Part I - A: Deconvolve purified CD138+ tumor samples using LM22 Note: ADAPTSdata and ADAPTSdata2 come from GitHub devtools::install_github(“sdanzige/ADAPTSdata”) devtools::install_github(“sdanzige/ADAPTSdata2”)
library(ADAPTS)
library(ADAPTSdata)
library(ADAPTSdata2)
library(preprocessCore)
library(pheatmap)
library(mclust)
#> Package 'mclust' version 5.4.2
#> Type 'citation("mclust")' for citing this R package in publications.
doParallel::registerDoParallel(cores = parallel::detectCores())
set.seed(42)
LM22 <- ADAPTS::LM22
cd138p <- ADAPTSdata::cd138p
wbm <- ADAPTSdata2::wbm
tumorPer <- ADAPTSdata2::tumorPer
LM22.source <- ADAPTSdata2::fullLM22
addMGSM27 <- ADAPTSdata::addMGSM27
cellCounts <- estCellPercent.DCQ(LM22, cd138p)
tumorPer$LM22.CD138p.tumor <- colSums(cellCounts[c('Plasma.cells','B.cells.memory'),
match(make.names(tumorPer$celfileRnas),colnames(cellCounts))])
incBool <- !is.na(tumorPer$CD138_Post_Sort)
curData <- tumorPer[incBool,]
rmse.lm22.cd138p <- sqrt(mean((curData$CD138_Post_Sort - curData$LM22.CD138p.tumor)^2))
ct.lm22.cd138p <- cor.test(curData$CD138_Post_Sort, curData$LM22.CD138p.tumor)
ct.lm22.cd138p.spear <- suppressWarnings(cor.test(curData$CD138_Post_Sort, curData$LM22.CD138p.tumor, method = 'spearman'))
titleStr <- paste0('LM22 Deconvolution of CD138+ Samples:\nRMSE = ', round(rmse.lm22.cd138p), '; Rho = ', round(ct.lm22.cd138p$estimate,2), '; Spear =', round(ct.lm22.cd138p.spear$estimate,2))
plot(curData$CD138_Post_Sort, curData$LM22.CD138p.tumor, main=titleStr, xlab='% Purity',
ylab='Deconvolved Tumor %')
Part I - B: Deconvolve WBM samples using LM22
cellCounts <- estCellPercent.DCQ(LM22, wbm)
tumorPer$LM22.WBM.tumor <- colSums(cellCounts[c('Plasma.cells','B.cells.memory'),
match(make.names(tumorPer$celfileRnbx),colnames(cellCounts))])
tumorPer$PC_Mean <- rowMeans(tumorPer[,c('PC_AspNum','PC_BmbxNum')], na.rm=TRUE)
incBool <- !is.nan(tumorPer$PC_Mean) & !is.na(tumorPer$LM22.WBM.tumor)
curData <- tumorPer[incBool,]
rmse.lm22.WBM <- sqrt(mean((curData$PC_Mean - curData$LM22.WBM.tumor)^2))
ct.lm22.WBM <- cor.test(curData$PC_Mean, curData$LM22.WBM.tumor)
ct.lm22.WBM.spear <- suppressWarnings(cor.test(curData$PC_Mean, curData$LM22.WBM.tumor, method = 'spearman'))
titleStr <- paste0('LM22 Deconvolution of WBM Samples:\nRMSE = ', round(rmse.lm22.WBM), '; Rho = ', round(ct.lm22.WBM$estimate,2), '; Spear =', round(ct.lm22.cd138p.spear$estimate,2))
plot(curData$PC_Mean, curData$LM22.WBM.tumor, main=titleStr, xlab='% WBM Tumor', ylab='Deconvolved Tumor %')
Part II - Build LM22 + ‘MM.plasma.cell’,‘PlasmaMemory’
LM22p <- LM22
augData <- addMGSM27[match(rownames(LM22), rownames(addMGSM27)), ]#grepl('PlasmaMemory',colnames(addMGSM27)) | grepl('MM.plasma.cell',colnames(addMGSM27))]
LM22p$PlasmaMemory <- rowSums(augData[,grepl('PlasmaMemory',colnames(augData))], na.rm=TRUE)
LM22p$MM.plasma.cell <- rowSums(augData[,grepl('MM.plasma.cell',colnames(augData))], na.rm=TRUE)
LM22p$osteoclast <- rowSums(augData[,grepl('osteoclast',colnames(augData))], na.rm=TRUE)
LM22p$osteoblast <- rowSums(augData[,grepl('osteoblast',colnames(augData))], na.rm=TRUE)
LM22p$adipocyte <- rowSums(augData[,grepl('adipocyte',colnames(augData))], na.rm=TRUE)
Part II - A: Deconvolve purified CD138+ tumor samples using LM22 + ‘MM.plasma.cell’,‘PlasmaMemory’
cellCounts <- estCellPercent.DCQ(LM22p, cd138p)
tumorPer$LM22p.CD138p.tumor <- colSums(cellCounts[c('Plasma.cells','B.cells.memory','MM.plasma.cell','PlasmaMemory'),
match(make.names(tumorPer$celfileRnas),colnames(cellCounts))])
incBool <- !is.na(tumorPer$CD138_Post_Sort)
curData <- tumorPer[incBool,]
rmse.lm22p.cd138p <- sqrt(mean((curData$CD138_Post_Sort - curData$LM22p.CD138p.tumor)^2))
ct.lm22p.cd138p <- cor.test(curData$CD138_Post_Sort, curData$LM22p.CD138p.tumor)
ct.lm22p.cd138p.spear <- suppressWarnings(cor.test(curData$CD138_Post_Sort, curData$LM22p.CD138p.tumor, method='spearman'))
titleStr <- paste0('LM22 + 5 Deconvolution of CD138+ Samples:\nRMSE = ', round(rmse.lm22p.cd138p), '; Rho = ', round(ct.lm22p.cd138p$estimate,2), '; Spear = ', round(ct.lm22p.cd138p.spear$estimate,2))
plot(curData$CD138_Post_Sort, curData$LM22p.CD138p.tumor, main=titleStr, xlab='% Purity', ylab='Deconvolved Tumor %')
Part II - B: Deconvolve WBM samples using LM22 + Bone Marrow Cells
cellCounts <- estCellPercent.DCQ(LM22p, wbm)
tumorPer$LM22p.WBM.tumor <- colSums(cellCounts[c('Plasma.cells','B.cells.memory','MM.plasma.cell','PlasmaMemory'),
match(make.names(tumorPer$celfileRnbx),colnames(cellCounts))])
tumorPer$PC_Mean <- rowMeans(tumorPer[,c('PC_AspNum','PC_BmbxNum')], na.rm=TRUE)
incBool <- !is.nan(tumorPer$PC_Mean) & !is.na(tumorPer$LM22p.WBM.tumor)
curData <- tumorPer[incBool,]
rmse.lm22p.WBM <- sqrt(mean((curData$PC_Mean - curData$LM22p.WBM.tumor)^2))
ct.lm22p.WBM <- cor.test(curData$PC_Mean, curData$LM22p.WBM.tumor)
ct.lm22p.WBM.spear <- suppressWarnings(cor.test(curData$PC_Mean, curData$LM22p.WBM.tumor, method='spearman'))
titleStr <- paste0('LM22 + 5 Deconvolution of WBM Samples:\nRMSE = ', round(rmse.lm22p.WBM), '; Rho = ', round(ct.lm22p.WBM$estimate,2), '; Spear = ', round(ct.lm22p.WBM.spear$estimate,2) )
plot(curData$PC_Mean, curData$LM22p.WBM.tumor, main=titleStr, xlab='% WBM Tumor', ylab='Deconvolved Tumor %')
Part III: Augmenting an existing signature matrix
olGenes <- rownames(LM22.source)[rownames(LM22.source) %in% rownames(addMGSM27)]
allData <- cbind(LM22.source[olGenes,], addMGSM27[olGenes,])
allData.nq <- as.data.frame(normalize.quantiles(as.matrix(allData)))
rownames(allData.nq) <- rownames(allData)
colnames(allData.nq) <- colnames(allData)
allData <- allData.nq
#Remove low variance genes to make the example run faster
allData.noNA <- allData[!apply(allData, 1, function(x){any(is.na(x))}),]
vars.noNA <- apply(allData.noNA, 1, var)
hist(vars.noNA)
#This will take a while. To make it faster, filter genes by variance
subData <- allData[vars.noNA>2,]
gList <- rankByT(subData)
olgenes <- rownames(subData)
fullData <- allData[olgenes,colnames(LM22.source)]
colnames(fullData) <- sub('\\.[0-9]+$', '', colnames(fullData)) #Strip any trailing numbers added by make.names()
newData <- allData[olgenes,colnames(addMGSM27)]
colnames(newData) <- sub('\\.[0-9]+$', '', colnames(newData)) #Strip any trailing numbers added by make.names()
#MGSM27 <- AugmentSigMatrix(origMatrix=LM22, fullData=fullData, newData=newData, gList=gList, nGenes=1:100, plotToPDF=FALSE, imputeMissing=TRUE, condTol=1.01, postNorm=TRUE, minSumToRem=NA, addTitle=NULL, autoDetectMin=TRUE, calcSpillOver=FALSE)
#Note: For the Identifying a High-risk Cellular Signature in the Multiple Myeloma Bone Marrow Microenvironment, we used the call commented out above, which resulted in 601 genes. It looks like the package used to find the minimima has changed, results in a smaller number of genes (~570). We recommend trying this option and looking at the condition number curves to see if it makes sense. Future version will probably upgrade the 'autoDetectMin' option to be smarter.
MGSM27 <- AugmentSigMatrix(origMatrix=LM22, fullData=fullData, newData=newData, gList=gList, nGenes=1:100, plotToPDF=FALSE, imputeMissing=TRUE, condTol=1.01, postNorm=TRUE, minSumToRem=NA, addTitle=NULL, autoDetectMin=FALSE, calcSpillOver=FALSE)
#> missForest iteration 1 in progress...
#> randomForest 4.6-14
#> Type rfNews() to see new features/changes/bug fixes.
#> done!
#> missForest iteration 2 in progress...done!
#> missForest iteration 3 in progress...done!
#> missForest iteration 4 in progress...done!
#> missForest iteration 5 in progress...done!
#> missForest iteration 6 in progress...done!
#> missForest iteration 1 in progress...done!
#> missForest iteration 2 in progress...done!
#> missForest iteration 3 in progress...done!
#> missForest iteration 4 in progress...done!
#> missForest iteration 5 in progress...done!
Part IV - A: Deconvolve purified CD138+ tumor samples using MGSM27
cellCounts <- estCellPercent.DCQ(MGSM27, cd138p)
tumorPer$MGSM27.CD138p.tumor <- colSums(cellCounts[c('Plasma.cells','B.cells.memory','MM.plasma.cell','PlasmaMemory'),
match(make.names(tumorPer$celfileRnas),colnames(cellCounts))])
incBool <- !is.na(tumorPer$CD138_Post_Sort)
curData <- tumorPer[incBool,]
rmse.mgsm27.cd138p <- sqrt(mean((curData$CD138_Post_Sort - curData$MGSM27.CD138p.tumor)^2))
ct.mgsm27.cd138p <- cor.test(curData$CD138_Post_Sort, curData$MGSM27.CD138p.tumor)
ct.mgsm27.cd138p.spear <- suppressWarnings(cor.test(curData$CD138_Post_Sort, curData$MGSM27.CD138p.tumor, method='spearman'))
titleStr <- paste0('MGSM27 Deconvolution of CD138+ Samples:\nRMSE = ', round(rmse.mgsm27.cd138p), '; Rho = ', round(ct.mgsm27.cd138p$estimate,2), '; Spear = ', round(ct.mgsm27.cd138p.spear$estimate,2) )
plot(curData$CD138_Post_Sort, curData$MGSM27.CD138p.tumor, main=titleStr, xlab='% Purity', ylab='Deconvolved Tumor %')
Part IV - B: Deconvolve WBM samples using MGSM27
cellCounts <- estCellPercent.DCQ(MGSM27, wbm)
tumorPer$MGSM27.WBM.tumor <- colSums(cellCounts[c('Plasma.cells','B.cells.memory','MM.plasma.cell','PlasmaMemory'),
match(make.names(tumorPer$celfileRnbx),colnames(cellCounts))])
tumorPer$PC_Mean <- rowMeans(tumorPer[,c('PC_AspNum','PC_BmbxNum')], na.rm=TRUE)
incBool <- !is.nan(tumorPer$PC_Mean) & !is.na(tumorPer$LM22.WBM.tumor)
curData <- tumorPer[incBool,]
rmse.mgsm27.WBM <- sqrt(mean((as.numeric(curData$PC_Mean) - curData$MGSM27.WBM.tumor)^2))
ct.mgsm27.WBM <- cor.test(as.numeric(curData$PC_Mean), curData$MGSM27.WBM.tumor)
ct.mgsm27.WBM.spear <- suppressWarnings(cor.test(as.numeric(curData$PC_Mean), curData$MGSM27.WBM.tumor, method='spearman'))
titleStr <- paste0('MGSM27 Deconvolution of WBM Samples:\nRMSE = ', round(rmse.mgsm27.WBM), '; Rho = ', round(ct.mgsm27.WBM$estimate,2), '; Spear = ', round(ct.mgsm27.WBM.spear$estimate,2) )
plot(curData$PC_Mean, curData$MGSM27.WBM.tumor, main=titleStr, xlab='% WBM Tumor', ylab='Deconvolved Tumor %')
Part V: Generating a new signature matrix (Top Variance, Subtract, Recreate)
olGenes <- rownames(LM22.source)[rownames(LM22.source) %in% rownames(addMGSM27)]
allData <- cbind(LM22.source[olGenes,], addMGSM27[olGenes,])
allData.nq <- as.data.frame(normalize.quantiles(as.matrix(allData)))
rownames(allData.nq) <- rownames(allData)
colnames(allData.nq) <- colnames(allData)
allData <- allData.nq
The top genes by variance will be the seedMatrix
nGenes <- 100
seedMat <- allData.noNA[names(tail(sort(vars.noNA), nGenes)),]
colnames(seedMat) <- sub('\\.[0-9]+$', '', colnames(seedMat))
seedMat.sig <- lapply(unique(colnames(seedMat)), function(x){ rowMeans(seedMat[,colnames(seedMat)==x], na.rm=TRUE)})
seedMat.sig <- do.call(cbind, seedMat.sig)
colnames(seedMat.sig) <- unique(colnames(seedMat))
pheatmap(seedMat.sig)
Augment that top gene network
subData.noNA <- allData.noNA[vars.noNA>2,]
colnames(allData.noNA) <- sub('\\.[0-9]+$', '', colnames(allData.noNA))
gList.noNA <- rankByT(subData.noNA)
topAug <- AugmentSigMatrix(origMatrix=seedMat.sig, fullData=allData.noNA, newData=allData.noNA, gList=gList.noNA, nGenes=1:100, plotToPDF=FALSE, imputeMissing=TRUE, condTol=1.01, postNorm=TRUE, minSumToRem=NA, addTitle=NULL, autoDetectMin=FALSE, calcSpillOver=FALSE)