) are estimated, too. Use the CoTiMA fit-object deliv-

ered in Step 3 and ctmaBiG to test this. This is demonstrated in Section 8. 

6. Power: Calculation of the statistical (post hoc) Power of the cross effects in 

each primary study (using the CoTiMA results as true effect estimates) as 

well as required sample sizes for future studies using a range of different time 

intervals could be performed, using by the CoTiMA fit-object delivered in 

Step 3 and ctmaPower. This is demonstrated in Section 9. 

7. Results of the different analyses could be plotted with plot(CoTiMaFit-

Objects). Funnel and forest plots will be created if Co-

TiMaFitObjects is a CoTiMA fit-object delivered by ctmaBiG. Plots 

of required sample sizes are delivered if CoTiMaFitObjects is a Co-

TiMA fit-object delivered by ctmaPower. Discrete time cross-lagged and 

auto-regressive effect size plots will be created if CoTiMaFitObjects is 

a CoTiMA fit-object delivered by ctmaInit or ctmaFit. This is demon-

strated throughout 6 3 Section 9. 

4 Extraction of Correlations from the Literature 

In the previous example, we used only the mandatory objects (delta_ti) and ob-

jects that are probably required in most instances (sampleSizei, empcovi). We 

show later how data management can be improved by using further objects. This 

section starts, however, with some recommendations and helpful functions that can 

make data entry easier and that offer new possibilities. 
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One of the most laborious steps is entering the correlation matrices of primary 

studies. Although it would be less laborious to enter only lower triangular correlation 

matrices, the requirement to have full correlation matrices serves to double check if 

correlations are entered correctly. Small typographical errors could have large con-

sequences such as time-consuming and poor convergence in fitting the model to the 

data.  

Although it is preferred to analyze correlation matrices in meta-analyses rather 

than covariances, the option to analyze covariances is available; CoTiMA automat-

ically switches to the analysis of covariances if vectors of variances (empVari) are 

provided. This is, however, not recommended because different variances imply that 

effect sizes between studies are on different scales, making aggregated effects im-

possible to interpret. Similarly, empirical mean values for all variables (emp-

Meansi) could be provided, but we do not address these possibilities here. 

 
empcov128 <- matrix(c(   
          1.00,  0.48,  0.50,  0.50,  0.43,  0.40,  0.39, -0.51, -0.45,                          
          0.48,  1.00,  0.17,  0.23,  0.22,  0.00,  0.01, -0.10, -0.08,                          
          0.50,  0.17,  1.00,  0.63,  0.42,  0.45,  0.44, -0.52, -0.41, 
          0.50,  0.23,  0.63,  1.00,  0.65,  0.59,  0.50, -0.50, -0.37,                          
          0.43,  0.22,  0.42,  0.65,  1.00,  0.49,  0.64, -0.41, -0.41,                         
          0.40,  0.00,  0.45,  0.59,  0.49,  1.00,  0.75, -0.54, -0.46,                          
          0.39,  0.01,  0.44,  0.50,  0.64,  0.75,  1.00, -0.48, -0.57,                         
         -0.51, -0.10, -0.52, -0.50, -0.41, -0.54, -0.48,  1.00,  0.70,                         
         -0.45, -0.08, -0.41, -0.37, -0.41, -0.46, -0.57,  0.70,  1.00), nrow = 9, ncol = 9) 
pairwiseN128 <- matrix(c( 
          100,  99,  88, 77,  66,  55,  44,  33,  22,                            
           99,  99,  99, 88,  77,  66,  55,  44,  33,                            
           88,  99,  88, 99,  88,  77,  66,  55,  44, 
           77,  88,  99, 77,  99,  88,  77,  66,  55,                            
           66,  77,  88, 99,  66,  99,  88,  77,  66,                            
           55,  66,  77, 88,  99,  55,  99,  88,  77,                            
           44,  55,  66, 77,  88,  99,  44,  99,  88,                            
           33,  44,  55, 66,  77,  88,  99,  33,  99,                            
           22,  33,  44, 55,  66,  77,  88,  99,  22), nrow = 9, ncol = 9) 
variableNames128 <- c("SPP_1", "SOP_1",                        
                      "role stress_1",                        
                      "exhaustion_1", "exhaustion_2",                        
                      "cynicism_1", "cynicism_2", "efficacy_1", "efficacy_2")  
dimnames(empcov128) <- list(variableNames128, variableNames128)  

activeDirectory <- "../../" # SET A VALID PATH 
saveRDS(empcov128, paste0(activeDirectory, "empcov128.rds"))  
saveRDS(pairwiseN128, paste0(activeDirectory, "pairwiseN128.rds")) 

Figure 12. Entering correlation matrices 

Figure 12 shows an example of how to enter and save correlation matrices. We rec-
ommend entering them as they are published and not change any signs or skip vari-

ables. This could be easily done later. Although it is no formal requirement, we also 

recommend labeling the variables (i.e., the row names and column names of the 

matrices) as they are labelled by the authors of the primary studies. The correlation 

matrices including the labels are then saved. For demonstration purposes, we change 

the original matrix reported by Childs and Stoeber (2012) by deleting one variable 

from the matrix shown in Figure 12. In the original study (Childs & Stoeber, Study 

1), the variable role stress_2 was available, but sometimes researchers do not 



 
12 

measure all variable at all time points. Regardless the missing data (correlations) one 

has to deal with, such primary studies provide useful information (e.g., for estimat-

ing auto-regressive effects), and could therefore be included when conducting a Co-

TiMA. 

A further possible challenge for CoTiMA are correlation matrices reported in 

primary studies that are based on pairwise deletion of missing values. One possible 

problem is that such matrices might not be suited at all for analysis if they are not 

positive definite. This cannot happen with listwise deletion. A not positive definite 
matrix is given, for example, if the correlation between A and B is r = .90, between 

A and C it is r = .80, and between B and C it is r = .10. Given the two large correla-

tions, such a small correlation is impossible if all correlations are based on identical 

samples. If a matrix is not positive definite, we recommend contacting the authors 

of the primary study and ask for a correlation matrix based on listwise deletion, or 

for raw data. Another option is to drop one or more variables from the correlation 

matrix. One could check if the matrix is positive definite after dropping variables; 

the code eigen(empcov128)$values should deliver only positive eigenvalues 

then. 

A second challenge resulting from pairwise deletion of missing values in pri-

mary studies is the sample size to be used for CoTiMA. Sometimes, authors report 

the range of pairwise N (e.g., pairwise N = 22 to 100) in a table note. We recommend 

using the smallest value then (e.g., sampleSize128 = 22), which prevents SEs 

from being estimated much lower than they actually are. Sometimes, however, au-

thors report pairwise N for each correlation. Thus, we also have a matrix of pairwise 

N, which we illustrate in Figure 12. Recall that we also have to deal with the entirely 

missing variable role stress_2. Using a matrix of pairwise N rather than just the 

smallest of all N increases the statistical power of a CoTiMA. We recommend saving 

the matrix to disk (see Figure 12).  

5 Preparatory Step (ctmaEmpCov, ctmaCorRel,  

ctmaPrep) 

CoTiMA uses correlation matrices to generate pseudo raw data (also known as syn-

thetic data; cf. Grund et al., 2022) using the MASS R package (Veneables & Ripley, 

2002). Pseudo raw data exactly (!) reproduce the correlation matrices and offer a 

couple of interesting options. In the present section we show how data can be pro-

cessed in terms of recoding variables, combining two or more variables into compo-

site (mean) scores, and dealing with missing correlations.  

We turn now to processing the correlations shown in Figure 12. Our aim is to 
analyze the reciprocal effects between job demands and burnout. In particular, we 

(1) want to correct the correlations for unreliability (aka correction for attenuation 

or disattenuation). Further, we (2) want to drop the variables SPP_1 and SOP_1 
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because these variables do not exist in other primary studies and because they are 

not of particular interest. We also (3) want to recode efficacy_1 and efficacy_2 so 

that they represent lack of efficacy rather than efficacy. Lack of efficacy, cynicism, 

and exhaustion are the three burnout symptoms, and we (4) want to combine them 

into a single variable5. Whereas a measure of demands is available for the first meas-

urement occasion (role stress_1), such a measure is missing at the second measure-

ment occasion. Thus, we (5) also have to deal with missing correlations. 

To achieve our aims, we start with preparing the relevant data using the code 
shown in Figure 13. Note that the only computation done here is correction for un-

reliability using ctmaCorRel. No further computations are done until the Co-

TiMA function ctmaEmpCov in Figure 14 is applied. Here in Figure 13 we only 

prepare the required objects in R.   

 
activeDirectory <- "../../" # SET A VALID PATH 
empcov128 <- readRDS(paste0(activeDirectory, "empcov128.rds"))  
pairwiseN128 <- readRDS(paste0(activeDirectory, "pairwiseN128.rds"))  
delta_t128 <- 1.5  
alphas128 <- c(.87, .88, .80, .94, .91, .88, .95, .81, .88)                        
empcov128 <- ctmaCorRel(empcov128, alphas128)  
targetVariables128 <- c("role stress_1",                          
                       "exhaustion_1", "cynicism_1", "efficacy_1",                          
                       "exhaustion_2", "cynicism_2", "efficacy_2")  
recodeVariables128 <- c("efficacy_1", "efficacy_2")  
sampleSize128 <- mean(pairwiseN128)  
combineVariables128 <- list("role stress_1", 
                            c("exhaustion_1", "cynicism_1", "efficacy_1"), 

c("exhaustion_2", "cynicism_2", "efficacy_2"))  
combineVariablesNames128 <- c("Demands1", "Burnout1", "Burnout2")  
missingVariables128 <- c(3) 

Figure 13. Processing correlation matrices (ctmaCorRel) 

We begin with reading the previously saved correlation matrix and the matrix of 

pairwise N from disk (see Figure 13) and assign them to R objects empcov128 and 

pairwiseN128. With colnames(empcov128) (not shown in Figure 13) we 

could recall the variable names, which are "SPP_1", "SOP_1", "role 

stress_1", "exhaustion_1", "exhaustion_2", "cynicism_1", "cyn-

icism_2", "efficacy_1", and "efficacy_2".  

First, we do the corrections for unreliability. This has to be done first because, 

for example, reliabilities would be no longer available after two or more variables 

are combined. To correct for unreliability, a vector of reliabilities (alpha128) has 

to be provided from primary studies, and then the ctmaCorRel is used to replace 

 
5 CoTiMA could also be used with measurement models, for example, with lack of efficacy, cynicism, 

and exhaustion as manifest indicators of a latent factor. However, in meta-analysis the most common case 

is that burnout would be measured using different (numbers of) variables. Therefore, combining the avail-

able variables for each primary study and then using a single manifest indicator in subsequent CoTiMA 

is frequently the only viable way. 
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empcov128 by its disattenuated counterpart. Note that we usually do not recom-

mend disattenuating correlations6! 
Second, we reduce the number of variables. All variables except the two we 

want to drop (SPP_1 and SOP_1) are assigned to targetVariables128. Note 

that a formal requirement of CoTiMA is that the variables are ordered in Time (Time 

0 variables, Time 1 variables, etc.). This is also achieved by ordering the variables 

accordingly when creating targetVariables128.  

Third, the two variables we want to recode are assigned to the object recode-

Variables128. If an empcovi does not include variable names (no dimnames), 

one could use the variables9 positions (i.e., recodeVariables128 <- c(4, 

7)). Note that if numbers are used, they should correspond to the positions in the 

targetVariablesi object rather than the rows/columns in the empcovi object 

(i.e., recoding is done after targetVariablesi were selected from empcovi). 

Although it is not necessary to assign any value to sampleSize128, we assigned 

the mean of the pairwise N (mean(pairwiseN128)), as a rough indicator of the 

overall contribution of the primary study to the result of CoTiMA. This is a reason-

able value that will be used for descriptive statistics in the output of subsequent Co-

TiMAs. Other options could be min(pairwiseN128) or max(pair-

wiseN128). 

Fourth, we use a list (!) of variable names or vectors of variable names to define 

the variables that should or should not be combined. This list is stored in the object 

combineVariables128. We keep the variable role stress_1 as it is, whereas for 

the first and second measurement occasion the three burnout variables are combined 

into a single scale, respectively. The three final variables are then labeled as defined 

in combineVariablesNames128.  

Fifth, since there is no variable for demands at the second time point, we de-

clare it as missing. This is done by stating which variable is missing in the imagined 

set of Demands1, Burnout1, Demands2, Burnout2, which is the 3rd element. Thus, 

missingVariables128 <- 3.  

 

 

 

 
6 Correlations are disattenuated using the well-known formula developed by Spearman (1904). This for-

mula is based on several assumptions. One of these assumptions is that underlying Cronbach9s alpha (or 

any other estimate of reliability), which is usually used to measure reliability, are correct. While violations 

of the assumptions do usually not cause visible consequences when dealing with a single cross-sectional 

correlation coefficient, in the case of correlation matrices of longitudinal studies it might cause problems. 

One problem is that disattenuated test-retest correlations could become larger than 1.0, which is automat-

ically corrected by ctmaCorRel (i.e., they are set to 1.0). Another problem is that the disattenuated 

matrices might not positive definite and could not be analyzed then. 

 



 
15 

results128 <- ctmaEmpCov(targetVariables = targetVariables128,                       
                         recodeVariables = recodeVariables128, 
                         combineVariables = combineVariables128, 
                         combineVariablesNames = combineVariablesNames128, 
                         missingVariables = missingVariables128, 
                         n.latent = 2,   
                         pairwiseN = pairwiseN128,                        
                         Tpoints = 2,                        
                         empcov = empcov128)  
empcov128 <- results128$rNew  
pairwiseN128 <- results128$pairwiseNNew   

Figure 14. Convert correlation matrices (ctmaEmpCov) 

The CoTiMA package comes with the function ctmaEmpCov, which performs the 

desired operations (recoding, combining etc.) and yields the final correlation matrix 

that we want to use for our subsequent CoTiMA (see Figure 14). Bevor using this 

function no computations were applied to the data. Since we have a matrix of pair-

wise N, this will be processed by ctmaEmpCov, too. Note that a common problem 

resulting from copying/pasting the code in Figure 14 is failure to adjust the 

Tpoints. The function ctmaEmpCov returns a new correlation matrix, which is 

then used to replace the empcov128 from which we started. Further, ctmaEmp-

Cov returns a new matrix of pairwise N, which is then used to replace the pair-

wiseN128. Figure 15 shows the new correlation matrix and matrix of pairwise N. 

 
          [,1]      [,2] [,3]      [,4] 
[1,] 1.0000000 0.7361878   NA 0.5809288 
[2,] 0.7361878 1.0000000   NA 0.8118634 
[3,]        NA        NA   NA        NA 
[4,] 0.5809288 0.8118634   NA 1.0000000 
 
     [,1] [,2] [,3] [,4] 
[1,]   88   77    0   44 
[2,]   77   55    0   44 
[3,]    0    0    0    0 
[4,]   44   44    0   22 

Figure 15. Results of applying ctmaEmpCov to the specifications of Study 128 

Instead of correlation matrices, raw data can be used as well, and the arguments 

required to read raw data from disc have to be stored in a rawDatai object (see 

Figure 16). In R, a list is a list (sic!) that has elements, which have their own 

labels (like in a shopping list, in which you summarize the planned purchases in 

subitems like vegetables, cheese etc.). Unlike a vector, the elements of a list could 

be of different types, for example, characters, numbers, symbols, matrices etc. The 

list-object created in Figure 16 has seven elements: fileName, studyNumbers, 

missingValues, standardize, header, dec, and sep. Note for this exam-

ple, data preparation has already been done (e. g., combining, eliminating variables). 

Consult the Appendix B for the ctmaShapeRawData function, which can be 

helpful to get raw data organized in the way required by CoTiMA (or ctsem).  
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activeDirectory <- "../../" # SET A VALID PATH 
rawData228 <- list(fileName = paste0(activeDirectory, "rawdata228.txt"),                       
                   studyNumbers = 228, missingValues = -99, 
                   standardize = TRUE, header = TRUE, dec = ".", sep = " ")    
delta_t228 <- c(NA) 

Figure 16. Specification for using raw data 

The raw data have to be included in an ordinary text file, and the name of the file 

should be stored in the list element fileName(Note for this example, the raw data 

were not provided in this user9s guide). Possibly missing values should be defined, 

and only a single value is possible (-99 is assumed by default) and stored in the list 

element missingValues. Whether or not the raw data should be standardized, 

which implies the analysis of correlations, or not, which implies the analysis of co-

variance, could be specified by setting the list element standardize to either 

TRUE (default and recommended) or to FALSE. Whether or not the raw data files 

include a header with variable names (as for the example data below) could be spec-

ified by setting the element header to either TRUE (default) or to FALSE. Finally, 

a decimal delimiter (default = ".") and the characters separating the values (default 

= " ") could be defined using the list elements dec and sep, respectively.  

Note that in meta-analysis, moderators are usually study characteristics (e.g., 

the average age of a sample) rather than characteristics of individual study partici-

pants. Therefore, study-level moderator values are not included in raw data files, but 

they are defined directly for a primary study that does provide raw data by assigning 

values to the moderator-object; this is explained later7. Figure 17 shows the raw data 

file structure corresponding to the code used in Figure 16. 

 
V1_T0   V2_T0   V1_T1   V2_T1   dT1 
  0.835   2.328  -0.778   2.969 11 
  1.555   2.634   1.977   1.807 12 
  3.209   1.849   2.291   2.795 12 
  0.416   2.351   0.127   1.705 13 
-99.000 -99.000   0.476 -99.000 13 
-99.000 -99.000   0.854 -99.000 11 
-99.000 -99.000 -99.000   2.987 12 
-99.000 -99.000 -99.000   2.087 12 
-99.000 -99.000 -99.000   0.927 13 

Figure 17. Raw data file structure 

Raw data of a primary study has to be provided as a text (ascii) file. Data has to be 

in wide format (i.e., one row per individual). Assuming there are t measurement 

occasions, the order of the variables should be V1_T0, V2_T0, &, V1_Tt, V2_Tt, 

dT1, dT2, &dT(t-1), where dTt are the variables representing the time intervals (del-

tas) between measurements (see Figure 17). Note that if t measurement occasions 

 
7 Individual-level moderator variables could be modelled if raw data are available (see Appendix B for 

further details). 
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exist, there are t-1 time intervals. Compared to correlation matrices as input, raw 

data allow the time intervals to vary between the individuals within a study (average 

time intervals are automatically reported in CoTiMA fit-objects). However, for stud-

ies that supply raw data, it is mandatory to define the delta_ti object! It has to 

have as many NA as the largest number of possible time intervals in the respective 

study is, for example, in the case of three intervals, delta_ti <- c(NA, NA). 

In the example in Figure 17 there are only two time points and, thus, one interval 

dT1. Thus, delta_ti is indeed the only mandatory object because rawDatai 

could substitute empcovi and pairwiseNi or sampleSizei. 

So far, we introduced the objects delta_ti, sampleSizei, empcovi, 

targetVariablesi, alphasi, pairwiseNi, and rawDatai. Further pre-

defined object names are: 

• moderatori. A vector of numerical values either representing categori-

cal or continuous variables, e.g., moderator6 <- c(1, 2, 2, 
0.76, 2.56, 2001) 

• empMeansi. Mean values of variables (default = 0). It is not recom-

mended to change the default, but it is possible, e.g., empMeans7 <- 
c(1, -2.5, 1.1, -2.4) 

• empVarsi. Variances of variables; (default = 1). It is not recommended 

to change the default, but it is possible, e.g., empVars6 <- c(1, 2, 
1.1, 1.9)  

• studyNumberi. A special number used for labeling in the outputs of 

subsequently fitted CoTiMA models, e.g., studyNumber6 <- 66  

• sourcei. Useful to label the table displaying the estimated parameters for 

each primary study, rather than using the numbers used for the primary 

study-objects (e.g., 128 from empcov128), e.g., source6 <- c("De 

Jonge", "Dormann", "Janssen", "Dollard", 
"Landeweerd", "& Nijhuis", "2001") 

• ageMi. A value indicating the mean age of participants in a primary study, 

e.g., ageM6 <- 31.78 

• malePercenti. A value indicating the percentage of male participants 

in a primary study, e.g., malePercent6 <- 0.11 

• occupationi. A vector of character strings representing the occupations 

of participants in a primary study. Of course, this has not to be taken liter-

ally. For example, it could be also used to represent the program in which 

student participants are enrolled and similar classifications, e.g., occupa-
tion6 <- c("Health care workers") 

• countryi. A single character string representing the country in which a 

primary study was conducted, e.g., country6 <- c("Nether-
lands") 
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• startValuesi. A vector of start values, which was used in previous 

CoTiMA versions. Currently the use of start values is disabled, but this 
might change in the future. 

 

In addition to these pre-defined object names, user-defined object names could 

be added (e.g., demandsi and burnouti, to add information about the type of 

measurement scale used in primary studies). The difference between pre-defined and 

user-defined objects is twofold. First, pre-defined objects are included in the Excel 
workbook that summarizes primary study information (see Figure 22). Second, user-

defined objects have to be declared in ctmaPrep using the argument addEle-

ments (see Figure 20). 

To proceed further with the example, in a first step documented in Figure 18 

we add information to those four primary studies data already entered before (Study 

1, 4, 128 and 313). In a second step, we add two further primary study information 

as shown in Figure 19.  
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ageM1 <- 39.3  
ageSD1 <- 8.7  
malePercent1 <- .60  
occupation1 <- c("Bank employees")  
country1 <- c("Netherlands")  
demands1 <- c("Workload")  
burnout1 <- c("Emotional Exhaustion")  
targetVariables1 <- c("Demands1", "Burnout1", "Demands1", "Burnout2")  
source1 <- c("Houkes, I,", "Janssen, P, P, M,", "de Jonge, J", "& Bakker, A, B",  
             "Study1", "2003") 
moderator1 <- c(1, 0.72)  
 
ageM4 <- 47.4  
ageSD4 <- 5.8  
malePercent4 <- .70  
occupation4 <- c("Teachers for adults")  
country4 <- c("Netherlands")  
demands4 <- c("Workload")  
burnout4 <- c("Emotional exhaustion")  
targetVariables4 <- c("Demands1", "Burnout1", "Demands1", "Burnout2")  
source4 <- c("Houkes, I,", "Janssen, P, P, M,", "de Jonge, J", "& Bakker, A, B",  
             "Study2", "2003")  
moderator4 <- c(1, 0.72) 
 
ageM313 <- 30  
ageSD313 <- 6  
malePercent313 <- 0.30  
occupation313 <- c("Employment agency employees")  
country313 <- c("Netherlands")  
demands313 <- c("Work pressure")  
burnout313 <- c("Exhaustion")  
targetVariables313 <- c("Demands1", "Burnout1", "Demands1", "Burnout2",  
                        "Demands3", "Burnout3")  
source313 <- c("Demerouti", "Bakker", "& Bulters", "2004")  
moderator313 <- c(2, 0.72) 
 
ageM128 <- 41  
ageSD128 <- 11.4  
malePercent128 <- 0.203  
occupation128 <- c("Managerial employees in NHS trusts")  
country128 <- c("UK")  
demands128 <- c("Role Stress")  
burnout128 <- c("Exhaustion", "Cynicism")  
source128 <- c("Childs, J. H.", "& Stoeber, J.", "Study1", "2012")  
moderator128 <- c(2, 0.66) 

Figure 18. Additional information for studies entered earlier (primary studies 1, 4, 313, & 
128) 
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empcov18 <- matrix(c(1.00, 0.44, 0.62, 0.34, 
                     0.44, 1.00, 0.41, 0.62, 
                     0.62, 0.41, 1.00, 0.55, 
                     0.34, 0.62, 0.55, 1.00), nrow = 4, ncol = 4) 
variableNames18 <- c("Demands_1",  "Burnout_1", "Demands_2",  "Burnout_2")  
dimnames(empcov18) <- list(variableNames18, variableNames18)  
delta_t18 <- 3  
sampleSize18 <- 174  
ageM18 <- 41.33  
ageSD18 <- 9.70  
malePercent18 <- 0.03  
occupation18 <- c("Service employees")  
country18 <- c("Germany")  
demands18 <- c("Workload")  
burnout18 <- c("Emotional exhaustion", "Depersonalization")  
source18 <- c("Diestel", "& Schmidt", "Study 1", "2012")  
moderator18 <- c(1, 0.7) 
 
empcov32 <- matrix(c(1.00, 0.45, 0.70, 0.40, 
                     0.45, 1.00, 0.36, 0.66, 
                     0.70, 0.36, 1.00, 0.43, 
                     0.40, 0.66, 0.43, 1.00), nrow = 4, ncol = 4) 
variableNames32 <- c("Demands_1",  "Burnout_1", "Demands_2", "Burnout_2")  
dimnames(empcov32) <- list(variableNames32, variableNames32)  
delta_t32 <- 2  
sampleSize32 <- 433  
ageM32 <- 41.5  
ageSD32 <- 10.2  
malePercent32 <- 0.199  
occupation32 <- c("Teachers")  
country32 <- c("Canada")  
demands32 <- c("classroom overload")  
burnout32 <- c("Emotional exhaustion", "Depersonalization")  
source32 <- c("Fernet", "Guay", "Senecal", "& Austin", "2012")  
moderator32 <- c(1, NA) 

Figure 19. Information for two further primary studies (18 & 32) 

The six studies are then compiled into a list as shown in Figure 20. Here we add the 

two user-defined object names demandsi and burnouti. We also provide a vec-

tor with the labels of the two moderators, and we provide a list of vectors to label 

the moderator values.  

 
activeDirectory <- "../../" # SET A VALID PATH  
CoTiMAstudyList_6 <- ctmaPrep(selectedStudies = c(1, 4, 313, 128, 18, 32), 
                              activeDirectory = activeDirectory, 
                              addElements = c("demands", "burnout"),                          
                              moderatorLabels = c( "Burnout Measure",  

  "Control at Work"),                          
                              moderatorValues = list(c( "1 = Emotional Exhaustion",  
                                                      "2 = Exhaustion"), 
                                                     "continuous")) 
saveRDS(CoTiMAstudyList_6, paste0(activeDirectory, "CoTiMAstudyList_6.rds")) 

Figure 20. Compiling a list of primary studies with extended information (ctmaPrep) 

To get a convenient overview of the information stored in this list, one could use the 
openxlsx R package (see Figure 21). An example of what is displayed when opening 

the excel workbook with its several sheets with openXL is shown in Figure 22. The 
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workbook could also be saved to disk using the saveWorkbook function of open-

xlsx. 
 
openXL(CoTiMAstudyList_6$excelSheets)  
activeDirectory <- "../../" # SET A VALID PATH 
saveWorkbook(CoTiMAstudyList_6$excelSheets, overwrite = TRUE,               
             file = paste0(activeDirectory, "myExcelSheet.xlsx") ) 

Figure 21. Open an Excel sheet with summary information included in a compiled list of 
primary studies (requires package openxlsx) 

 
Figure 22. Excel sheet with summary information included in a compiled list of primary stud-

ies 

6 Initial Fitting (ctmaInit) 

Now the first two steps (Extract & Prepare) in the recommended EPIC-BiG-Power 

workflow are done and we can move forward to the Init step, for which the previ-

ously compiled CoTiMAstudyList_6 is required. Initial fitting is done with the 

code in Figure 23 (analogous to Figure 5), and the result is then displayed on the 

console (see Figure 24). 

 
activeDirectory <- "../../" # SET A VALID PATH  
CoTiMAInitFit_6 <- ctmaInit(primaryStudies = CoTiMAstudyList_6,  
                            n.latent = 2,  
                            activeDirectory = activeDirectory,  
                            coresToUse = 2) 
summary(CoTiMAInitFit_6)  
saveRDS(CoTiMAInitFit_6, paste0(activeDirectory, "CoTiMAInitFit_6.rds")) 

Figure 23. Fitting a ctsem model for each primary study (ctmaInit) 

For Study 128, which we used to demonstrate how to deal with missing variables, 
some unusual estimates (e.g., large SEs and non-significant auto effects) emerged, 

which was not unexpected in this case. In Study 128, which comprised two waves 

of measurement, the variable V1_T1 was missing (demands T1, i.e., role stress_2). 

Obviously, this makes it impossible to validly estimate parameter involving V1_T1. 

These parameters are called non-identified. Thus, all estimates involving V1_T1 are 

not trustworthy. And even if only a single parameter was not identified, conse-

quently the entire model is not identified. Thus, even the seemingly reasonable drift 

effect V2toV2 in Figure 24 is not trustworthy. We show later why Study 128 could 
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nevertheless be used for CoTiMA. Anyway, we will use the current case to review 

some of the general principles of continuous time structural equation modeling 

(CTSEM). 

 
                                                      V1toV1    SE        V2toV1    SE        
Study No 1   "Houkes et al., Study1, 2003"            "-0.208"  "0.0454"  "0.0363"  "0.0389"  
Study No 4   "Houkes et al., Study2, 2003"            "-0.1301" "0.0459"  "0.0217"  "0.0422"  
Study No 313 "Demerouti et al., 2004"                 "-1.2538" "0.1364"  "0.4298"  "0.1195"  
Study No 128 "Childs, & Stoeber, Study1, 2012"        "-7.5969" "10.1265" "-0.2537" "1.938"   
Study No 18  "Diestel, & Schmidt, Study 1, 2012"      "-0.2166" "0.0421"  "0.1037"  "0.0411"  
Study No 32  "Fernet, Guay, Senecal, & Austin, 2012"  "-0.2031" "0.0306"  "0.0435"  "0.03"    
 
                                                     
Study No 1   "Houkes et al., Study1, 2003"            V1toV2    SE       V2toV2    SE       
Study No 4   "Houkes et al., Study2, 2003"           "-0.0777" "0.037"  "-0.1081" "0.0359" 
Study No 313 "Demerouti et al., 2004"                "0.0438"  "0.0425" "-0.1516" "0.0467" 
Study No 128 "Childs, & Stoeber, Study1, 2012"       "0.2761"  "0.1039" "-0.8486" "0.0957" 
Study No 18  "Diestel, & Schmidt, Study 1, 2012"     "-0.0991" "0.208"  "-0.1756" "0.1433" 
Study No 32  "Fernet, Guay, Senecal, & Austin, 2012" "0.0501"  "0.0396" "-0.1914" "0.0412" 

Figure 24. Some results for the primary studies (ctmaInit) 

Table 1. Overview of the parameters/terms used in discrete and continuous time modelling 

discrete time continuous time  

variable at Time t  affect variable at Time t+1 

- auto-regressive effect: e.g., from V1t to V1t+1 

- cross-lagged effect: e.g., from V1t to V2t+1 

[structural equations, regression slopes/paths] 

(matrices gamma � or beta �) 

earlier variable affect later variable 

- auto effect: e.g., from earlier V1 to later V1 

- cross effect: e.g., from earlier V1 to later V2 

[drift effects] 

(drift matrix �) 

(co-)variance of residuals  

[unexplained/ residual/ error variance,  

structural disturbance] 

(matrix psi �) 

(co-)variance of innovations 

[system noise, random change,  

prediction error] 

(diffusion matrix �) 

intercept  

[constant] 

(matrix alpha �) 

continuous time intercept  

(matrices b, CINT) 

measurement error  

(matrices theta �, ��, or ��) 

observational noise  

[measurement error] 

(matrix theta �) 

(co-)variance of exogeneous variables 

(matrix phi �) 

(co-)variance of variables at Time 0  

[initial (co-)variance] 

(matrices T0var or T0covar) 

Note. Parameters/commonly used terms and phrases, [synonyms], (matrices). 
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First, in CTSEM any pair of subsequent measurement occasions is regarded as 

equivalent except the length of the time interval, which may vary. Therefore, con-

tinuous time coefficients do not describe, for example, the relations between de-

mands at Time 0 and burnout at Time 1. Rather, earlier demands affect later burn-

out. Thus, in CoTiMA, the effect V1toV1 means the auto effect of earlier V1 to later 

V1. Similarly, the effect V1toV2 means the cross effect of earlier V1 to later V2. 

Note that in continuous time, the terms auto effect and cross effect are used, whereas 

in discrete time, the terms auto-regressive effect and cross-lagged effect are used. 
In a similar vein, the terms innovation and their associated (co-)variances (diffusion 

matrix) in continuous time substitute the term error (and unexplained variance) in 

discrete time, and the term continuous time intercept substitutes the term intercept 

(cf. Table 1 and for more details see Driver et al., 2017; Voelkle et al., 2012). 

Between continuous time and discrete time coefficients, well-defined mathe-

matical relations exist. The only reason why continuous time coefficients are used 

is that the math is known to describe how coefficients change across time. To trans-

late auto and cross effects into auto-regressive and cross-lagged effects, put the for-

mer into a matrix, multiply the matrix by length of time interval, and then apply the 

matrix (!) exponential function. The resulting matrix contains the auto-regressive 

effects in the diagonal and the cross-lagged effects off the diagonal (cf. Dormann et 

al., 2020; Voelkle et al., 2012).  
Figure 25 shows how the continuous time drift effects obtained for Study 313 

(see Figure 24) relate to 1-quarter auto-regressive and cross-lagged effects in dis-

crete time. Demands have slightly smaller carry-over effects (V1toV1) than burnout 

(V2toV2). The negative auto effects in continuous time thus translate into positive 

auto-regressive effects in discrete time. Thus, in continuous time, the more negative 

an auto effect is, the smaller are the effects that a variable carries over time. Further, 

the effect of earlier demands on later burnout is smaller (V1toV2) than the effect of 

earlier burnout on later stressors (V2toV1). Note that multiplying the matrix with, 

for example, 2 (i.e., expm(A313 * 2)) yields the effects across a 2-quarter lag 

(i.e., half a year). This is the way how discrete time effect sizes are computed and 

plotted (see Figure 11). 

 
library(expm) 
A313 <- matrix(c(-1.2538, 0.4298, 0.2761, -0.8486), nrow = 2, ncol = 2, byrow = TRUE) 
A313 
      [,1]     [,2] 
[1,] -1.2538   0.4298 
[2,]  0.2761  -0.8486 
 
expm(A313 * 1) 
     [,1]       [,2] 
[1,] 0.30509068 0.1542537 
[2,] 0.09909133 0.4505155 

Figure 25. Relation between continuous time drift coefficients of Study 313 and its discrete 

time effects across one quarter 
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The result of applying the same transformation to the suspicious drift effects of 

Study 128 is shown in Figure 26. The non-identified auto effect V1toV1 corresponds 

to an auto-regressive effect of 0.0009 across one quarter: A person9s level of de-

mands at work does virtually not predict at all the person9s level of demands one 

quarter later, which one would usually regard as implausible. In fact, this out-of-

range estimate is a consequence that in Study 128 later demands was a missing 

variable. Thus, we cannot expect meaningful results from fitting a ctsem model to 

Study 128.  
 

library(expm) 
A128 <- matrix(c(-7.5969, -0.2537, -0.0991, -0.1756), nrow = 2, ncol = 2, byrow = TRUE) 
A128 
      [,1]    [,2] 
[1,] -7.5969 -0.2537 
[2,] -0.0991 -0.1756 
 
expm(A128 * 1) 
      [,1]           [,2] 
[1,]  0.0008838301  -0.02873391 
[2,] -0.0112240047   0.84141568 

Figure 26. Relation between continuous time drift coefficients of Study 128 and its discrete 
time effects 

Again, model results could also be opened as excel workbook with openXL(Co-

TiMAInitFit_6$excelSheets). For example, effects, their standard errors 

(SEs) and lower limit (LL) and upper limit (UL) credible intervals are shown in Fig-

ure 27. Excel sheet with summary information included in a compiled list of primary 

studies. From the workbook, coefficients could be easily copied into a word pro-

cessing app to build proper results tables. 

 

 
Figure 27. Excel sheet with summary information included in a compiled list of primary stud-
ies 

Doing the initial fitting of ctsem models to all primary studies allows specifying 

several arguments, for example, constraining some drift effects to be 0.0, or using 
different estimators such as Bayesian instead of maximum likelihood estimation (de-

fault). The arguments to select estimators are introduced next, and the entire list of 

possible arguments of the different CoTiMA functions are listed in the Appendix B. 

Note that the optimize argument should be used and not be confused with op-

timise, which is used by ctsem. 
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One particular option is to use Bayesian estimation. Thus, Bayesian estimates 

will be drawn from posterior probability distributions. The Stan Math library (Car-

penter et al., 2015), which is used by ctsem and CoTiMA for estimation, offers there-

fore a No U-Turn Sampler (NUTS). However, this sampler is much (!) slower than 

the default estimator maximum likelihood estimation or the maximum a posteriori 

estimation. In fact, most desktop computers in 2024 probably would need a several 

days for a full CoTiMA with Bayesian estimation if 20 or more primary studies are 

analyzed. Table 2 gives an overview of how the different estimators can be requested 

by setting the optimize and the priors argument. This applies to all CoTiMA 

fitting functions (ctmaInit, ctmaFit, ctmaEqual, & ctmaPower). 

 
Table 2. Estimators available for CoTiMA 

Estimator Argument Settings 
 

optimize priors 

Bayesian estimation via Stan9s NUTS (No U-Turn) sampler FALSE TRUE 

Maximum a posteriori estimation TRUE TRUE 

Maximum likelihood estimation (default) TRUE FALSE 

 
Weakly informative priors for Bayesian estimation with the NUTS sampler and for 

maximum a posteriori estimation are provided by ctsem. They work well under most 

circumstances, however, sometimes they might not work well because the priors 

provided by ctsem have been optimized for time measured in years. For example, 

one could use the argument scaleTime = 1/365.25 if time was measured in 

days and previous fitting attempts did not yield meaningful results. 

Figure 28 shows how Bayesian estimates using the NUTS sampler could be 

obtained. Since estimation requires long time (expect several hours), it is recom-

mended to save the model fits for each primary study using the saveSingleS-

tudyModelFit argument. If further studies are added later, re-estimating these 

models could be avoided by the corresponding readSingleStudyModelFit 

argument. In the example in Figure 28, we used chains = 2 and coresToUse 

= 2. Three chains and three cores are recommended before publishing results. Since 

Bayesian estimation takes a long time, we want to take care that we get precise re-

sults in our first fitting attempt; we set finishsamples = 10000 for this pur-

pose; parameter estimates and credible intervals will be sampled 10000 times from 

the estimated parameter distribution, rather than only 1000 sample, which is the de-

fault for finishsamples. 
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activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAInitFit_6_NUTS <- ctmaInit(primaryStudies = CoTiMAstudyList_6, 
                                 n.latent = 2,                                   
                                 activeDirectory = activeDirectory,                                  
                                 saveSingleStudyModelFit =  
                                   c("InitFit_6_NUTS", 1, 4, 313, 128, 18, 32),                                  
                                 optimize = FALSE,                                   
                                 priors = TRUE,                                   
                                 chains = 2,                                   
                                 coresToUse = 2,                                   
                                 finishsamples = 10000)  
summary(CoTiMAInitFit_6_NUTS) 
saveRDS(CoTiMAInitFit_6_NUTS, paste0(activeDirectory, "CoTiMAInitFit_6_NUTS.rds")) 

Figure 28. Using Bayesian estimation via Stan9s NUTS sampler (ctmaInit) 

Part of the results obtained from the code in Figure 28 printed to the console with 

summary(CoTiMAInitFit_6_NUTS) is shown in Figure 298. A comparison 

with the maximum likelihood effects and their standard errors in Figure 24 reveals 

no substantial differences except for Study 128, for which results are not trustworthy 

anyway. We should note, further, that Bayesian estimation is sensitive to priors, and 

default priors are only appropriate if the time scale is appropriately chosen, too. This 

could require using an appropriately chosen scaleTime argument. 

 
                                                          V1toV1    SE       V2toV1    SE        
Study No 1   "Houkes et al., Study1, 2003"                "-0.2123" "0.0455" "0.0388"  "0.0397"  
Study No 4   "Houkes et al., Study2, 2003"                "-0.135"  "0.0439" "0.0245"  "0.0435"  
Study No 313 "Demerouti, Bakker, & Bulters, 2004"         "-1.2559" "0.1285" "0.4319"  "0.1197"  
Study No 128 "Childs, J. H., & Stoeber, J., Study1, 2012" "-3.3878" "2.3539" "-0.1908" "0.8782"  
Study No 18  "Diestel, & Schmidt, Study 1, 2012"          "-0.2171" "0.0424" "0.1043"  "0.0427"  
Study No 32  "Fernet, Guay, Senecal, & Austin, 2012"      "-0.2038" "0.0297" "0.0461"  "0.0304"  
 
                                                          
Study No 1   "Houkes et al., Study1, 2003"                V1toV2    SE       V2toV2    SE       
Study No 4   "Houkes et al., Study2, 2003"                "-0.0786" "0.0376" "-0.1073" "0.0344" 
Study No 313 "Demerouti, Bakker, & Bulters, 2004"         "0.0483"  "0.0484" "-0.1542" "0.0467" 
Study No 128 "Childs, J. H., & Stoeber, J., Study1, 2012" "0.277"   "0.1062" "-0.8489" "0.0989" 
Study No 18  "Diestel, & Schmidt, Study 1, 2012"          "0.0832"  "0.4813" "-0.2162" "0.1715" 
Study No 32  "Fernet, Guay, Senecal, & Austin, 2012"      "0.0551"  "0.0431" "-0.1996" "0.0489" 

Figure 29. Estimates for the primary studies using Bayesian estimation (ctmaInit) 

7 CoTiMA (ctmaFit) 

Now the first three steps (Extract, Prepare, & InitFit) in the recommended EPIC-

BiG-Power workflow are done, and we can move forward to do CoTiMAs, for 

which the now available CoTiMAInitFit_6 (or CoTiMAInitFit_6_NUTS) 

object is required. In the first subsection, we demonstrate how a full CoTiMA with 

all drift effects could be fitted. A distinction is therefore made between two special 

model types depending on the structure of the data: the all-invariant-model (see 

7.1.1) and the regular model (see 7.1.2). In the second subsection, we show how a 

 
8 In addition, several warning messages are issued. They are all related to Study 128, for which we intro-

duced missing data. This does not happen if doing the analysis again without Study 128. 
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partial CoTiMA could be fitted, and we use this subsection to introduce the possi-

bilities to analyze specific invariance constraints. In the third subsection, we show 

how to statistically test the equality of drift effects, that is, a CoTiMA with equality 

constraints. Finally, in the fourth subsection, we show how a moderated CoTiMA 

can be performed.  

7.1 Full CoTiMA (ctmaFit) 

We shall note that the first full CoTiMA we present here is a very special case that 
is probably rarely applied, and we will move on to the regular case a bit further 

below. The reason why the first full CoTiMA is a very special case is, again, Study 

128, which was a 2-wave study with one missing variable. Such studies prevent ap-

plying the usually recommended CoTiMA.  

7.1.1 Full CoTiMA as All-Invariant Model (ctmaFit) 

Usually, CoTiMA aggregates the drift coefficients by constraining them to be invar-

iant across primary studies, whereas the correlations at Time 0 and the diffusion 

terms (i.e., innovation (co-)variances) are freely estimated within each primary 
study. This is impossible with the current set of primary studies because for Study 

128, demands (role stress) was measured at Time 0 only, so diffusions for demands 

cannot be estimated for Study 128. As we shall later, missing variables do not im-

pose problems if each variable is measured at least twice, which is possible in studies 

comprising more than two waves, but Study 128 had only two waves. In such in-

stances, one could either decide to exclude critical studies from CoTiMA, or one 

could estimate a very restrictive CoTiMA that restricts all parameters (Time 0 cor-

relations, drift effects, diffusions) to be invariant across all studies. This is called an 

all-invariant-model, and estimating such a model can be achieved by using the ar-

gument allInvModel = TRUE. Usually, we do not recommend using this argu-

ment, but in this case there is no other option except excluding Study 128, which we 

do further below in Section 7.1.2. 

 
activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAFullFit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_NUTS,                             
                           allInvModel = TRUE,  
                           coresToUse = 2)  
summary(CoTiMAFullFit_6) 
saveRDS(CoTiMAFullFit_6, paste0(activeDirectory, "CoTiMAFullFit_6.rds")) 

Figure 30. Full CoTiMA with six studies (ctmaFit) 

Fitting this type of a very restrictive CoTiMA is done with the code in Figure 30, 

and with summary(CoTiMAFullFit_6) the results are displayed9. The term 

 
9 Fitting will issue a warning that an approximate Hessian was used and standard errors are not trustwor-

thy. This is caused by the missing variables in Study 128. 
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full CoTiMA is used to refer to a model in which all possible auto effects and all 

possible cross effects are simultaneously aggregated. Later, we show how some ef-

fects could be excluded from the model (i.e., fixed to 0.0), and how some effects 

could be exempted from being invariant across primary studies. It is noteworthy that 

the estimator used for initial fitting, which was NUTS, does not affect which esti-

mator is used in a CoTiMA; it is maximum likelihood in the present example, which 

is the default estimator. Other estimators could be specified as shown in Table 2. 

The results in Figure 31 show the names of all parameters of the full (and all-
invariant) CoTiMA model, their respective row and column numbers in the matrices 

in which they are used, their estimated mean population values, their standard errors 

(labelled sd), their 2.5% lower credible interval, mean, and 97.5% upper credible 

interval, and the T-values.  

The four rows starting with DRIFT show the estimates for the continuous time 

drift coefficients, and their discrete time counterparts, that is, the auto-regressive and 
cross-lagged effects, across one quarter, are again shown closer to the bottom 

(dtDRIFT). As explained earlier, only the four rows containing the drift coeffi-

cients are usually important for reporting CoTiMA results. Nevertheless, we briefly 

explain what the other parameters stand for. For a more detailed description see 

Driver et al. (2017) and exact mathematical definitions can be found in Driver and 

Voelkle (2018). 

T0MEANS at the top of Figure 31 represent the initial (T0) means of the latent 

variables. Closer to the bottom in Figure 31, T0cov shows correlation of the latent 

factors at T0, which is identical to their covariance because we deal with standard-

ized variables here10. 

LAMBDA is a matrix with the factor loadings of the manifest variables on the 

latent factors. In the present example, this is a diagonal matrix in which the diagonal 

was fixed to 1.0. By this, each manifest variable loads on a single latent factor. Con-

versely, each latent factor is identified by a single manifest variable.  

MANIFESTMEANS is a matrix (with a single column only) containing the 

means of the intercepts of the manifest variables. Again, all values were fixed to 0.0 

because we deal with standardized variables here. 

CINT are the continuous time intercepts, which in case of standardized varia-

bles are usually zero. asymCint are the asymptotic continuous time intercepts. 

They reflect the intercept values to which the process converges after infinite time. 

These values should also be 0.0 in the case of CoTiMA, where we use standardized 

variables (correlations).  

 

 
10 Variances in CoTiMA are typically slightly smaller than 1.0. They are computed with n 3 1 in the 

denominator. For example, in the case of two primary studies with both N = 5 and variances = 1.0 (com-

puted with 4 as denominator), when merged the variance will be computed with 9 instead of 8 as denom-

inator, making the resulting estimate smaller than 1.0. 
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                              row col    Mean     sd    2.5%     50%   97.5%  Tvalues 
T0MEANS_1_1 (invariant)         1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
T0MEANS_2_1 (invariant)         2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
LAMBDA_1_1                      1   1  1.0000 0.0000  1.0000  1.0000  1.0000      Inf 
LAMBDA_1_2                      1   2  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
LAMBDA_2_1                      2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
LAMBDA_2_2                      2   2  1.0000 0.0000  1.0000  1.0000  1.0000      Inf 
DRIFT V1toV1 (invariant)        1   1 -0.7901 0.0695 -0.9409 -0.7904 -0.6691 -11.3683 
DRIFT V2toV1 (invariant)        1   2  0.3328 0.0575  0.2266  0.3323  0.4456   5.7878 
DRIFT V1toV2 (invariant)        2   1  0.2253 0.0475  0.1311  0.2257  0.3208   4.7432 
DRIFT V2toV2 (invariant)        2   2 -0.5528 0.0439 -0.6432 -0.5519 -0.4737 -12.5923 
MANIFESTMEANS_1_1 (invariant)   1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTMEANS_2_1 (invariant)   2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
CINT_1_1                        1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
CINT_2_1                        2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
asymCINT_1_1                    1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
asymCINT_2_1                    2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
asymDIFFUSIONcov_1_1            1   1  1.0900 0.0517  0.9916  1.0896  1.1932  21.0832 
asymDIFFUSIONcov_1_2            1   2  0.4900 0.0437  0.4138  0.4892  0.5779  11.2128 
asymDIFFUSIONcov_2_1            2   1  0.4900 0.0437  0.4138  0.4892  0.5779  11.2128 
asymDIFFUSIONcov_2_2            2   2  1.0780 0.0544  0.9780  1.0762  1.1872  19.8162 
DIFFUSIONcov_1_1 (invariant)    1   1  1.3915 0.0887  1.2304  1.3873  1.5754  15.6877 
DIFFUSIONcov_1_2 (invariant)    1   2  0.0534 0.0472 -0.0444  0.0534  0.1478   1.1314 
DIFFUSIONcov_2_1 (invariant)    2   1  0.0534 0.0472 -0.0444  0.0534  0.1478   1.1314 
DIFFUSIONcov_2_2 (invariant)    2   2  0.9679 0.0506  0.8742  0.9650  1.0735  19.1285 
MANIFESTcov_1_1                 1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTcov_1_2                 1   2  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTcov_2_1                 2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTcov_2_2                 2   2  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
T0cov_1_1 (invariant)           1   1  0.9971 0.0401  0.9230  0.9978  1.0760  24.8653 
T0cov_1_2 (invariant)           1   2  0.4390 0.0310  0.3804  0.4387  0.5018  14.1613 
T0cov_2_1 (invariant)           2   1  0.4390 0.0310  0.3804  0.4387  0.5018  14.1613 
T0cov_2_2 (invariant)           2   2  0.9941 0.0402  0.9198  0.9922  1.0801  24.7289 
dtDRIFT_1_1                     1   1  0.4735 0.0291  0.4164  0.4721  0.5285  16.2715 
dtDRIFT_1_2                     1   2  0.1720 0.0255  0.1227  0.1723  0.2194   6.7451 
dtDRIFT_2_1                     2   1  0.1164 0.0224  0.0712  0.1167  0.1586   5.1964 
dtDRIFT_2_2                     2   2  0.5960 0.0222  0.5519  0.5960  0.6373  26.8468 

Figure 31. Results (Part 1) of a full all-invariant CoTiMA with six studies (ctmaFit) 

Similarly, DIFFUSIONcov are the continuous time error variances (usually re-

ferred to as diffusion term in the literature), and asymDIFFUSIONcov reflect as-

ymptotic diffusion (error) variances and covariances. One might speculate that the 

asymptotic diffusion (error) variances should be 1.0 since one cannot explain any 

variance across infinite time. However, these estimates are based on internal trans-

formations, which are internally useful to reduce the time to fit the model but have 

no inherent meaning.  

MANIFESTcov is a matrix of variances and covariances among the manifest 

variables at each measurement occasion. All values were fixed to 0.0 because we 

had only a single manifest indicator per latent factor. 
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$minus2ll 
[1] 14072.99 
 
$n.parameters 
[1] 10 
 
$opt.lag.orig.time 
     [,1] [,2] 
[1,]   NA    2 
[2,]    2   NA 
 
$max.effects 
       [,1]   [,2] 
[1,]     NA 0.1843 
[2,] 0.1248     NA 

Figure 32. Results (Part 2) of a full all-invariant CoTiMA with six studies (ctmaFit) 

Part 2 of the results generated by the code in Figure 30 is shown in Figure 32. The  

-2ll values and number of estimated parameters are reported first. Then the optimal 

time interval according to Dormann and Griffin (2015) and the sizes of effects across 

the optimal interval are reported11.  

7.1.2 Full CoTiMA as Regular Model (ctmaFit) 

As noted in the last subsection, 2-wave studies with missing variables could be used, 
but they require constraining all parameters to be invariant across primary studies. 

Such strict assumptions are not necessary if variables (correlations) are not missing, 

or if each variable in a primary studies is measured at least twice. When a variable 

is available at two measurement occasions and a primary study comprises more than 

two waves, it does not impose problems for CoTiMA if this variable is missing at 

further waves. Only two measurements are required, whenever they were carried out 

during multi-wave studies. This is demonstrated in the current section, where we 

add such a study (Study 201), which is then used in subsequent examples as replace-

ment for Study 128. 

The workflow for replacing Study 128 by Study 201 and conducting a full Co-

TiMA is shown in Figure 33. Study 201 comprised three waves of measurement, 
and burnout was not measured at the third measurement occasion so that the corre-

lations were not available (NA). A new list of primary studies is compiled (Co-

TiMAstudyList_6_new), and the initial fitting of each primary study is re-done 

with the fit stored in the object CoTiMAInitFit_6_new. CoTiMAInit-

Fit_6_new is then used as the ctmaInitFit argument to fit a regular full Co-

TiMA using ctmaFit.  

 

 
11 When performing a CoTiMA, the user will notice several empty slots displayed after the summary 

function is applied (e.g., no random effects, no cluster effects). These represent additional functionalities 

of CoTiMA that we introduce later. 
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# Enter primary Study 201 with missing variables but each variable measured at least 
twice 
empcov201 <- matrix(c(1.00, 0.43, 0.64, 0.32, 0.57, NA,                        
                      0.43, 1.00, 0.30, 0.61, 0.26, NA, 
                      0.64, 0.30, 1.00, 0.48, 0.69, NA, 
                      0.32, 0.61, 0.48, 1.00, 0.37, NA, 
                      0.57, 0.26, 0.69, 0.37, 1.00, NA, 
                        NA,   NA,   NA,   NA,   NA, NA), nrow = 6, ncol = 6)  
variableNames201 <- c("Demands_1",  "Burnout_1", "Demands_2",  "Burnout_2",  
                      "Demands_3", "Burnout_3")  
dimnames(empcov201) <- list(variableNames201, variableNames201)  
delta_t201 <- c(3, 3)  
sampleSize201 <- 999  
ageM201 <- 39.4  
ageSD201 <- 10.55  
malePercent201 <- .689  
occupation201 <-  c("different occupations")  
country201 <- c("Switzerland")  
demands201 <- c("Time Pressure")  
burnout201 <- c("Exhaustion")  
source201 <-  c("Brauchli", "Schaufeli", "Jenny", "Fuellemann", "& Bauer", "2013")  
moderator201 <- c(2, NA)  
 
# Compiling a revised list of primary studies with Study 201 replacing Study 128 
activeDirectory <- "../../" # SET A VALID PATH    
CoTiMAstudyList_6_new <- ctmaPrep(selectedStudies = c(1, 4, 313, 18, 32, 201), 
                                  activeDirectory = activeDirectory, 
                                  addElements = c("demands", "burnout"), 
                                  moderatorLabels = c("Burnout Measure",  

                         "Control at Work"), 
                                  moderatorValues = list(c("1 = Emotional Exhaustion",  
                                                          "2 = Exhaustion"), 
                                                          "continuous"))  
 
# Initial fitting of revised list of primary studies 
CoTiMAInitFit_6_new <- ctmaInit(primaryStudies = CoTiMAstudyList_6_new, 
                                n.latent = 2, 
                                activeDirectory = activeDirectory) 
summary(CoTiMAInitFit_6_new) 
 
# The full CoTiMA 
CoTiMAFullFit_6_new <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_new, coresToUse = 2)  
summary(CoTiMAFullFit_6_new) 

Figure 33. Workflow for replacing Study 128 by Study 201 and conducting a regular full 
CoTiMA 

The results of the full CoTiMA are shown in Figure 34 and Figure 35. The interpre-

tation of results is analogous to the interpretation of the all-invariant CoTiMA dis-

cussed in 7.1.112. 

 
12 There is one notable difference. Whereas in the all-invariant CoTiMA estimated T0 correlations and 

diffusions apply to the full sample of primary studies, in Figure 33 they apply to the last of the primary 

studies (i.e., Study 32). This is due to technical reasons inherent in the ctsem R-package used by Co-

TiMA. In ctsem, k - 1 dummy variables for the overall k primary studies are used as so-called time 

independent predictors (TI), which modify (add or subtract values) the T0-correlations and the diffusion 

parameters estimated for the kth primary study. However, T0 correlations and diffusion parameters are 

usually of very little interest to researcher applying CoTiMA, so these technical details are only important 

in the probably rare case estimated T0 correlations and diffusions should be reported in publications.  
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                          row col  Mean    sd     2.5%    50%     97.5%  Tvalues 
T0MEANS_1_1                1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
T0MEANS_2_1                2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
LAMBDA_1_1                 1   1  1.0000 0.0000  1.0000  1.0000  1.0000      Inf 
LAMBDA_1_2                 1   2  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
LAMBDA_2_1                 2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
LAMBDA_2_2                 2   2  1.0000 0.0000  1.0000  1.0000  1.0000      Inf 
DRIFT V1toV1 (invariant)   1   1 -0.1671 0.0090 -0.1857 -0.1669 -0.1507 -18.4741 
DRIFT V2toV1 (invariant)   1   2  0.0322 0.0090  0.0139  0.0325  0.0499   3.5902 
DRIFT V1toV2 (invariant)   2   1  0.0489 0.0116  0.0276  0.0490  0.0708   4.1993 
DRIFT V2toV2 (invariant)   2   2 -0.2010 0.0124 -0.2254 -0.2005 -0.1784 -16.2699 
MANIFESTMEANS_1_1          1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTMEANS_2_1          2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
CINT_1_1                   1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
CINT_2_1                   2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
asymCINT_1_1               1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
asymCINT_2_1               2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
asymDIFFUSIONcov_1_1       1   1  1.3081 0.0538  1.2006  1.3065  1.4152  24.3253 
asymDIFFUSIONcov_1_2       1   2  0.5871 0.0460  0.5022  0.5880  0.6753  12.7614 
asymDIFFUSIONcov_2_1       2   1  0.5871 0.0460  0.5022  0.5880  0.6753  12.7614 
asymDIFFUSIONcov_2_2       2   2  1.2270 0.0591  1.1109  1.2263  1.3386  20.7661 
DIFFUSIONcov_1_1           1   1  0.3984 0.0113  0.3770  0.3985  0.4212  35.3336 
DIFFUSIONcov_1_2           1   2  0.1122 0.0099  0.0930  0.1123  0.1317  11.3817 
DIFFUSIONcov_2_1           2   1  0.1122 0.0099  0.0930  0.1123  0.1317  11.3817 
DIFFUSIONcov_2_2           2   2  0.4344 0.0154  0.4059  0.4340  0.4645  28.1915 
MANIFESTcov_1_1            1   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTcov_1_2            1   2  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTcov_2_1            2   1  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
MANIFESTcov_2_2            2   2  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
T0cov_1_1                  1   1  0.9993 0.0312  0.9401  0.9995  1.0598  32.0630 
T0cov_1_2                  1   2  0.4287 0.0230  0.3852  0.4277  0.4746  18.6006 
T0cov_2_1                  2   1  0.4287 0.0230  0.3852  0.4277  0.4746  18.6006 
T0cov_2_2                  2   2  0.9972 0.0296  0.9400  0.9948  1.0567  33.6564 
dtDRIFT_1_1                1   1  0.8468 0.0076  0.8311  0.8471  0.8606 111.6018 
dtDRIFT_1_2                1   2  0.0268 0.0075  0.0116  0.0271  0.0414   3.5973 
dtDRIFT_2_1                2   1  0.0406 0.0096  0.0230  0.0408  0.0588   4.2355 
dtDRIFT_2_2                2   2  0.8186 0.0101  0.7987  0.8190  0.8375  81.2755 

Figure 34. Results (Part 1) of a regular full CoTiMA with six studies (ctmaFit) 

$minus2ll 
[1] 25440.1 
 
$n.parameters 
[1] 40 
 
$opt.lag.orig.time 
     [,1] [,2] 
[1,]   NA    6 
[2,]    6   NA 
 
$max.effects 
      [,1]   [,2] 
[1,]    NA 0.0638 
[2,] 0.098     NA 

Figure 35. Results (Part 2) of a regular full CoTiMA with six studies (ctmaFit) 

7.2 Partial CoTiMA (ctmaFit) 

Figure 36 demonstrates some further possibilities for conducting a CoTiMA; addi-

tional capabilities are explained in Appendix B. The CoTiMA model specified in 
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Figure 36 fixes the effect of V2toV1 to 0.0 (which we do not generally recommend 

- let the evidence decide rather theoretical expectations), by labeling the according 

drift 0 or "0". Further, only the effect V1toV2 is invariant across primary studies as 

defined in the invariantDrift argument (which could be reasonable 3 and 

which could be decided based upon a statistical test see Subsection 7.3). The esti-

mated drift coefficients of this partial CoTiMA are shown in Figure 37. 

 
activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAPart134Inv3Fit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_new,                                   
                                  drift = matrix(c("V1toV1", 0, 
                                                   "V1toV2", "V2toV2"),  

        nrow = 2, ncol = 2, byrow = TRUE),                                   
                                  invariantDrift = c("V1toV2"), 
                                  coresToUse = 2)  
saveRDS(CoTiMAPart134Inv3Fit_6, paste0(activeDirectory,"CoTiMAPart134Inv3Fit_6.rds"))  
summary(CoTiMAPart134Inv3Fit_6) 

Figure 36. A partial CoTiMA with a subset of primary studies, with one cross effect fixed to 
0.0 invariant across primary studies and only one effect invariant across primary studies 

(ctmaFit) 

                         row col    Mean     sd    2.5%     50%   97.5%  Tvalues 
DRIFT V1toV1               1   1 -0.2066 0.0102 -0.2274 -0.2063 -0.1874 -20.2936 
DRIFT V2toV1               1   2  0.0000 0.0000  0.0000  0.0000  0.0000      NaN 
DRIFT V1toV2 (invariant)   2   1  0.0497 0.0115  0.0268  0.0498  0.0722   4.3117 
DRIFT V2toV2               2   2 -0.2501 0.0132 -0.2772 -0.2498 -0.2251 -19.0090 
 
$minus2ll 
[1] 25265.27 
 
$n.parameters 
[1] 49 

Figure 37. Results of the partial CoTiMA specified in Figure 36 (ctmaFit) 

7.3 CoTiMA with Equality Constraints (ctmaFit, 

ctmaEqual, ctmaCompFit) 

A -2ll difference test can be applied whenever researchers want to compare two 

model fits. Note, however, that the result is only valid if the two models are nested, 

that is, the second model is derived from the first model by constraining parameters. 

Such constraints are present, for example, if parameters are eliminated from a model 

by constraining them to be 0.0 (like demonstrated in Figure 36), or by constraining 
other parameters to be equal. To statistically test if two or more effects are equal is 

a bit complex and requires three steps: (1) ensuring correct coding (polarity), (2) 

fitting a partially invariant CoTiMA using ctmaFit, and (3) testing equality using 

ctmaEqual.  

First, (1) one has to take care that the effects to be compared have equal signs. 

For example, consider a model with three latent variables such as demands, re-

sources, and burnout. Work-related resources, such as supervisor support, can be 

supposed to reduce burnout whereas demands increase burnout. To compare the 
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effect sizes, one would need to go back to square one and re-start the EPIC part of 

the workflow. When preparing the correlations with ctmaEmpCov, one would need 

to use the recode argument to recode supervisor support so that it becomes lack of 

supervisor support. Then, one has to use ctmaInit again for initial fitting.  

In the second step (2), one could start testing the equality of the effect sizes of 

supervisor support and of demands on burnout. This requires two CoTiMAs to be 

performed. The first CoTiMA has to specify those two (or more) effects as invariant 

across studies that should be tested for equality in the subsequent step. This is done 

with ctmaFit. We call this the invariance model.  

 
activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAFullInv23Fit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_new,                                 
                                invariantDrift = c("V2toV1", "V1toV2"), 
                                coresToUse = 2)  
saveRDS(CoTiMAFullInv23Fit_6, paste0(activeDirectory, 

               "CoTiMAFullInv23Fit_6.rds"))  
summary(CoTiMAFullInv23Fit_6) 
 
CoTiMAFullInvEq23Fit_6 <- ctmaEqual(ctmaInvariantFit = CoTiMAFullInv23Fit_6,  
                                    coresToUse = 2)  
saveRDS(CoTiMAFullInvEq23Fit_6, paste0(activeDirectory,  

                 "CoTiMAFullInvEq23Fit_6.rds"))  
 
summary(CoTiMAFullInvEq23Fit_6) 

Figure 38. Two-step procedure for testing the equality of two cross effects (ctmaFit, 

ctmaEqual) 

Third (3), the CoTiMA fit-object returned then serves as an argument for 

ctmaEqual. The code for Step 2 and 3 is shown in Figure 38, in which V1toV2 

and V2toV1 are first declared to be invariant and then tested for equality. We do not 

display all estimated drift parameters returned from summary(CoTiMAFull-

Inv23Fit_6) in a Figure here because it is sufficient to note that V1toV2 = .0444, 

V2toV1 = .0307, -2ll = 25253.17, and the number of estimated parameters = 50. 

V1toV2 and V2toV1 were the only parameters that were aggregated, that is, invariant 

across primary studies. This is recognized by ctmaEqual, which, in addition to 

their invariance, constrains V1toV2 and V2toV1 to be equal. We call this the equality 

model. Again, we do not display all estimated drift parameters returned from sum-

mary(CoTiMAFullEq23Fit_6) in a Figure here because it is sufficient to note 

that V1toV2 = V2toV1 = .0364, -2ll = 25253.89, and the number of estimated param-

eters = 49.  

 
[1] "  ###   NEXT MODEL COMPARISON   ###"  
[2] "Diff_Minus2LL:  0.719788864123984"                                 
[3] "Diff_df (= Diff_n.params):  1"   
[4] "prob:  0.396213174274355"                                          
[5] "Message1:  A prob value < .05 indicates a significant difference." 

Figure 39. Result of the -2ll difference test comparing the fit of the invariance model with the 

fit of the equality to test if two cross effects are equal (ctmaEqual) 
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The -2ll difference test examines if the fit (-2ll value) of the equality model is not 

statistically worse than the fit of the invariance model. If this would be the case, then 

the hypothesis that both effects are equal has to be rejected and the alternative hy-

pothesis that one effect (V2toV1 in this example) is significantly larger than the other 

one (V1toV2 in this example), will be retained. The -2ll difference test is automati-

cally performed by ctmaEqual, too, it is displayed at the end of the sum-

mary(CoTiMAFullInv23Fit_6), and it is shown in Figure 39. In our exam-

ple, the -2ll difference test was not significant. Thus, we could not reject the hypoth-
esis that V1toV2 = V2toV1. 

Finally, we shall mention the ctmaCompFit function that comes with the 

CoTiMA package. The ctmaCompFit function is automatically used by 

ctmaEqual. It can also be applied whenever researchers want to compare two 

model fits with a -2ll difference test by using ctmaCompFit(CoTiMAFit1, 

CoTiMAFit2). Note, however, that the result is only valid if the two models are 

nested, that is, the second model is derived from the first model by constraining 

parameters. Such constraints are present, for example, if parameters are eliminated 

from a model by constraining them to be 0.0, or by constraining other parameters to 

be equal. The former is achieved by setting the desired drift effect to "0", and the 

latter is achieved by assigning identical labels to the desired drift effects. This could 

be done with the ctmaInit and ctmaFit functions. For example, the argument 
drift = matrix(c("V1toV1", 0, 0, "V1toV1"), nrow = 2, 

ncol = 2, byrow = TRUE) could be used to fit a model that has no cross 

effects and equal auto effects. This model is nested in a full CoTiMA model because 
it is more constrained. 

7.4 Moderated CoTiMA (ctmaFit) 

CoTiMA can handle multiple continuous moderators and multiple categorical mod-

erators, however, it is not yet possible to mix categorical and continuous ones. In 

general, we recommend starting with a single moderator to foster understanding how 

they operate before analyzing multiple moderators combined. 

Recalling from Figure 20 that we entered information about two moderators. 

The first was the type of burnout measure applied in a primary study, which was 

either exhaustion or emotional exhaustion, and which was a categorical moderator. 

If there were two or more categorical moderators, the moderator numbers and mod-

erator names would have to be provided as vectors (e.g., mod.number = c(1, 

3), mod.names = c("Burnout Measure", "Study Quality")). 

However, in the present example in Figure 40, we use the first potential moderator 

variable only (mod.number = 1), which was categorial (mod.type = 

"cat") representing two types of burnout measures (mod.names = "Burnout 

Measure"). By default, CoTiMA does (!) standardize moderators from version 
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0.5.3 onwards. In the present example, we did overwrite the default by including the 

argument scaleMod = FALSE. Thus, the k - 1 dummy variables created from the 

k categories of the moderator variable use values 0 and 1.  

 
activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAMod1onFullFit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_new, 
                                 mod.number = 1, 
                                 mod.type = "cat", 
                                 mod.names = "Burnout Measure", 
                                 coresToUse = 2, 
                                 scaleMod = FALSE)  
summary(CoTiMAMod1onFullFit_6) 
saveRDS(CoTiMAMod1onFullFit_6, paste0(activeDirectory,  

                "CoTiMAMod1onFullFit_6.rds")) 

Figure 40. A full moderated CoTiMA with a single categorical moderator (ctmaFit) 

Part of the results are shown in Figure 41. The drift effects shown in the Section 
$estimates are those in the reference group, which is always the group with the 

smallest category number. In the present example, these are the primary studies for 

which the moderator value was 1 (and internally recoded to 0 by CoTiMA) meaning 

they used an emotional exhaustion scale to measure burnout. 

The Section $mod.effects in Figure 41 shows the effects belonging group 

with the 2nd category number. In case there were more categories, one would find 

here four additional rows starting with "3(category value)" etc. It is im-

portant to note that this section does not show the drift effects. Rather, it shows how 

for primary studies of this category, which used an exhaustion compared to emo-

tional exhaustion scale to measure burnout, the drift effects change compared to the 

reference group. Neither auto effects nor cross effects were significantly affected by 

the type of burnout measure. Leaving lack of significance aside, the effect of de-
mands on burnout (V1toV2) was increased if an exhaustion scale was used in primary 

studies and the effect of burnout on demands (V2toV1) was reduced if an exhaustion 

rather than emotional exhaustion scale was used. We call this a positive moderating 

effect and a negative moderating effect of the exhaustion scale, respectively13. 

 
13 Plotting the moderator effects is straightforward because for each time interval the change in the drift 

parameter introduced by the moderator can be depicted as shown in Figure 42. However, summarizing 

the effect of a moderator in continuous time is not as straightforward because of the non-linearities in-

volved. To do so, the moderator effect is linearized at the mean of the drift effect, and this linearized 

effect is reported in the $mod.effects section. 
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$estimates 
                         row col    Mean     sd    2.5%     50%   97.5%  Tvalues 
DRIFT V1toV1 (invariant)   1   1 -0.1884 0.0186 -0.2276 -0.1874 -0.1544 -10.1084 
DRIFT V2toV1 (invariant)   1   2  0.0488 0.0188  0.0124  0.0491  0.0851   2.6001 
DRIFT V1toV2 (invariant)   2   1  0.0373 0.0190 -0.0008  0.0377  0.0757   1.9676 
DRIFT V2toV2 (invariant)   2   2 -0.1882 0.0191 -0.2310 -0.1872 -0.1544  -9.8449 
 
$minus2ll 
[1] 25434.78 
 
$n.parameters 
[1] 44 
 
$opt.lag.orig.time 
     [,1] [,2] 
[1,]   NA    5 
[2,]    5   NA 
 
$max.effects 
       [,1]   [,2] 
[1,]     NA 0.0959 
[2,] 0.0733     NA 
 
$mod.effects 
                                                    mean     sd    2.5%     50%  97.5% Tvalues 
2  (category value) of Burnout Measure_on_V1toV1  0.0328 0.0249 -0.0125  0.0305 0.0857  1.3166 
2  (category value) of Burnout Measure_on_V2toV1 -0.0226 0.0213 -0.0632 -0.0234 0.0198 -1.0620 
2  (category value) of Burnout Measure_on_V1toV2  0.0173 0.0243 -0.0304  0.0167 0.0652  0.7110 
2  (category value) of Burnout Measure_on_V2toV2 -0.0184 0.0237 -0.0593 -0.0199 0.0334 -0.7767 

Figure 41. Part of the results moderated full CoTiMA (ctmaFit) 

As always, the sizes of continuous time effects are virtually impossible to interpret. 

For example, the effect V1toV2 is .0373 for emotional exhaustion and .0373 + .0173 

= .0546 (linearized; see Footnote 13) for exhaustion. However, how these effects 

unfold over time also depends on the other three effects V1toV1, V2toV2, and 

V2toV1. We used plot(CoTiMAMod1onFullFit_6, timeUnit = 

"Quarters", timeRange = c(1, 36, 1)) to plot the moderated discrete 

time effects. For V1toV2, the course of the moderated effect over discrete time is 

shown in Figure 42. 

 

 



 
38 

 
Figure 42. The cross-lagged effect V1toV2 moderated by type of burnout measure  
(R = Reference category: emotional exhaustion, 2 = exhaustion) from 1 to 36 quarters (the 
horizontal location of the category indicators R (reference category) and 2 has no inherent 
meaning; plot) 

Since only two categories exist, catsToCompare = c(1, 2) is the only viable 

option in the present example. In the fitted model the moderating effects of Category 
1 and Category 2 are restricted to be invariant. If this assumption is valid (i.e., mod-

erating effects are not different for the two categories), the -2ll value of the restricted 

model should not be significantly different from the -2ll value of the unrestricted 

model. This is tested with the ctmaCompFit function at the bottom of Figure 43, 

which shows (not displayed in a figure) that the difference in the -2ll values given 4 

degrees of freedom is not significant (&(-2ll) = 5.3201; &(df) = 4; p = 0.2560). In 
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fact, with only two categories available, restricting their effects to be invariant is 

conceptually identical to assuming there is no moderating effect. Hence, comparing 

the (unrestricted) moderator model with the full CoTiMA model estimated earlier 

(which had not moderator effect included), should yield virtually identical results, 

and indeed ctmaCompFit(CoTiMAFullFit_6_new, CoTiMAMod1on-

FullFit_6) yields (&(-2ll) = 5.3201; &(df) = 4; p = 0.2560). However, with three 

or more categories these two -2ll difference tests will yield diverging results14. 

 
activeDirectory <- "../../" # SET A VALID PATH 
CoTiMAMod1onFullFit_6_cats12 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_new, 
                                        mod.number = 1, 
                                        mod.type = "cat",  
                                        mod.names = "Burnout Measure", 
                                        catsToCompare = c(1,2),  
                                        scaleMod = FALSE)  
saveRDS(CoTiMAMod1onFullFit_6_cats12,  
        paste0(activeDirectory, "CoTiMAMod1onFullFit_6_cats12.rds"))  
ctmaCompFit(CoTiMAMod1onFullFit_6_cats12, CoTiMAMod1onFullFit_6) 

Figure 43. Comparing the effect of two categories of a categorical moderator (ctmaFit, 

ctmaCompFit) 

activeDirectory <- "../../" # SET A VALID PATH    
tmpStudyList <- ctmaPrep(selectedStudies = c(1, 4, 313, 18), 
                         activeDirectory = activeDirectory, 
                         addElements = c("demands", "burnout"), 
                         moderatorLabels = c("Burnout Measure", "Control at Work"), 
                         moderatorValues = list(c("1 = Emotional Exhaustion",  
                                                  "2 = Exhaustion"), 
                                                  "continuous"))  
 
CoTiMAMod2on23Fit_6 <- ctmaFit(ctmaInitFit = CoTiMAInitFit_6_new, 
                               x = tmpStudyList,  
                               mod.number = 2, 
                               mod.type = "cont", 
                               mod.names = "Control", 
                               moderatedDrift = c("V1toV2", "V2toV1"), 
                               scaleMod = TRUE, 
                               coresToUse = 2)  
summary(CoTiMAMod2on23Fit_6) 
saveRDS(CoTiMAMod2on23Fit_6, paste0(activeDirectory,  
                                         "CoTiMAMod2on23Fit_6.rds"))  
plot(CoTiMAMod2on23Fit_6, timeUnit = "Quarters", timeRange = c(1, 36, 1)) 

Figure 44. Comparing the effect of two categories of a categorical moderator (ctmaFit, 

ctmaCompFit) 

The code for a partially moderated CoTiMA with a single continuous moderator is 
shown in Figure 44. Again, the types of primary studies we use in our example im-

pose a difficulty that is likely to occur in many practical circumstances: For some 

 
14 Instead of c(1, 2), it would also be possible to use indices such as c(i, j) and then use a double 

loop in R to compare all possible combinations of categories. For example: 
for(i in 1:(numberOfCats-1)) { for(j in (i+1):numberOfCats) { 
 tmpFit <- ctmaFit(ctmaInitFit = CoTiMAInitFit_object, mod.number = 1, 
                   mod.type = "cat", catsToCompare = c(i, j)) 
saveRDS(tmpFit, paste0(activeDirectory, "CoTiMAModFit_cat", i, "_", j, ".rds"))}} 



 
40 

studies the moderator variable is not available, and the moderator was therefore 

coded as NA. In our example, this was the case for Study 201 and Study 32. How-

ever, instead of going back to square one and compiling a reduced study list followed 

by applying ctmaInit again, we create a temporary study list using ctmaPrep, 

which does no longer include Study 201 and Study 32 (tmpStudyList). We use 

this temporary study list to specify an optional argument of the ctmaFit function 

(i.e., primaryStudyList = tmpStudyList).  

To conduct a moderated CoTiMA, further arguments have to be specified. In 
the current example in Figure 44 only the cross effects are specified to be moderated. 

It is recommended to standardize continuous moderators, which is achieved by 

scaleMod = TRUE. When continuous moderators are standardized, the esti-

mated drift parameters are those for a prototypical study with a mean moderator 

value (average effect). The summary (not shown) reveals that control does not sig-

nificantly reduce V2toV1 (i.e., the moderating effect) by -.0379 from the average 
effect, which is V2toV1 = .0685 (i.e., the main effect). 

The plot function shown in Figure 44 yields the plot shown in Figure 45. 

Across all time intervals, for people who have low levels of control at work, effects 

of demands on burnout are larger than for those with high levels of control. In most 

empirical articles that visualize moderator effects for moderator values at +2SD and 

-2SD are not shown. This could be achieved by using mod.values = c(-1, 

0, 1) as additional argument for the plot function in Figure 44. 
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Figure 45. The cross-lagged effect V2toV1 moderated (not significantly) by control at work 
from 1 to 36 quarters. The lines show the effect of V2toV1 for control at -2SD below the mean 
of control (-2), -1SD below the mean of control (-1), at the mean of control (0), +1SD above 
the mean of control (1), and +2SD above the mean the mean of control (2). The horizontal 
location of the SD values has no inherent meaning. 

8 Bias & Generalizability (ctmaBiG) 

After finishing the EPIC part of the EPIC-BiG-Power workflow, we can now turn 

to the first part of the BiG workflow, which is done by using ctmaBiG. It performs 

Egger9s tests for drift coefficients (e.g., Sterne & Egger, 2001) and provides PET-

PEESE corrections of fixed effect estimates (Stanley & Doucouliagos, 2014). Ran-

dom effect estimates are also computed. Various measures of heterogeneity (cf. 



 
42 

Borenstein et al., 2009) as well as measures of expected replications rates (ERR) and 

expected discovery rates (EDR; Bartoa & Schimmack, 2022; Brunner & Schim-

mack, 2020) are also provided by ctmaBiG. The return object of ctmaBiG can be 

used to plot funnel plots and forest plots.  

To proceed with ctmaBiG, we use the init fit file and data of primary stud-

ies published in the online repository of Dormann et al. (2020), which belongs to 

their CoTiMA of job stressors and burnout. The file containing their init fit-object 

can be retrieved from the website of the Open Science Foundations with the code 

shown in Figure 46. Note that Guthier et al. (2020) used a preliminary CoTiMA 

version that was based on the OpenMx R-package (Boker et al., 2011), whereas the 

file we suggest downloading was created with the rstan R-package (Stan Develop-

ment Team, 2020). The latter samples parameter estimates from generated parameter 

distribution and results thus slightly change from analysis to analysis (unless the 

argument finishsamples is set to a large value, e.g., 10000). So, one could ex-

pect minor differences compared to the results reported in Guthier et al. (2020). On 

the other hand, the init fit-object contains all information required to replicate all 

their results with minor deviations15. Note, however, computations could last a few 

hours except ctmaBiG. This is the major reason why we did not use their init fit-

object before. 
 

activeDirectory <- "../../" # SET A VALID PATH 
dl_link <- "https://osf.io/download/qhpae/"  
target_file <- paste0(activeDirectory, "CoTiMAInitFit_D_BO_stanct.rds")  
download.file(dl_link, target_file) # Note on windows computers add mode="wb"  
CoTiMAInitFit_D_BO <- readRDS(target_file)  
saveRDS(CoTiMAInitFit_D_BO, paste0(activeDirectory, "CoTiMAInitFit_D_BO.rds")) 

Figure 46. Downloading the Init-Fit file of Guthier et al. (2020) 

The analysis of bias and generalizability, summarizing the results, and plotting forest 

plots and funnel plots is achieved with the code in Figure 47. First, results of fixed 

effects analyses of single drift coefficients are displayed. Recall that in CoTiMA all 

drift effects (full CoTiMA) or a subset (partial CoTiMA) is aggregated simultane-

ously, thereby taking the entire causal system into account. Thus, CoTiMA estimates 

a set of fixed effects by constraining a set of drift effects to be invariant across groups 

(i.e., primary studies). Estimation is based on minimization of the discrepancy be-

tween the model implied covariance matrices and their empirical counterparts. 

 

 
15 In addition to the fitted ctsem models of each primary study, it is possible to extract all information 

from an init fit-object that were originally complied with ctmaPrep by, e.g., originalStudyL-

ist <- initFitObject$primaryStudyList. Thus, replicability of CoTiMA results is easily 

enabled by making one9s init fit-object available for download in a repository, for example, using the 

Open Science Framework http://osf.io/ 
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activeDirectory <- "../../" # SET A VALID PATH 
CoTiMABiG_D_BO <- ctmaBiG(CoTiMAInitFit_D_BO)  
summary(CoTiMABiG_D_BO)  
plot(CoTiMABiG_D_BO, activeDirectory = activeDirectory) 

Figure 47. Analysis of bias and generalizability, summary of results, and plotting (ctmaBiG) 

Contrary, in terms of a traditional fixed and random effects analysis, the drift effects 

of all primary studies, which resulted from the initial fitting of ctsem models one by 
one rather than as a set, are analyzed. Estimation is based on the standard errors of 

the drift effects rather than on minimizing discrepancies between implied and em-

pirical covariance matrices. The fixed effect estimates of the two cross effects re-

ported in the section $`Fixed Effects of Drift Coefficients` of 

Figure 48 were V1toV2 = .0024 (p < .001) and V2toV1 = .0053 (p < .001).  

The next section in Figure 48 is $Heterogeneity. Here �2 , H2 , and I2 are 

shown, of which I2 is usually of most interest. Note that estimates of �2 were small 
so even four decimal places are not sufficient to show this. Consequently, between-

study heterogeneity as indicated by I2 was large with the exception of the (small) 

effect V1toV2.  

The third section ($`Random Effects of Drift Coefficients`) 

in Figure 48 displays the random effect estimates, their SE, confidence intervals 

(Limit), and the z-values with their associated probability levels. In addition, pre-

diction intervals (LimitPI) also allow assessing the degree of heterogeneity. Pre-

diction intervals describe a region in which about 95% of the true study effects are 

expected to be found (e.g., Guddat et al., 2012). The effects V1toV2 = .0061 (p < 

.001) and V2toV1 = .0114 (p < .001) were larger than their fixed effects counterparts 

reported earlier. Note that the corresponding CoTiMA (fixed) effects reported by 

Guthier et al. (2020) were V1toV2 = .0039 (p < .001) and V2toV1 = .0084 (p < .001), 

and they were right in the middle between the traditional fixed and random effects 

estimates.  
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$estimates$`Fixed Effects of Drift Coefficients` 
                              V1toV1   V2toV1   V1toV2    V2toV2 
MeanOfDriftValues            -0.0590   0.0219   0.0112   -0.0539 
FixedEffect_Drift            -0.0219   0.0053   0.0024   -0.0133 
FixedEffect_DriftVariance     0.0000   0.0000   0.0000    0.0000 
FixedEffect_DriftSE           0.0004   0.0004   0.0003    0.0003 
FixedEffect_DriftUpperLimit  -0.0211   0.0061   0.0030   -0.0128 
FixedEffect_DriftLowerLimit  -0.0227   0.0046   0.0018   -0.0139 
FixedEffect_DriftZ          -54.3759  14.8119   7.5051  -46.5553 
FixedEffect_DriftProb         0.0000   0.0000   0.0000    0.0000 
tau2Drift                     0.0001   0.0001   0.0000    0.0001 
Q_Drift                     772.8941 534.5197 217.5015 1235.3390 
H2_Drift                     16.4446  11.3728   4.6277   26.2838 
H2DriftUpperLimit            18.0378  12.6111   5.2907   28.4719 
H2DriftLowerLimit            14.9920  10.2560   4.0477   24.2639 
I2_Drift                     93.9190  91.2071  78.3910   96.1954 
I2DriftUpperLimit            94.9458  92.8491  83.4677   96.7577 
I2DriftLowerLimit            92.6835  89.1880  71.7552   95.5355 
 
$estimates$Heterogeneity 
                    V1toV1   V2toV1   V1toV2    V2toV2 
tau2Drift           0.0001   0.0001   0.0000    0.0001 
Q_Drift           772.8941 534.5197 217.5015 1235.3390 
H2_Drift           16.4446  11.3728   4.6277   26.2838 
H2DriftUpperLimit  18.0378  12.6111   5.2907   28.4719 
H2DriftLowerLimit  14.9920  10.2560   4.0477   24.2639 
I2_Drift           93.9190  91.2071  78.3910   96.1954 
I2DriftUpperLimit  94.9458  92.8491  83.4677   96.7577 
I2DriftLowerLimit  92.6835  89.1880  71.7552   95.5355 
 
$estimates$`Random Effects of Drift Coefficients` 
                                    V1toV1  V2toV1  V1toV2   V2toV2 
RandomEffecttot_Drift              -0.0402  0.0114  0.0061  -0.0380 
RandomEffecttot_DriftVariance       0.0000  0.0000  0.0000   0.0000 
RandomEffecttot_DriftSE             0.0021  0.0017  0.0011   0.0021 
RandomEffecttot_DriftUpperLimit    -0.0360  0.0147  0.0082  -0.0339 
RandomEffecttot_DriftLowerLimit    -0.0444  0.0080  0.0039  -0.0420 
RandomEffecttot_DriftZ            -18.8218  6.6937  5.5527 -18.2167 
RandomEffecttot_DriftProb           0.0000  0.0000  0.0000   0.0000 
RandomEffecttot_DriftUpperLimitPI  -0.0169  0.0289  0.0153  -0.0149 
RandomEffecttot_DriftLowerLimitPI  -0.0636 -0.0062 -0.0032  -0.0611 

Figure 48. Part 1 of the results of ctmaBiG 

Part 2 of the results returned from ctmaBiG is shown in Figure 49. These results 

address possible publication bias. Egger9s tests (e.g., Sterne & Egger, 2001) is a 

statistical test of funnel plot asymmetry. Significant results indicate that small-N 

studies produced larger effect sizes (i.e., more positive, if the true effect is positive 

& more negative, if the true effect is negative), suggesting that the aggregated effects 

are biased. Thus, the results in the $`Egger’s tests` part of Figure 49 suggest 

that the cross effects are biased upwards, and the two auto effects are biased down-

wards. The latter means that demands and burnout in small-N studies have smaller 

carry-over effects than in large-N studies. This could have many reasons. For in-

stance, if job stress studies with small-N were based on single organizations or single 

occupations, variance might be restricted, implying lower test-retest correlations 

eventually resulting in smaller auto effects. However, this reasoning would also im-

ply smaller cross effects, which was not the case. Selective reporting might be a 

more plausible reason here. 




















































































































