
BIOINFORMATICS Vol. 00 no. 00 2012
Pages 1–8

Learning smoothing models of copy number profiles
using breakpoint annotations
Toby Dylan Hocking 1,2,3,4∗, Gudrun Schleiermacher 5, Isabelle
Janoueix-Lerosey 5, Olivier Delattre 5, Francis Bach 1 and Jean-Philippe
Vert2,3,4
1INRIA – Sierra project-team, Paris, F-75013, 2 Centre for computational biology, Mines ParisTech,
Fontainebleau, F-77300, 3 Institut Curie, 4 INSERM U900 and 5 INSERM U830, Paris, F-75248,
France
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Many models have been proposed to detect breakpoints
in chromosomal copy number profiles, but it is usually not obvious to
decide which is most effective for a given data set. Furthermore, most
methods have a smoothing parameter that determines the number of
breakpoints and must be chosen using various heuristics.
Results: We present three contributions toward automatic training of
smoothing models. First, we propose to select the model and degree
of smoothness that maximizes agreement with visual breakpoint
region annotations. Second, we develop cross-validation procedures
to estimate the error of the trained models. Third, we apply these
methods to a new database of annotated neuroblastoma copy
number profiles, which we make available as a public benchmark
for testing new algorithms. Whereas previous studies have been
qualitative or limited to simulated data, our approach is quantitative
and suggests which algorithms are fastest and most accurate in
practice on real data.
Availability: Copy number profiles can be annotated using a GUI:
http://pypi.python.org/pypi/annotate_regions

The annotated neuroblastoma copy number profiles are available in
R: data(neuroblastoma,package="neuroblastoma")
http://cran.r-project.org/web/packages/neuroblastoma

Contact: toby.hocking@inria.fr

1 INTRODUCTION: THE NEED FOR SMOOTHING
MODEL SELECTION CRITERIA

DNA copy number alterations (CNAs) can result from various
types of genomic rearrangements, and are important in the study
of many types of cancer (Weinberg, 2006). In particular, clinical
outcome of patients with neuroblastoma has been shown to be worse
for tumors with segmental alterations or breakpoints in specific
genomic regions (Janoueix-Lerosey et al., 2009; Schleiermacher
et al., 2010). Thus, to construct an accurate predictive model of
clinical outcome for these tumors, we must first accurately detect
the precise location of each breakpoint.

∗to whom correspondence should be addressed

In recent years, array comparative genomic hybridization (aCGH)
microarrays have been developed as genome-wide assays for CNAs,
using the fact that microarray logratio is proportional to DNA copy
number (Pinkel et al., 1998). In parallel, there have been many new
mathematical models proposed to smooth the noisy signals from
these microarray assays in order to recover the CNAs (Hupé et al.,
2004; Picard et al., 2005; Venkatraman and Olshen, 2007; Tibshirani
and Wang, 2007; Ben-Yaacov and Eldar, 2008; Hoefling, 2009).
Each model has different assumptions about the data, and it is not
obvious to decide which model is appropriate for a given data set.

Furthermore, most models have parameters that control the
degree of smoothness. Varying these smoothing parameters will
vary the number of detected breakpoints. Most authors give default
values that accurately detect breakpoints on some data, but do not
necessarily generalize well to other data. There are some specific
criteria for choosing the degree of smoothness in some models
(Lavielle, 2005; Zhang and Siegmund, 2007; Zhang et al., 2010),
but the mathematical assumptions of these models are not often
verified in real noisy microarray data, which can lead to poor
estimation of CNAs.

In practice, software tools such as VAMP (La Rosa et al.,
2006) are often used to normalize the noisy microarray signals,
then plot them against genomic position for interpretation by an
expert biologist looking for CNAs. Indeed, to motivate the use
of their cghFLasso smoothing model, Tibshirani and Wang (2007)
write “The results of a CGH experiment are often interpreted by
a biologist, but this is time consuming and not necessarily very
accurate.”

In contrast, the first contribution of this paper is the idea that the
expert interpretation of the biologist is very accurate and in fact
valuable for model selection. To tune the smoothness parameter in
practice, the biologist will often examine plots of the microarray
signal with a smoothed model, changing the smoothness parameter
until the model seems to capture all the visible breakpoints the
data. In Section 2, we make this intuition concrete by defining a
training protocol based on visual annotations that can quantify the
accuracy of a smoothing method. We note that using databases of
visual annotations is not a new idea, and has been used successfully
for object recognition and detection in the field of computer vision

© Oxford University Press 2012. 1

Hocking et al

(Russell et al., 2008). In bioinformatics, Shah et al. (2006) proposed
a hidden Markov model with position-specific prior probabilities for
copy number variations, but no previous models have attempted to
learn the degree of smoothness using breakpoint annotations.

Our second contribution is a protocol to estimate the breakpoint
detection ability of the trained smoothing models on real data.
In Section 3, we propose to estimate the false positive and
false negative rates of the trained models using cross-validation.
This provides an objective criterion for deciding which smoothing
algorithms are appropriate for which data.

The third contribution of this paper is a systematic, quantitative
comparison of the accuracy of several common smoothing
algorithms on a new database of 575 annotated neuroblastoma copy
number profiles, which we give in Section 5. For simulated data,
Willenbrock and Fridlyand (2005) compared GLAD, DNAcopy,
and a hidden Markov model by examining false positive and false
negative rates for detection of a breakpoint at a specific location.
Fiegler et al. (2006) used quantitative PCR to validate the CNA-
detection accuracy of their CNVfinder method on real data. But
quantitative PCR is low-throughput and costly, and in real copy
number profiles the locations of breakpoints are unknown. So in fact
there are no previous studies that quantitatively compare breakpoint
detection of smoothing models on real data. In this paper we propose
to use annotated regions instead of precise breakpoint locations for
quantifying smoothing model accuracy, and we make available 575
new annotated neuroblastoma copy number profiles as a benchmark
for the community to test new algorithms on real data.

Several authors have recently proposed methods for so-called
joint segmentation of multiple CGH profiles, under the hypothesis
that each profile shares breakpoints in the exact same location (Vert
and Bleakley, 2010; Ritz et al., 2011). These models are not useful
in our setting, since we assume that breakpoints do not occur in
the exact same locations across copy number profiles. Instead, we
focus on the case of learning a model that will accurately detect an
unknown number of breakpoints in a copy number profile.

2 TRAINING SMOOTHING MODELS USING
BREAKPOINT ANNOTATIONS

The first contribution of this paper is a smoothing model training protocol
that uses visually determined breakpoint annotations to quantify model
accuracy, which we explain in this section.

2.1 Detecting breakpoints using smoothing models
Assume that we have observed n chromosomal copy number profiles, each
with an unknown number of breakpoints at unknown locations. We would
like to recover the breakpoints accurately using a model with parameter λ
that controls the degree of smoothness. As shown in Figure 1, we represent
the d probes on chromosome c of profile i using the following numbers:

p1 ≤ . . . ≤ pd ∈ N positions on chromosome c
y1 , . . . , yd ∈ R logratio measurements
ŷλ1 , . . . , ŷλd ∈ R smoothed profile

We define the breakpoints predicted on this chromosome as the set of
positions where there are jumps in the smoothed signal:

B̂λic =
{
(pj + pj+1)/2 | ŷλj 6= ŷλj+1, ∀j = 1, . . . , d− 1

}
(1)

Then, we define B̂λi to be the complete set of genomic breakpoints
predicted by algorithm λ for profile i, over all chromosomes c.

2.2 Breakpoint annotations quantify model accuracy
Intuitively, by visual inspection of the noisy signal, it is not obvious to locate
the exact location of a breakpoint, but it should be easy to determine whether
or not a region contains a breakpoint. So rather than defining annotations in
terms of precise breakpoint locations, we instead define them in terms of
regions. We define a genomic region Rk as the subset of genomic positions
on chromosome ck between the min rk and max rk .

So, we define the breakpoint annotation for profile i in region k as

bik =

{
0 if profile i has no breakpoints in Rk
1 if profile i has at least 1 breakpoint in Rk,

(2)

which can be determined by visual inspection of the scatterplot of logratio
measurements y versus position p, as in Figure 1.

The idea for model selection is to choose λ such that the predicted
breakpoints B̂λi agree with the annotations bik , as shown in Figure 1. To
quantify this, for each region k, we predict 0 if there are no predicted
breakpoints in the region, and 1 if there is at least 1 predicted breakpoint:

b̂λik =

{
0 if Rk ∩ B̂λi = ∅
1 otherwise

(3)

We can measure the error of a model at region k on profile i with the
indicator function

Eki (λ) =

{
0 if bik = b̂λik
1 otherwise

(4)

and with respect to an entire profile i using

Elocal
i (λ) =

∑
k

Eki (λ) (5)

We define the local model as the model obtained by choosing a different λi
to minimize Equation 5 for each profile i.

However, we can learn a globally optimal smoothing parameter λ by
minimizing the error with respect to all the profiles:

Eglobal(λ) =

n∑
i=1

Elocal
i (λ). (6)

We define the global model as the model obtained by choosing a smoothing
parameter λ∗ that minimizes Equation 6.

2.3 Picking the optimal degree of smoothness
We assume that λ is a tuning parameter that is monotonic in the number of
breakpoints, which is the case for the models considered in this paper.

Fix a set of smoothing parameters, and run the smoothing algorithm with
each of these parameters. Intuitively, we should pick the value of λ that
maximizes agreement with annotation data. For global models, we attempt
to minimize Equation 6, and there is usually one best value, λ∗.

However, for the local model for profile i, we want to minimize the local
error as defined in Equation 5. Since the training set consists of only the
annotations of one profile i, there may be no unique smoothing parameter
λ that minimizes the error. We propose to pick between models that achieve
the minimum number of errors based on the shape of the error curve, and
these cases are illustrated in Figure 2.

1. When the minimum error is achieved in a range of intermediate
parameter values, we pick a value in the middle. This occurs in the
local error curves shown for flsa.norm and cghseg.k.

2. When the minimum is attained by the model with the most breakpoints,
we pick the model with the fewest breakpoints that has the same error.
This attempts to minimize the false positive rate. This occurs for profile
i = 375 with models dnacopy.sd and glad.lambdabreak.

3. When the minimum is attained by the model with the fewest
breakpoints, we pick the model with the most breakpoints that has the
same error. This attempts to minimize the false negative rate, and occurs
for profile i = 362 with models dnacopy.sd and glad.lambdabreak.

2

Learning smoothing models with breakpoint annotations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202122 X Y

−1

 0

 1

−1

 0

 1

−1

 0

 1

●
●
●●●

●

●
●●

●

●●

●

●
●
●
●
●
●
●
●
●●
●
●
●●
●●●

●
●

●●

●

●●
●
●
●

●
●
●
●
●
●

●
●●

●
●
●
●
●
●●

●●●
●
●

●
●
●

●●●

●●
●●●●
●

●

●

●

●

●
●
●●●
●

●
●

●

●

●
●●●●●●●●●
●●●●
●
●●●●●●●
●●●
●●
●

●●●
●●●●
●●
●
●
●●
●●
●●●●
●

●
●
●
●
●●●●
●
●
●
●
●●●●●
●
●●●●●●
●●
●
●
●●●
●
●●●●●●
●●●
●●●●●●
●
●
●
●
●●●●
●
●
●●●●

●

●

●
●

●

●●●●●
●
●●●●●●

●●
●
●

●
●
●
●
●●●●●●

●

●●●
●●●●●●●●
●●
●
●●●●
●
●●
●●●
●
●●●●●●●
●●●●●●
●
●
●●●●●●
●
●
●●●●
●●●
●●●
●
●
●●●●
●
●
●●
●●●●
●

●

●●●
●●●
●●●●●
●

●

●
●
●●●

●

●
●●

●

●●

●

●
●
●
●
●
●
●
●
●●
●
●
●●
●●●

●
●

●●

●

●●
●
●
●

●
●
●
●
●
●

●
●●

●
●
●
●
●
●●

●●●
●
●

●
●
●

●●●

●●
●●●●
●

●

●

●

●

●
●
●●●
●

●
●

●

●

●
●●●●●●●●●
●●●●
●
●●●●●●●
●●●
●●
●

●●●
●●●●
●●
●
●
●●
●●
●●●●
●

●
●
●
●
●●●●
●
●
●
●
●●●●●
●
●●●●●●
●●
●
●
●●●
●
●●●●●●
●●●
●●●●●●
●
●
●
●
●●●●
●
●
●●●●

●

●

●
●

●

●●●●●
●
●●●●●●

●●
●
●

●
●
●
●
●●●●●●

●

●●●
●●●●●●●●
●●
●
●●●●
●
●●
●●●
●
●●●●●●●
●●●●●●
●
●
●●●●●●
●
●
●●●●
●●●
●●●
●
●
●●●●
●
●
●●
●●●●
●

●

●●●
●●●
●●●●●
●

●

●
●
●●●

●

●
●●

●

●●

●

●
●
●
●
●
●
●
●
●●
●
●
●●
●●●

●
●

●●

●

●●
●
●
●

●
●
●
●
●
●

●
●●

●
●
●
●
●
●●

●●●
●
●

●
●
●

●●●

●●
●●●●
●

●

●

●

●

●
●
●●●
●

●
●

●

●

●
●●●●●●●●●
●●●●
●
●●●●●●●
●●●
●●
●

●●●
●●●●
●●
●
●
●●
●●
●●●●
●

●
●
●
●
●●●●
●
●
●
●
●●●●●
●
●●●●●●
●●
●
●
●●●
●
●●●●●●
●●●
●●●●●●
●
●
●
●
●●●●
●
●
●●●●

●

●

●
●

●

●●●●●
●
●●●●●●

●●
●
●

●
●
●
●
●●●●●●

●

●●●
●●●●●●●●
●●
●
●●●●
●
●●
●●●
●
●●●●●●●
●●●●●●
●
●
●●●●●●
●
●
●●●●
●●●
●●●
●
●
●●●●
●
●
●●
●●●●
●

●

●●●
●●●
●●●●●
●

●

●●
●●
●●●
●

●

●
●●●●
●●●●●●
●

●

●●
●●●●
●●

●●
●
●●
●
●
●●
●

●●●

●●●

●●
●●●●●
●
●●

●
●
●●●●
●
●●●●
●

●
●
●●●●
●●
●●
●●●

●●

●

●
●

●●

●●●

●

●●●
●
●
●
●
●●
●●
●●●●●
●
●●●
●
●●●●

●●

●

●
●●
●●●●●●●
●●●
●

●
●

●
●●●
●●●
●
●●
●●●●
●
●●●●●●
●
●●

●●●●●●
●●
●●●●●●
●●

●●
●●
●●●
●

●

●
●●●●
●●●●●●
●

●

●●
●●●●
●●

●●
●
●●
●
●
●●
●

●●●

●●●

●●
●●●●●
●
●●

●
●
●●●●
●
●●●●
●

●
●
●●●●
●●
●●
●●●

●●

●

●
●

●●

●●●

●

●●●
●
●
●
●
●●
●●
●●●●●
●
●●●
●
●●●●

●●

●

●
●●
●●●●●●●
●●●
●

●
●

●
●●●
●●●
●
●●
●●●●
●
●●●●●●
●
●●

●●●●●●
●●
●●●●●●
●●

●●
●●
●●●
●

●

●
●●●●
●●●●●●
●

●

●●
●●●●
●●

●●
●
●●
●
●
●●
●

●●●

●●●

●●
●●●●●
●
●●

●
●
●●●●
●
●●●●
●

●
●
●●●●
●●
●●
●●●

●●

●

●
●

●●

●●●

●

●●●
●
●
●
●
●●
●●
●●●●●
●
●●●
●
●●●●

●●

●

●
●●
●●●●●●●
●●●
●

●
●

●
●●●
●●●
●
●●
●●●●
●
●●●●●●
●
●●

●●●●●●
●●
●●●●●●
●●

●●

●

●
●●●

●

●
●
●●
●

●●●

●●
●
●
●
●

●
●●

●●

●
●●
●●

●
●
●
●
●
●

●
●

●

●●
●●

●
●

●

●●

●

●

●●
●

●●

●

●

●

●
●

●●
●●●●●●●

●
●●●●●
●
●
●
●●●
●●●

●

●●
●
●●

●

●●●
●

●
●
●

●
●●●
●●●●●●●●●
●
●●●
●
●●●
●
●
●
●●●●●
●●

●●●
●●
●
●
●●●
●●
●
●

●

●●

●

●
●●●

●

●
●
●●
●

●●●

●●
●
●
●
●

●
●●

●●

●
●●
●●

●
●
●
●
●
●

●
●

●

●●
●●

●
●

●

●●

●

●

●●
●

●●

●

●

●

●
●

●●
●●●●●●●

●
●●●●●
●
●
●
●●●
●●●

●

●●
●
●●

●

●●●
●

●
●
●

●
●●●
●●●●●●●●●
●
●●●
●
●●●
●
●
●
●●●●●
●●

●●●
●●
●
●
●●●
●●
●
●

●

●●

●

●
●●●

●

●
●
●●
●

●●●

●●
●
●●●

●
●●

●●

●
●●
●●

●
●
●
●
●
●

●
●

●

●●
●●

●
●

●

●●

●

●

●●
●

●●

●

●

●

●
●

●●
●●●●●●●

●
●●●●●
●
●
●
●●●
●●●

●

●●
●
●●

●

●●●
●

●
●
●

●
●●●
●●●●●●●●●
●
●●●
●
●●●
●
●
●
●●●●●
●●

●●●
●●
●
●
●●●
●●
●
●

●

●

●

●●
●
●
●
●●●●
●●
●
●●

●
●

●

●
●

●●●
●
●●●
●
●
●●●●●●

●
●

●●●●●

●
●
●

●
●
●

●
●
●
●●●●●●
●
●

●

●
●●●

●
●●●●●
●
●●
●
●●●●●●●●

●●●
●●●
●●
●
●●●
●

●●
●

●

●

●●
●
●
●
●●●●
●●
●
●●

●
●

●

●
●

●●●
●
●●●
●
●
●●●●●●

●
●

●●●●●

●
●
●

●
●
●

●
●
●
●●●●●●
●
●

●

●
●●●

●
●●●●●
●
●●
●
●●●●●●●●

●●●
●●●
●●
●
●●●
●

●●
●

●

●

●●
●
●
●
●●●●
●●
●
●●

●
●

●

●
●

●●●
●
●●●
●
●
●●●●●●

●
●

●●●●●

●
●
●

●
●
●

●
●
●
●●●●●●
●
●

●

●
●●●

●
●●●●●
●
●●
●
●●●●●●●●

●●●
●●●
●●
●
●●●
●

●●
●

●●
●●
●●●

●

●●

●●

●
●●
●
●
●
●
●
●●●●
●●
●●●●●●
●

●●
●●
●
●●●●●
●●●
●

●●●
●
●
●
●●●
●
●●
●

●●●●●●
●●

●

●

●●●
●
●●●●●●
●
●●●
●●●●

●●●●●
●
●

●●
●●●

●●●●

●
●●
●●
●

●

●

●
●

●●
●
●

●
●●
●●●●
●●
●●
●●
●●●●●●
●
●●●●●●
●

●

●●●

●●
●●
●●●

●

●●

●●

●
●●
●
●
●
●
●
●●●●
●●
●●●●●●
●

●●
●●
●
●●●●●
●●●
●

●●●
●
●
●
●●●
●
●●
●

●●●●●●
●●

●

●

●●●
●
●●●●●●
●
●●●
●●●●

●●●●●
●
●

●●
●●●

●●●●

●
●●
●●
●

●

●

●
●

●●
●
●

●
●●
●●●●
●●
●●
●●
●●●●●●
●
●●●●●●
●

●

●●●

●●
●●
●●●

●

●●

●●

●
●●
●
●
●
●
●
●●●●
●●
●●●●●●
●

●●
●●
●
●●●●●
●●●
●

●●●
●
●
●
●●●
●
●●
●

●●●●●●
●●

●

●

●●●
●
●●●●●●
●
●●●
●●●●

●●●●●
●
●

●●
●●●

●●●●

●
●●
●●
●

●

●

●
●

●●
●
●

●
●●
●●●●
●●
●●
●●
●●●●●●
●
●●●●●●
●

●

●●●

●

●

●●
●●
●●●●●●
●●●
●
●●
●

●●

●●
●
●
●
●●
●●●●●

●

●
●

●●

●
●
●
●●
●
●
●
●
●
●
●●●
●●●●
●

●

●
●●
●
●

●

●●●●●

●●●●

●
●
●
●
●●●
●
●●

●
●●●
●●●
●●●●
●●
●
●
●●●●
●●●
●●
●●
●
●
●

●●
●●
●●●

●

●

●●
●●
●●●●●●
●●●
●
●●
●

●●

●●
●
●
●
●●
●●●●●

●

●
●

●●

●
●
●
●●
●
●
●
●
●
●
●●●
●●●●
●

●

●
●●
●
●

●

●●●●●

●●●●

●
●
●
●
●●●
●
●●

●
●●●
●●●
●●●●
●●
●
●
●●●●
●●●
●●
●●
●
●
●

●●
●●
●●●

●

●

●●
●●
●●●●●●
●●●
●
●●
●

●●

●●
●
●
●
●●
●●●●●

●

●
●

●●

●
●
●
●●
●
●
●
●
●
●
●●●
●●●●
●

●

●
●●
●
●

●

●●●●●

●●●●

●
●
●
●
●●●
●
●●

●
●●●
●●●
●●●●
●●
●
●
●●●●
●●●
●●
●●
●
●
●

●●
●●
●●●

●

●●●●
●
●
●●●●●●●●
●●●

●
●
●
●

●
●●
●●●
●●
●
●
●●●
●

●
●

●
●●
●
●
●●●
●
●
●●●
●●●●●●
●●●
●
●●●

●
●

●

●●●

●
●

●
●
●
●
●●
●
●

●

●
●●
●
●

●

●●●●
●
●
●●●●●●●●
●●●

●
●
●
●

●
●●
●●●
●●
●
●
●●●
●

●
●

●
●●
●
●
●●●
●
●
●●●
●●●●●●
●●●
●
●●●

●
●

●

●●●

●
●

●
●
●
●
●●
●
●

●

●
●●
●
●

●

●●●●
●
●
●●●●●●●●
●●●

●
●
●
●

●
●●
●●●
●●
●
●
●●●
●

●
●

●
●●
●
●
●●●
●
●
●●●
●●●●●●
●●●
●
●●●

●
●

●

●●●

●
●

●
●
●
●
●●
●
●

●

●
●●
●
●

●

●●●●●

●

●●●●

●
●●●●●
●●●●●
●●●●●
●

●

●●●●●●
●
●●
●●

●
●●●●
●●●
●
●
●
●
●
●
●
●●●
●●
●
●●●●
●
●

●
●●●●
●●

●●
●●
●
●
●
●

●

●●●●●

●

●●●●

●
●●●●●
●●●●●
●●●●●
●

●

●●●●●●
●
●●
●●

●
●●●●
●●●
●
●
●
●
●
●
●
●●●
●●
●
●●●●
●
●

●
●●●●
●●

●●
●●
●
●
●
●

●

●●●●●

●

●●●●

●
●●●●●
●●●●●
●●●●●
●

●

●●●●●●
●
●●
●●

●
●●●●
●●●
●
●
●
●
●
●
●
●●●
●●
●
●●●●
●
●

●
●●●●
●●

●●
●●
●
●
●
●

●●
●●

●
●
●●●

●

●●●
●

●
●

●
●●
●●●●
●●●●
●
●●

●●
●
●●●●●●●●

●●●●●●
●●●
●
●
●
●
●●
●
●

●
●●●
●●●
●
●●●●●●

●
●●
●●●
●
●●
●
●
●●
●●
●
●●

●

●

●●
●●

●
●
●●●

●

●●●
●

●
●

●
●●
●●●●
●●●●
●
●●

●●
●
●●●●●●●●

●●●●●●
●●●
●
●
●
●
●●
●
●

●
●●●
●●●
●
●●●●●●

●
●●
●●●
●
●●
●
●
●●
●●
●
●●

●

●

●●
●●

●
●
●●●

●

●●●
●

●
●

●
●●
●●●●
●●●●
●
●●

●●
●
●●●●●●●●

●●●●●●
●●●
●
●
●
●
●●
●
●

●
●●●
●●●
●
●●●●●●

●
●●
●●●
●
●●
●
●
●●
●●
●
●●

●

●

●

●
●
●●●●●●●
●
●●●●
●●●
●●
●●●●●
●
●
●
●
●
●●●
●●
●
●●

●

●

●

●
●

●

●

●●
●●●

●

●●●●●
●

●●
●
●
●●
●
●●●●●●
●●●

●

●
●
●●●●●●●
●
●●●●
●●●
●●
●●●●●
●
●
●
●
●
●●●
●●
●
●●

●

●

●

●
●

●

●

●●
●●●

●

●●●●●
●

●●
●
●
●●
●
●●●●●●
●●●

●

●
●
●●●●●●●
●
●●●●
●●●
●●
●●●●●
●
●
●
●
●
●●●
●●
●
●●

●

●

●

●
●

●

●

●●
●●●

●

●●●●●
●

●●
●
●
●●
●
●●●●●●
●●●

●

●
●●
●●●

●
●●
●●●
●●●●●●●●
●●
●
●●●

●
●
●
●
●●●

●

●

●●●
●

●

●●
●
●
●●●●●●
●●●●●●

●
●●
●
●●
●

●
●
●●●●

●●

●
●●●●●●●
●●●●
●●●●●●●

●
●●
●
●
●
●●●●●

●

●
●●
●●●

●
●●
●●●
●●●●●●●●
●●
●
●●●

●
●
●
●
●●●

●

●

●●●
●

●

●●
●
●
●●●●●●
●●●●●●

●
●●
●
●●
●

●
●
●●●●

●●

●
●●●●●●●
●●●●
●●●●●●●

●
●●
●
●
●
●●●●●

●

●
●●
●●●

●
●●
●●●
●●●●●●●●
●●
●
●●●

●
●
●
●
●●●

●

●

●●●
●

●

●●
●
●
●●●●●●
●●●●●●

●
●●
●
●●
●

●
●
●●●●

●●

●
●●●●●●●
●●●●
●●●●●●●

●
●●
●
●
●
●●●●●

●

●●

●●
●
●
●
●
●●
●●●●
●
●
●
●●●●●●●●
●●●●●
●
●●
●●●
●
●●●
●
●

●
●●●●
●●●
●
●●●●●●●●
●
●

●

●●●

●
●
●
●

●
●
●
●●●
●
●
●●●●

●
●
●
●

●

●●
●●
●
●
●
●

●

●

●●●
●●●●
●
●●●
●
●
●●●
●
●
●●
●●●
●●●
●●
●●●●
●●

●

●
●
●
●●●●
●
●●

●

●
●●
●

●●

●

●
●●●

●

●●

●●
●
●
●
●
●●
●●●●
●
●
●
●●●●●●●●
●●●●●
●
●●
●●●
●
●●●
●
●

●
●●●●
●●●
●
●●●●●●●●
●
●

●

●●●

●
●
●
●

●
●
●
●●●
●
●
●●●●

●
●
●
●

●

●●
●●
●
●
●
●

●

●

●●●
●●●●
●
●●●
●
●
●●●
●
●
●●
●●●
●●●
●●
●●●●
●●

●

●
●
●
●●●●
●
●●

●

●
●●
●

●●

●

●
●●●

●

●●

●●
●
●
●
●
●●
●●●●
●
●
●
●●●●●●●●
●●●●●
●
●●
●●●
●
●●●
●
●

●
●●●●
●●●
●
●●●●●●●●
●
●

●

●●●

●
●
●
●

●
●
●
●●●
●
●
●●●●

●
●
●
●

●

●●
●●
●
●
●
●

●

●

●●●
●●●●
●
●●●
●
●
●●●
●
●
●●
●●●
●●●
●●
●●●●
●●

●

●
●
●
●●●●
●
●●

●

●
●●
●

●●

●

●
●●●

●

●●
●●
●
●

●
●

●●●●
●●●
●
●●●
●●●●●
●
●
●
●●

●
●●●

●

●●
●●
●●
●
●●●
●
●
●●
●

●

●●
●
●

●

●●
●●
●
●

●
●

●●●●
●●●
●
●●●
●●●●●
●
●
●
●●

●
●●●

●

●●
●●
●●
●
●●●
●
●
●●
●

●

●●
●
●

●

●●
●●
●
●

●
●

●●●●
●●●
●
●●●
●●●●●
●
●
●
●●

●
●●●

●

●●
●●
●●
●
●●●
●
●
●●
●

●

●●
●
●

●
●

●

●
●●●
●●●
●●
●●
●●●●●●●●●

●●
●

●●
●
●
●●●●
●●●●
●
●●●

●
●
●●
●
●
●
●
●
●●
●
●

●

●

●

●
●

●

●
●●●
●●●
●●
●●
●●●●●●●●●

●●
●

●●
●
●
●●●●
●●●●
●
●●●

●
●
●●
●
●
●
●
●
●●
●
●

●

●

●

●
●

●

●
●●●
●●●
●●
●●
●●●●●●●●●

●●
●

●●
●
●
●●●●
●●●●
●
●●●

●
●
●●
●
●
●
●
●
●●
●
●

●

●

●

●
●
●●
●●●●

●

●
●●
●
●●●●
●●●●
●

●●●
●
●●●●●●
●

●

●

●●
●●
●●
●

●
●
●
●●●

●

●●●●●●
●
●
●

●●●
●●

●
●
●●
●●●●

●

●
●●
●
●●●●
●●●●
●

●●●
●
●●●●●●
●

●

●

●●
●●
●●
●

●
●
●
●●●

●

●●●●●●
●
●
●

●●●
●●

●
●
●●
●●●●

●

●
●●
●
●●●●
●●●●
●

●●●
●
●●●●●●
●

●

●

●●
●●
●●
●

●
●
●
●●●

●

●●●●●●
●
●
●

●●●
●●

●
●
●●●
●

●
●●
●

●●
●
●
●●●●●●●●
●●
●●●

●●●●●
●
●
●●
●
●

●
●

●

●

●●

●●●

●

●●●●●●●●
●
●

●
●
●●●
●

●
●●
●

●●
●
●
●●●●●●●●
●●
●●●

●●●●●
●
●
●●
●
●

●
●

●

●

●●

●●●

●

●●●●●●●●
●
●

●
●
●●●
●

●
●●
●

●●
●
●
●●●●●●●●
●●
●●●

●●●●●
●
●
●●
●
●

●
●

●

●

●●

●●●

●

●●●●●●●●
●
●

●

●●

●
●●

●
●
●
●●●●●

●

●

●
●●●●
●●●
●●●●
●

●●●●●

●
●
●

●
●
●
●
●●●●

●●
●●
●
●●
●●
●

●●
●
●●●●
●
●●●●●●●●
●
●

●

●
●●

●

●●
●

●

●
●●
●
●●
●

●

●

●
●●●●●●

●
●

●●●●
●

●●

●●
●
●
●
●●
●
●●●
●
●●

●●
●●
●●

●

●●

●
●●

●
●
●
●●●●●

●

●

●
●●●●
●●●
●●●●
●

●●●●●

●
●
●

●
●
●
●
●●●●

●●
●●
●
●●
●●
●

●●
●
●●●●
●
●●●●●●●●
●
●

●

●
●●

●

●●
●

●

●
●●
●
●●
●

●

●

●
●●●●●●

●
●

●●●●
●

●●

●●
●
●
●
●●
●
●●●
●
●●

●●
●●
●●

●

●●

●
●●

●
●
●
●●●●●

●

●

●
●●●●
●●●
●●●●
●

●●●●●

●
●
●

●
●
●
●
●●●●

●●
●●
●
●●
●●
●

●●
●
●●●●
●
●●●●●●●●
●
●

●

●
●●

●

●●
●

●

●
●●
●
●●
●

●

●

●
●●●●●●

●
●

●●●●
●

●●

●●
●
●
●
●●
●
●●●
●
●●

●●
●●
●●

●
●
●●●●
●
●●
●●●●●

●
●
●●
●

●●
●
●
●
●
●
●
●●●●

●
●
●
●●
●
●●●●
●
●
●
●●●●
●●

●

●
●●●●●●●●

●
●
●●●●
●
●●
●●●●●

●
●
●●
●

●●
●
●
●
●
●
●
●●●●

●
●
●
●●
●
●●●●
●
●
●
●●●●
●●

●

●
●●●●●●●●

●
●
●●●●
●
●●
●●●●●

●
●
●●
●

●●
●
●
●
●
●
●
●●●●

●
●
●
●●
●
●●●●
●
●
●
●●●●
●●

●

●
●●●●●●●●

●
●●
●

●

●

●
●●
●●●
●
●

●

●
●

●

●

●●
●
●●●●

●
●

●

●

●
●

●
●●
●

●

●

●
●●
●●●
●
●

●

●
●

●

●

●●
●
●●●●

●
●

●

●

●
●

●
●●
●

●

●

●
●●
●●●
●
●

●

●
●

●

●

●●
●
●●●●

●
●

●

●

●
●

●
●

●
●

●

●●●
●
●●●
●●
●
●
●●●
●
●
●
●
●●●
●
●

●●

●

●
●
●●●

●

●
●●●●●
●
●
●
●●●
●●
●●
●
●●●
●
●

●●

●
●

●
●

●

●●●
●
●●●
●●
●
●
●●●
●
●
●
●
●●●
●
●

●●

●

●
●
●●●

●

●
●●●●●
●
●
●
●●●
●●
●●
●
●●●
●
●

●●

●
●

●
●

●

●●●
●
●●●
●●
●
●
●●●
●
●
●
●
●●●
●
●

●●

●

●
●
●●●

●

●
●●●●●
●
●
●
●●●
●●
●●
●
●●●
●
●

●●

●●●●

●

●
●
●
●
●

●
●
●
●

●

●
●
●●
●

●
●●
●●
●
●

●●
●●

●●●●

●

●
●
●
●
●

●
●
●
●

●

●
●
●●
●

●
●●
●●
●
●

●●
●●

●●●●

●

●
●
●
●
●

●
●
●
●

●

●
●
●●
●

●
●●
●●
●
●

●●
●●

●●
●
●●
●●●
●
●
●

●●
●●
●
●
●●●

●●

●●●●
●
●●
●●●●
●
●●
●●●●●●
●
●●
●

●

●●
●●●
●●●●
●
●
●

●●
●
●●
●●●
●
●
●

●●
●●
●
●
●●●

●●

●●●●
●
●●
●●●●
●
●●
●●●●●●
●
●●
●

●

●●
●●●
●●●●
●
●
●

●●
●
●●
●●●
●
●
●

●●
●●
●
●
●●●

●●

●●●●
●
●●
●●●●
●
●●
●●●●●●
●
●●
●

●

●●
●●●
●●●●
●
●
●

●
●
●
●●●●●
●
●●
●
●●●●●●
●

●
●

●
●●
●●●
●●●●
●

●
●
●●●●●
●●●●●
●●
●
●

●
●

●

●
●
●●
●●
●●●
●●●●

●
●●

●

●

●●

●
●
●
●●●●●
●
●●
●
●●●●●●
●

●
●

●
●●
●●●
●●●●
●

●
●
●●●●●
●●●●●
●●
●
●

●
●

●

●
●
●●
●●
●●●
●●●●

●
●●

●

●

●●

●
●
●
●●●●●
●
●●
●
●●●●●●
●

●
●

●
●●
●●●
●●●●
●

●
●
●●●●●
●●●●●
●●
●
●

●
●

●

●
●
●●
●●
●●●
●●●●

●
●●

●

●

●●

●●
●

●
●●●
●

●●
●

●
●●●
●

●●
●

●
●●●
●

lam
bda =

 0.5
lam

bda =
 7.5

lam
bda =

 10

100 200 100 200 100 200 100 200 100 100 100 100 100 100 100 100 100 100 100 100
position on chromosome (mega base pairs)

lo
gr

at
io annotation

breakpoint

normal

Fig. 1. Model agreement to annotated regions can be measured by examining the positions of predicted breakpoints B̂λi (dashed vertical blue lines) observed
in the smoothing model ŷλ (solid blue lines). Black circles show logratio measurements y plotted against position p for a single profile i = 375. Chromosomes
are shown in panels from left to right, and different values of the smoothing parameter λ in the flsa model are shown in panels from top to bottom. Models with
too many breakpoints (λ = 0.5) and too few breakpoints (λ = 10) are suboptimal, so we pick an intermediate model (λ = 7.5) that maximizes agreement
with the annotations, thus detecting a new breakpoint on chromosome 7 which was not annotated.

cghseg.k flsa.norm dnacopy.sd glad.lambdabreak

 0

20

40

60

80

 0

20

40

60

80

 0

20

40

60

80

●
2.2

●

●

●
4.8

●

●

●
11.5

●

●

●
13.4

●

●

global m
odel

local m
odel for profile 375

local m
odel for profile 362

−5 −4 −3 −2 −1 0−0.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 0 1 2 3 4
log10(smoothing parameter)

pe
rc

en
t i

nc
or

re
ct

ly
 p

re
di

ct
ed

 a
nn

ot
at

io
ns

 in
 tr

ai
ni

ng
 s

et

statistic

errors

false.positive

false.negative

<− more breakpoints fewer breakpoints −>

Fig. 2. Training error functions for global and local models plotted against smoothing parameter λ. In the top row panels, we plotEglobal(λ) from Equation 6,
and in the other rows, we plot Elocal

i (λ) from Equation 5. Each column of plots shows the error of a particular algorithm, and the minimum chosen using the
global training procedure is shown using a vertical grey line. Note that the local model training error can be reduced by moving from the globally optimal
smoothing parameter λ∗ to a local value λi, as in profile i = 375 for algorithms dnacopy.sd and glad.lambdabreak. For the local models trained on single
profiles, there are at most 6 training examples, so many smoothing parameters attain the minimum. Thus, we use the protocol described in section 2.3 to pick
the best value, shown as a black dot.

3

Hocking et al

3 ESTIMATING THE ERROR OF THE TRAINED
MODEL USING CROSS-VALIDATION

The second contribution of this paper are cross-validation procedures that
estimate the generalization error of the trained smoothing models. The main
idea is to use a training set of annotations to learn the parameter of a
smoothing model, then quantify the error of the model using a test set of
annotations. Notably, this enables quantitative comparison of breakpoint
detection models on copy number profiles from real microarray data.

3.1 Leave-one-out cross-validation for comparing local
and global models

To compare the breakpoint detection performance of local and global models
on un-annotated regions, we propose leave-one-out cross-validation on
regions.

• For each annotated region k:

1. Designate Rk as the test region, and set aside the annotations in
this region from all the profiles.

2. Using all the other annotations as a training set, pick the best λ
using the protocol described in Section 2.3. For local models we
learn a profile-specific λi that minimizes Elocal

i , and for global
models we learn a global λ that minimizes Eglobal.

3. To estimate how the model generalizes, count the errors of the
learned model in the test region Rk .

• To estimate the ability of the trained model to predict breakpoints at a
general un-annotated region, take the mean test error over all regions.

3.2 n/t-fold cross-validation to estimate error on
un-annotated profiles

Since the annotation process is time-consuming, we are interested in training
an accurate breakpoint detector with as few annotations as possible. Thus we
would like to answer the following question: how many profiles t do I need
to annotate before I get a global model that will generalize well to all the
other profiles?

To answer this question, we estimate the error of a global model trained
on the annotations from t profiles using cross-validation. We divide the set
of n annotated profiles into exactly bn/tc folds, each with approximately t
profiles. For each fold, we consider its annotations a training set for a global
model, and combine the other folds as a test set to quantify the model error.
The final estimate of generalization error is then the average model error over
all folds.

min = rk max = rk chrom ck breakpoint normal (all)

0.0 125.0 1 103 464 567
0.0 93.3 2 110 464 574
0.0 91.0 3 43 531 574
0.0 50.4 4 35 534 569

53.7 135.0 11 107 464 571
24.0 81.2 17 175 388 563

(all) 573 2845 3418

Table 1. Counts of normal and breakpoint annotations in the neuroblastoma
data set, conditional on region. Min and max limits of each region are shown
in mega base pairs, in reference to the Hg19 Human genome assembly.

4 DATA AND MODELS

4.1 Neuroblastoma copy number data
We analyzed a new data set of n = 575 copy number profiles from aCGH
microarray experiments on neuroblastoma tumors taken from patients at
diagnosis. The microarrays were produced using various technologies, so
do not all have the same probes. The number of probes per microarray varies
from 1719 to 71340. In this article we analyzed the normalized logratio
measurements of these microarrays, which we have made available in R
package neuroblastoma on CRAN.

Six chromosome arms known to be associated with prognostic impact
were annotated in the microarray data set (Janoueix-Lerosey et al., 2009).
Each region R1, . . . , R6 was defined by the start and end of a chromosome
arm, and the genomic coordinates of these regions are given in Table 1.

For each profile i, our domain expert annotated each region k by
examining the plotted profile in VAMP (La Rosa et al., 2006) and recording
0 or 1 in a spreadsheet, according to the definition of breakpoint annotations
in Equation 2. Table 1 shows counts of annotations per region, and
Table 2 shows counts of annotations per profile. Some profiles have
less than 6 annotations since we excluded regions where presence of
breakpoints could not be determined by visual inspection. The annotations
are shown as colored rectangles in Figure 1, and are available in R package
neuroblastoma on CRAN.

4.2 Smoothing models
In this study we considered smoothing models from the bioinformatics
literature with free software implementations available as R packages on
CRAN, R-Forge, or Bioconductor (R Development Core Team, 2011;
Theußl and Zeileis, 2009; Gentleman et al., 2004).

We used version 1.03 of the flsa package from CRAN to calculate the
Fused Lasso Signal Approximator as described by Hoefling (2009). The
FLSA solves the following optimization problem for each chromosome:

ŷλ = argmin
β∈Rd

1

2

d∑
i=1

(yi−βi)2+λ1
d∑
i=1

|βi|+λ2
d−1∑
i=1

|βi−βi+1|. (7)

We define a grid of values λ ∈ {10−5, . . . , 1012}, take λ1 = 0, and
consider the following parameterizations for λ2:

• flsa: λ2 = λ.

• flsa.norm: λ2 = λd × 106/l where d is the number of points and l is
the length of the chromosome in base pairs.

We used version 1.29.0 of the DNAcopy package from Bioconductor
to fit the circular binary segmentation model of Venkatraman and Olshen
(2007). We varied the degree of smoothness by adjusting the undo.SD,
undo.prune, and alpha parameters of the segment function.

Normal Breakpoint annotations
annotations 0 1 2 3 4 5 6

0 0 0 0 1 0 0 2
1 0 0 0 0 3 9 0
2 0 0 0 5 29 0 0
3 0 1 3 60 0 0 0
4 0 8 64 0 0 0 0
5 8 47 0 0 0 0 0
6 335 0 0 0 0 0 0

Table 2. Counts of profiles in the neuroblastoma data set, conditional on
number of annotations. Note that most profiles have more normal regions
than breakpoint regions. For example, 335 profiles have all 6 regions
annotated as normal.

4

Learning smoothing models with breakpoint annotations

We used version 0.2-1 of the cghFLasso package from CRAN, which
implements the method of Tibshirani and Wang (2007), but does not provide
any smoothness parameters for breakpoint detection.

We used version 2.17.0 of the GLAD package from Bioconductor to
fit the GLAD adaptive weights smoothing model of Hupé et al. (2004).
We varied the degree of smoothness by adjusting the lambdabreak and
MinBkpWeight parameters of the daglad function. For the glad.haarseg
model, we used the smoothfunc="haarseg" option and varied the
breaksFdrQ parameter to fit the wavelet smoothing model of Ben-Yaacov
and Eldar (2008).

We used version 0.01 of the cghseg package from R-Forge to fit the
maximum-likelihood piecewise constant smoothing model of Picard et al.
(2005) for each chromosome using pruned dynamic programming (Rigaill,
2010). We used the segmeanCO function with kmax=20 to obtain the
maximum-likelihood piecewise constant smoothing model ŷk for k =

1, . . . , 20 segments. Lavielle (2005) suggested penalizing k breakpoints in
a signal sampled at d points using λk, and varying λ as a tuning parameter.
We implemented this model selection criterion as the cghseg.k model, for
which we define the optimal number of segments

k∗(λ) = argmin
k∈{1,...,20}

λk +
1

d

d∑
i=1

(yi − ŷki)2, (8)

and the optimal smoothing ŷλ = ŷk
∗(λ). For the cghseg.mBIC model, we

used the modified Bayesian information criterion described by Zhang and
Siegmund (2007), which has no smoothness parameter, and is implemented
in the uniseg function of the cghseg package.

5 RESULTS
All the algorithms from Section 4.2 were applied to all the annotated
neuroblastoma copy number profiles in the data set described in
Section 4.1. However, the dnacopy.prune algorithm was too slow
(> 24 hours) for some of the profiles with many data points, so
these profiles were excluded from the analysis of dnacopy.prune.
Note that to decrease computation time, the model fitting may

be trivially parallelized for profiles, algorithms, and smoothing
parameter values.

5.1 Among global models, cghseg.k exhibits the
smallest training error in the neuroblastoma data

The global and local training procedures were applied to the
entire set of annotated profiles. Training error curves for flsa.norm,
cghseg.k, dnacopy.sd, and glad.lambdabreak are shown in Figure 2.
Note that the global curves do not achieve zero training error but the
local curves often do, suggesting that the local training strategy may
be useful in some cases. Also note the inflexibility of the dnacopy.sd
and glad.lambdabreak models, which do not detect a breakpoint in
profile i = 362, even at the smallest parameter value, corresponding
to the model with the most breakpoints. Finally, note the minimum
error of 2.2% achieved by cghseg.k, the global model with the
smallest training error.

The ROC curves for the training error of the global models for
each algorithm are traced in Figure 3. It is clear that the default
parameters of each algorithm show relatively large false positive
rates. In contrast, the models chosen by maximizing agreement with
the breakpoint annotation data exhibit smaller false positive rates
at the cost of smaller true positive rates. The ROC curves suggest
that the cghseg.k algorithm is the most discriminative for breakpoint
detection in the neuroblastoma data.

5.2 Global models generalize better than local models
The leave-one-out cross-validation protocol was used to contrast
the test error of the models trained using the local and global
procedures. Table 3 shows the error, false positive, and false
negative rates of each model, averaged over the 6 test regions.

It is clear that the training procedure makes no difference
for models glad.default, dnacopy.default, cghseg.mBIC, and

optimization−based models dnacopy glad

0.5

0.6

0.7

0.8

0.9

1.0 ●●

●

●

●

cghseg.k

flsa

 flsa

norm

cghFLassocghseg.mBIC
●

●

●

●

dnacopy.alpha

dnacopy.prune

dnacopy.sd

 dnacopy

default

●

●

●

●
glad.haarseg

glad.lambdabreak

glad.MinBkpWeight

glad.default

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
False positive rate = probability(predict breakpoint | normal)

Tr
ue

 p
os

iti
ve

 r
at

e
=

pr
ob

ab
ili

ty
(p

re
di

ct
 b

re
ak

po
in

t |
 b

re
ak

po
in

t)

Fig. 3. ROC curves for the training error with respect to the breakpoint annotation data are shown as colored lines. The curves are shown in 3 panels zoomed
to the upper left region of ROC space to avoid visual clutter. Each curve is traced by plotting the error of a model as the degree of smoothness is varied, and an
empty black circle shows the global model chosen by minimizing the error with respect to all annotations. Algorithms with no tuning parameters are shown
as black dots. Note that some ROC curves appear incomplete since some segmentation algorithms are not flexible enough for the task of breakpoint detection,
even though we ran each algorithm on a very large range of smoothness parameter values.

5

Hocking et al

cghFLasso, which have no smoothness parameters. The large
error of these models suggest that the assumptions of their default
parameter values do not hold in the neuroblastoma data set. More
generally, these error rates suggest that smoothness parameter
tuning is critically important to obtain an accurate smoothing of real
copy number profiles.

For dnacopy.prune, glad.MinBkpWeight, glad.lambdabreak, and
flsa, there appears to be little difference between the local and
global training procedures. For models flsa.norm and cghseg.k,
there seems to be a clear advantage for the global models which
share information between profiles. Indeed, the cghseg.k model
shows the minimal estimated error of only 2.2% on these data, with
a moderately fast median training time of 2.1 seconds.

Finally, note that the false positive rate of locally trained models
is higher than the false negative rate for most algorithms. This can
be explained by the larger fraction of normal annotations present in
the training set, and the fact that many profiles have only normal
annotations (Table 2).

5.3 Only a few profiles need to be annotated for a good
global model

Finally, to estimate the generalization error of a global model trained
on a relatively small training set of t annotated profiles, we applied
the n/t-fold cross-validation procedure to the data.

For several training set sizes t, we plot the error of the
glad.lambdabreak, dnacopy.sd, flsa.norm, and cghseg.k models in
Figure 4. It shows that adding more annotations to the training
set decreases the error in general, but at a diminishing rate. The
error curves flatten out near t = 10, suggesting that annotating
10 profiles is sufficient to get performance just as good as if
all the profiles were annotated. Futhermore, it is clear that the
minimum error is model-dependent, and we conjecture that it is also
annotator-dependent.

This suggests the following protocol: annotate breakpoints in
about 10 profiles, then use those annotations to train a global model.
In Table 4, we used n/10-fold cross-validation to estimate the error

rates of models trained using this protocol. These error estimates are
slightly larger, but the model ordering is mostly unchanged, with
respect to the leave-one-out cross-validated estimates of the global
model error rates in Table 3. In particular, cghseg.k still shows the
best performance on these data, with an estimated generalization
error of 3.4%.

6 DISCUSSION AND CONCLUSIONS
We have proposed to train smoothing models using annotations
determined by visual inspection of the copy number profiles.
We have demonstrated that this approach allows quantitative
comparison of smoothing models on a new data set of 575
neuroblastoma copy number profiles. These data provide the first
set of annotations that can be used for benchmarking the breakpoint
detection ability of future algorithms. Finally, our annotation-based
approach is quite useful in practice on real data, since it provides
an objective criterion for choosing the parameter that controls the
smoothness of the model.

The clear drawback of annotation-based model selection is the
time required to create the annotations. However, we have shown
diminishing returns after about t = 10 annotated profiles, so not
much time should be needed in general to get good performance
with models trained using annotations. Furthermore, we propose
to streamline the annotation process by using a simple, portable,
free software Python annotation GUI which is available as package
annotate regions from the Python Package Index.

In contrast with our results, in a previous work on automatic
parameter tuning of smoothing models, Zhang et al. (2010)
claim that local models should be better in some sense: “it is
clear that the advantages of selecting individual-specific λ values
outweigh the benefit of selecting constant λ values that maximize
overall performance.” However, they do not demonstrate this claim
explicitly, and one of the contributions of this work is to show that
global models often generalize better than local models, according
to our leave-one-out estimates.

Global Local Timings
errors FP FN errors FP FN seconds

cghseg.k 2.2 0.6 11.6 11.1 13.0 7.0 2.10
flsa.norm 6.7 3.6 18.5 14.8 15.2 10.5 0.08

dnacopy.sd 11.5 7.6 32.2 14.4 12.3 26.9 51.62
glad.haarseg 11.8 12.6 8.0 20.0 23.8 2.3 29.51

glad.lambdabreak 14.1 12.3 23.0 15.5 15.1 18.0 14.44
flsa 16.0 12.7 36.6 14.4 15.9 10.3 0.04

dnacopy.alpha 18.4 21.9 2.6 25.5 30.8 1.1 25.93
glad.MinBkpWeight 25.2 30.0 4.3 23.9 28.1 4.7 40.88

glad.default 27.4 33.3 1.2 27.4 33.3 1.2 1.13
dnacopy.prune 27.9 31.9 17.1 31.1 35.8 14.8 35.17

dnacopy.default 40.5 49.3 0.5 40.5 49.3 0.5 1.78
cghseg.mBIC 40.9 49.4 0.0 40.9 49.4 0.0 1.47

cghFLasso 80.8 97.2 0.0 80.8 97.2 0.0 0.14

Table 3. Leave-one-out cross-validation over the 6 annotated regions was used to estimate breakpoint detection error, false positive (FP), and false negative
(FN) rates. Each line shows the performance of one of the models described in Section 4.2. Models that have a smoothness parameter are shown with a colored
square, and global and local training procedures described in Section 2.3 were used to learn smoothness parameters. The global error is used to order the rows
of the table. The Timings column shows the median time to fit the sequence of smoothing models for a single profile.

6

Learning smoothing models with breakpoint annotations

We have also shown that learning a global smoothness parameter
on a limited set of annotations can generalize well to un-annotated
profiles. However, the smoothness parameterization must be
carefully chosen. For example, the flsa.norm algorithm scales the
smoothness parameter λ by the number of points and the length
of the chromosome, and results in lower error rates than the
unscaled flsa algorithm. We are interested in investigating other
parameterizations which could reduce the error even further.

We have solved the problem of smoothness parameter selection
using breakpoint annotations, but the biological question of
detecting CNAs remains. By constructing a database of annotated
regions of CNAs, we could use a similar approach to train
models that detect CNAs. Annotations could be actual copy
number (0, 1, 2, 3, . . .) or some simplification (normal, deletion,
amplification). For the future, we will be interested in developing
joint breakpoint detection and copy number calling models that
directly use these annotation data as constraints or as part of the
model likelihood.

It will be interesting to apply annotation-based model training
to other algorithms and data sets. In the annotations we analyzed,
cghseg.k showed the best breakpoint detection, but another
model may be selected with another expert’s annotation of the
neuroblastoma data. In future work, it will be interesting to see
if our conclusions are robust to the annotator, and generalize to

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

100

glad.lambdabreak

dnacopy.sd

flsa.norm

cghseg.k

 1 5 10 15 20 25 30
Annotated profiles in global model training set

P
er

ce
nt

 o
f c

or
re

ct
ly

 p
re

di
ct

ed
 a

nn
ot

at
io

ns
 o

n
te

st
 s

et
 p

ro
fil

es

Fig. 4. Cross-validation was used to estimate the generalization ability of
the global models with different sized training sets for several breakpoint
detection algorithms. For each training set size t, the profiles were
partitioned into training sets of approximately size t, then were evaluated
using the annotations from all the other profiles. Results on these data
indicate increasing accuracy (lines) and decreasing standard deviation
(shaded bands) as the training set increases, with diminishing returns after
approximately t = 10, indicated with a vertical black line, and shown in
detail for all algorithms in Table 4.

data from other tumor types. Furthermore, since next-generation
sequencing data sets are becoming more common, we plan to use
visual annotations to learn segmentation models for these data as
well.

ACKNOWLEDGEMENTS
Thanks to Edouard Pauwels for helpful comments on an early draft
of the paper.

Funding: This work was supported by Digiteo [DIGITEO-BIOVIZ-
2009-25D to T.D.H.]; the European Research Council [SIERRA-
ERC-239993 to F.B; SMAC-ERC-280032 to J-P.V.]; the French
National Research Agency [ANR-09-BLAN-0051-04 to J-P.V.]; the
Annenberg Foundation [to G.S.]; the French Programme Hospitalier
de Recherche Clinique [PHRC IC2007-09 to G.S.]; the French
National Cancer Institute [INCA-2007-1-RT-4-IC to G.S.]; and the
French Anti-Cancer League.

Conflict of interest: None declared.

model errors sd FP sd FN sd
cghseg.k 3.4 1.4 1.6 1.8 12.2 8.3
flsa.norm 6.1 1.7 3.2 2.7 20.5 13.8

glad.haarseg 12.6 1.5 13.7 2.0 7.1 1.2
dnacopy.sd 13.0 1.9 6.0 4.9 47.8 24.3

flsa 13.5 1.7 8.4 5.4 38.6 30.9
glad.lambdabreak 14.9 2.0 12.7 4.7 25.7 17.3

dnacopy.alpha 19.0 1.0 22.4 1.2 2.4 0.1
glad.MinBkpWeight 26.8 1.5 31.3 2.1 4.3 3.1

glad.default 27.4 0.1 32.6 0.2 1.6 0.1
dnacopy.prune 28.5 1.6 31.7 2.4 12.8 2.9

dnacopy.default 40.5 0.1 48.5 0.2 0.7 0.0
cghseg.mBIC 40.8 0.1 49.1 0.2 0.0 0.0

cghFLasso 80.9 0.1 97.2 0.0 0.0 0.0

Table 4. The n/t-fold cross-validation protocol was used to estimate error,
false positive (FP), and false negative (FN) rates. Mean and standard
deviation (sd) over bn/tc = 57 folds are shown as percents. Squares
show the same colors as in the figures, and are absent for models that have
no smoothness parameters. The smoothness parameter was chosen using
annotations from approximately t = 10 profiles.

7

Hocking et al

REFERENCES
Ben-Yaacov, E. and Eldar, Y. C. (2008). A Fast and Flexible Method

for the Segmentation of aCGH Data. Bioinformatics, 24(16),
i139–i145.

Fiegler, H., Redon, R., Andrews, D., Scott, C., Andrews, R., Carder,
C., Clark, R., Dovey, O., Ellis, P., Feuk, L., French, L., Hunt, P.,
Kalaitzopoulos, D., Larkin, J., Montgomery, L., Perry, G. H.,
Plumb, B. W., Porter, K., Rigby, R. E., Rigler, D., Valsesia,
A., Langford, C., Humphray, S. J., Scherer, S. W., Lee, C.,
Hurles, M. E., and Carter, N. P. (2006). Accurate and reliable
high-throughput detection of copy number variation in the human
genome. Genome Res., 16(12), 1566–1574.

Gentleman, R. C., Carey, V. J., Bates, D. M., and others (2004).
Bioconductor: Open software development for computational
biology and bioinformatics. Genome Biology, 5, R80.

Hoefling, H. (2009). A path algorithm for the Fused Lasso Signal
Approximator. arXiv:0910.0526.

Hupé, P., Stransky, N., Thiery, J.-P., Radvanyi, F., and Barillot, E.
(2004). Analysis of array CGH data: from signal ratio to gain and
loss of DNA regions. Bioinformatics, 20(18), 3413–3422.

Janoueix-Lerosey, I., Schleiermacher, G., Michels, E., Mosseri, V.,
Ribeiro, A., Lequin, D., Vermeulen, J., Couturier, J., Peuchmaur,
M., Valent, A., Plantaz, D., Rubie, H., Valteau-Couanet, D.,
Thomas, C., Combaret, V., Rousseau, R., Eggert, A., Michon, J.,
Speleman, F., and Delattre, O. (2009). Overall genomic pattern
is a predictor of outcome in neuroblastoma. Journal of Clinical
Oncology, 27(7), 1026–1033.

La Rosa, P., Viara, E., Hupé, P., Pierron, G., Liva, S., Neuvial,
P., Brito, I., Lair, S., Servant, N., Robine, N., Mani, E.,
Brennetot, C., Janoueix-Lerosey, I., Raynal, V., Gruel, N.,
Rouveirol, C., Stransky, N., Stern, M.-H., Delattre, O., Aurias,
A., Radvanyi, F., and Barillot, E. (2006). VAMP: Visualization
and analysis of array-CGH, transcriptome and other molecular
profiles. Bioinformatics, 22(17), 2066–2073.

Lavielle, M. (2005). Using penalized contrasts for the change-point
problem. Signal Processing, 85, 1501–1510.

Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J.
(2005). A statistical approach for array CGH data analysis. BMC
Bioinformatics, 6(27).

Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel,
D., Collins, C., Kuo, W.-L., Chen, C., Zhai, Y., Dairkee,
S. H., Ljung, B.-m., Gray, J. W., and Albertson, D. G. (1998).
High resolution analysis of DNA copy number variation using
comparative genomic hybridization to microarrays. Nature
Genetics, 20(2), 207–211.

R Development Core Team (2011). R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rigaill, G. (2010). Pruned dynamic programming for optimal
multiple change-point detection. arXiv:1004.0887.

Ritz, A., Paris, P., Ittmann, M., Collins, C., and Raphael, B.
(2011). Detection of recurrent rearrangement breakpoints from
copy number data. BMC Bioinformatics, 12(1), 114.

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T.
(2008). LabelMe: a database and web-based tool for image
annotation. International Journal of Computer Vision, 77(1–3),
157–173.

Schleiermacher, G., Janoueix-Lerosey, I., Ribeiro, A., Klijanienko,
J., Couturier, J., Pierron, G., Mosseri, V., Valent, A., Auger,
N., Plantaz, D., Rubie, H., Valteau-Couanet, D., Bourdeaut, F.,
Combaret, V., Bergeron, C., Michon, J., and Delattre, O. (2010).
Accumulation of segmental alterations determines progression in
neuroblastoma. J Clin Oncol, 28(19), 3122–3130.

Shah, S. P., Xuan, X., DeLeeuw, R. J., Khojasteh, M., Lam, W. L.,
Ng, R., and Murphy, K. P. (2006). Integrating copy number
polymorphisms into array CGH analysis using a robust HMM.
Bioinformatics, 22(14), 431–439.

Theußl, S. and Zeileis, A. (2009). Collaborative Software
Development Using R-Forge. The R Journal, 1(1), 9–14.

Tibshirani, R. and Wang, P. (2007). Spatial smoothing and hot spot
detection for CGH data using the fused lasso. Biostatistics.

Venkatraman, E. S. and Olshen, A. B. (2007). A faster circular
binary segmentation algorithm for the analysis of array CGH
data. Bioinformatics, 23(6), 657–663.

Vert, J.-P. and Bleakley, K. (2010). Fast detection of multiple
change-points shared by many signals using group LARS. In
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Cullota, editors, Advances in Neural Information Processing
Systems 23 (NIPS), pages 2343–2351.

Weinberg, R. A. (2006). The Biology of Cancer. Garland Science,
first edition.

Willenbrock, H. and Fridlyand, J. (2005). A comparison study:
applying segmentation to array CGH data for downstream
analysis. Bioinformatics, 21(22), 4084–4091.

Zhang, N. R. and Siegmund, D. O. (2007). A Modified Bayes
Information Criterion with Applications to the Analysis of
Comparative Genomic Hybridization Data. Biometrics, 63,
22–32.

Zhang, Z., Lange, K., Ophoff, R., and Sabatti, C. (2010).
Reconstructing DNA copy number by penalized estimation and
imputation. The Annals of Applied Statistics, 4, 1749–1773.

8

