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Abstract

The planar package solves the electromagnetic problem of dipole
emission near a planar multilayer stack. It comprises two sets of func-
tions; i) to compute the effective Fresnel reflection coefficient of a
multilayer structure; ii) to evaluate the modified dipolar field as an
integral over plane waves reflected at the interface.

1 Fresnel coefficients

The functions recursive.fresnel and multilayer both compute the Fres-
nel coefficients for a multilayer stack, using two different methods (recursive
application of Fresnel coefficients for a layer; and transfer matrix, respec-

tively).

1.1 Multilayer optics
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Figure 1: demo(bragg_stack) from the planar package. Reflectivity of a
Bragg stack with varying number of layers. Reproducing Fig. 6.6, p. 188 of
Mac Leod’s Thin Film Optical Filters the structure is a stack of lambda/4
layers of indices nH and nL on a glass substrate with increasing number of
layers, the reflectivity stop-band becomes stronger.

1.2 Kretschmann configuration — planar surface plasmon-
polaritons

First, we look at the reflectivity of a thin metal film excited in the Kretschmann
configuration.

In the same configuration, SPPs may be excited for a wide range of fre-
quencies. The dispersion of the surface mode may be observed as a high
reflectivity trace when plotted as a function of incident in-plane wavevector
and energy.

Free-space radiation cannot directly couple to SPP modes due to a mo-
mentum mismatch. Using evanescent illumination, in-plane wavevectors of
arbitrarily large value may be obtained and allow the mapping of the coupled-
SPPs dispersion in a symmetric configuration.
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Figure 2: demo(field_enhancement) from the planar package. Comparison
of the calculation of near field enhancement outside of a thin metal film with
Fresnel reflection and transmission coefficients.
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Figure 3: demo(LFIEF_distance) from the planar package. Local field en-
hancement factors for a dipole near or inside a multilayer. Note that the field
and its derivative are continuous across all interfaces.
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Figure 4: Reflectivity of a thin metal film, 50 nm thick, sandwiched between
glass (n = 1.5) and air. The SPP is excited at the metal/air interface. By
changing the incident angle, the normalised in-plane wavevector ¢ varies from
0 (normal incidence) to 1 (grazing internal angle).
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Figure 5: Reflectivity of a thin metal film, 50 nm thick, sandwiched between
semi-infinite glass (n = 1.5) and air. The dispersion of the SPP mode appears

as a dark curve following the equation kgpp, = ko /%
meta. alr
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Figure 6: Reflectivity of a thin metal film, 50 nm thick, sandwiched between
semi-infinite glass (n = 1.5) on either side. Coupled SPPs are excited when
the normalized in-plane wavevector ¢ is greater than 1. Note that values of
|7|? > 1 are not unphysical, as no power is transferred by evanescent waves.



2 Decay rates

From [RE09] (p. 571), and [NHO06] (pp. 335-360), the total decay rate for a
dipole perpendicular to the interface is

2 /1— ¢

The integrand diverges as ¢ — 1, it is therefore advantageous to perform
the substitution v := /1 — ¢2. In order to maintain a real path of inte-
gration, the integral is first split into a radiative region (0 < ¢ < 1, u :=

V1 —=¢*>0), and an evanescent region (1 < ¢ < 0o, —iu := /¢>2 — 1 > 0).

After some algebraic manipulation, we obtain,

00 3
ML =1+ §/ R {q—r”(q) exp (22’k1d\/ 1— q2) } dg (1)
0

3
Mg =1+ B (I + I2) (2)
where
1
I + I, —/ [1—u’]-R {rp(\/ 1 —u?)exp (2idk1u)} du
0

i} ()
+ / [1 + u2] -exp (—2dkiu) - S {rp(v 1+ u2)} du

Similarly, for the parallel dipole

My = 142 /OOO R { [L(])Q —7(q) MI £ q - exp (2ik1dﬂ) } dg
4

4 1—¢q
which can be rewritten as,
Ml =1+ Z (1 + 1) (5)
where

IlH + I2H :/1 R { [7’3(\/1 —u?) —u? P (V1 — u2)] exp (Zidklu)} du .
o 6
+ / exp (—2dkyu) - & {TS(\/l +u?) +u? - rP(V1+ u2)} du
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Figure 7: Integrand in the resonance region of the total decay rate enhance-
ment factor M, for a dipole situated 5nm above a metal interface.
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Figure 8: Integrand of the total decay rate enhancement factor M. for a
dipole situated 5 nm above a metal interface, for several emission wavelengths.
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Figure 9: Total and radiative decay rate enhancements for a dipole near a
metal interface. Reproducing Fig. 6.1, p. 304 from Principles of Surface-
Enhanced Raman Spectroscopy. A dipole is placed near a semi-infinite
air/metal interface with orientation either parallel or perpendicular to the
interface the total decay rates peak at the wavelength of excitation of planar
SPPs epsilon=-1 at the interface (loss channel). The radiative decay rate in
the upper medium has a trough at the wavelength where e = 0 (Dn = 0, by
continuity En = 0).

2.1 Angular pattern of dipole emission

By virtue of reciprocity, the local field intensity enhancement factor also
represent the probability of emission of a dipole in a particular direction.
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Figure 10: Integrated decay rates and efficiency for a dipole near a semi-
infinite air/metal interface for gold and silver, varying the wavelength and
the dipole-interface distance.

F.perp F.par
600 -
500~ 30-
400-
300- 20~
200- 104
100-
07\ | | | | | 07\ | | | | |
0O 10 20 30 40 50 0O 10 20 30 40 50
log.Mtot.perp log.Mtot.par

3.0 5232: Blaser
2.5- 20 — 510
2.0- e — 515
15 15
104 1.0- — 520
0.5- gg — 525
0.0 ] i i i | L | i | | | — 530

0 10 20 30 40 50 0 10 20 30 40 50

Mex.perp Mex.par

distance /nm

Figure 11: Fluorescence enhancement vs distance in the Kretschmann con-
figuration.
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Figure 12: Radiation pattern of a dipole near a dielectric/(metal)/dielectric
interface parallel and perpendicular orientations, p- and s- polarisations.
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