
The HiveR Package

Version 0.2-1

Bryan A. Hanson

DePauw University
Department of Chemistry & Biochemistry

Greencastle Indiana USA

e-mail: hanson@depauw.edu

github.com/bryanhanson/HiveR
CRAN.R-project.org/package=HiveR

December 12, 2011

This document describes some features of the HiveR package including current capabilities and future plans. The current
release contains a core set of functions for creating and drawing hive plots. Additional features are contemplated. There
may well be bugs and features that can be improved. Your comments are always welcome.

As with any R package, details on functions discussed below can be found by typing ?function_name in the R console
after installing HiveR. A complete list of functions available can be had by typing ?HiveR and then at the bottom of the
page that opens, click on the ”index” link.

1 Background, Inspiration and Motivation

HiveR was inspired by the concept of hive plots as developed by Martin Krzywinski at the Genome Science Center
(www.hiveplot.com). Hive plots are a reaction to ”hair ball”style networks in which the layout of the network is arbitrary
and hypersensitive to even small changes in the underlying network. Hive plots are particularly useful for the discovery
of emergent properties of networks.

The key innovation in a hive plot, compared to other means of graphically displaying network structure, is in how node
information is handled. Nodes are assigned to axes based upon qualitative or quantitative characteristics of the the
node, for instance membership in a certain category, and the position of the node along the axis is based upon some
quantitative characteristic of the node. In a hive plot, edges are handled in a fairly standard way, but may be colored or
have a width or weight which encodes an interesting value. In creating a hive plot, one maps network parameters to the
hive plot, and thus the process can be readily tuned to meet one’s needs. The mappable parameters are listed in Table 1,
and the mapping is limited only by one’s creativity and the particular knowledge domain. Thus ecologists have their own
measures of food webs, social network analysts have various measures describing interconnectedness etc. An essential
point is that mapping network parameters in this way results in a reproducible plot which is particularly well-suited for
comparing related networks. Comparison of ”hair balls” is notoriously fraught with problems.

Krzywinski has an excellent paper detailing the features and virtues of hive plots and is a must-read.[1] He notes the
following virtues of hive plots:

• Hive plots are rational in that only the structural properties of the network determine the layout.

• Hive plots are flexible and can be tuned to show interesting features.

• Hive plots are predictable since they arise from rules that map network features to plot features.

1

mailto:hanson@depauw.edu
http://github.com/bryanhanson/HiveR
http://CRAN.R-project.org/package=HiveR
http://www.hiveplot.com/

mappable hive plot parameters
Axis to which a node is assigned
Radius of a node
Color of a node
Size of a node
Color of an edge
Width or weight of an edge

Table 1: Hive plot features that can be mapped to network parameters

octahedral
geometrytrigonal bipyramidal

geometry
tetrahedral
geometry

Bold lines come toward you, dotted lines move away. Numbers give the order the axes are drawn in HiveR.
For tetrahedral and octahedral geometries, all axes are equivalent. For the trigonal bipyramidal geometry,

axes 1-3 are called equatorial, and axes 4 & 5 are called apical.

1

2

4

3

5

1

2

3 4

5

6

Figure 1: Idealized geometries according to VSEPR theory

• Hive plots are robust to changes in the underlying network.

• Hive plots of different networks can be compared.

• Hive plots are transparent and practical.

• Plots of networks are generally complex and require some investment to understand. Complexity scales well in a
hive plot and details can be inspected.

For comparison, Suderman and Hallett have published a nice review of a wide range of other programs for visualizing
biological networks though it is now slightly out of date.[2]

Inspired by the examples given by Kryzwinski in his materials on the web, I created the R package FuncMap in December
2010. This single function package maps the function calls made by an R package into 3 types: sources, which are
functions that make only outgoing calls, sinks, which take only incoming calls, and managers, which do both. Figure 2
shows an example of a plot made by FuncMap; this is a true hive plot. In this plot, functions in a package are assigned
to an axis by their role, and the radius is determined by the number of calls made or received by a function (which is
the number of edges or degree of the node). This is also the basis for the width of the edges. In this plot, calls (edges)
originating on the source axis are shown in green, while those originating on the manager axis are in blue. By defintion,
the sink axis only receives calls.

HiveR takes things quite a bit further. HiveR is intended as an implementation of hive plots in R, not a port of linnet
per se (Krzywinski’s program that draws hive plots, written in Perl). As such, it does some things differently, and not
all features are implemented (and they may or may not be in the future). HiveR will draw 2D hive plots with 2-6 axes
in a style close to that created by linnet. However, HiveR adds value by making 3D, interactive plots possible when
there are 4-6 axes. These 3D plots were inspired by the ideas of VSEPR theory in chemistry: the axes of these 3D plots
are arranged with tetrahedral, trigonal bipyramidal or octahedral geometries for 4-6 axes respectively (see Figure 1 and
wikipedia/VSEPR). Other differences are discussed below.

2

https://secure.wikimedia.org/wikipedia/en/wiki/Vsepr

Hive Plot Function Map of lattice Package
142 functions total; 32 are stand alone

position along axis is count of total calls

source

sink

manager

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●

● ●●

●

●●

●
●

●

●

● ● ●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●● ●●●●

●

●●●
●●

●●●
●

●
●

●●●

●

●
●

●

●

●

●

●

●
●●

●
●

●●●

Figure 2: FuncMap for package lattice

2 HiveR Features

2.1 Internal Storage

HiveR stores the information needed to create a hive plot in a HivePlotData object which is an S3 class. As an S3
class, this structure can be easily extended by the user to store additional information (though using that information as
part of a hive plot would require more work). Utilities are provided to summarize the contents of these objects and to
check their integrity (functions sumHPD and chkHPD respectively). The structure and content of a HivePlotData object
is shown in Table 2.

2.2 Generation of Random Network Data Sets

HiveR has the ability to generate random network data sets with between 2 and 6 axes, using function ranHiveData.
These are useful for testing and demonstration purposes and will be used in the examples below. A data set has a type,
either 2D or 3D. Type 2D may have 2-6 axes and is plotted in a 2D window using grid graphics which are extremely
fast. Type 3D applies to 4-6 axes only and these hive plots are drawn in 3D using rgl and are interactive. When using
ranHiveData you can specify which type you desire.

2.3 Built-in Data Sets

HiveR contains two related 2D type data sets, Safari and Arroyo. These plant-pollinator data sets give the number
of visits for each plant-pollinator pair. The E. coli gene regulatory network is also included as a .dot file. This data is
discussed in Yan et. al.[3] but is based upon data in the RegulonDB.[4] The version here was extended by Krzywinski

3

element (element) type description
$nodes data frame Data frame of node properties

$id int Node identifier
$lab chr Node label
$axis int Axis to which node is assigned
$radius num Radius (position) of node along the axis
$size num Node size in pixels
$color chr Node color

$edges data frame Data frame of edge properties
$id1 int Starting node id
$id2 int Ending node id
$weight num Width of edge in pixels
$color chr Edge color

$type chr Type of hive (2D or 3D)
$desc chr Description of data
$axis.cols chr Colors for axes
- attr chr ”HivePlotData” The S3 class designation

Table 2: The structure of a HivePlotData object

and provided in the linnet package. This .dot file can be processed into either a 2D or 3D type hive plot. Each of these
data sets are used in the examples below.

2.4 Importing Real Data Sets

The function dot2HPD will import files in .dot format and convert them to HivePlotData objects (see wikipedia/DOT language).
This is done with the aid of two external files. One contains information about how to map node labels to HivePlotData

properties. The other contains information about mapping edge properties. This approach gives one a lot of flexibility
to process the same graph into various hive plots. This process is demonstrated later for the E. coli data set. Currently,
only a very small set of the .dot standard is implemented and one should not expect any particular .dot file to process
correctly.

2.5 Modifying HivePlotData Sets

Function mineHPD has several options for extracting information within an existing HivePlotData object and converting
it to a modifed HivePlotData object. Currently, there are three options, but more are easily added. One option assigns
the radius of a node based upon the number of edges connected to it (the degree). Another assigns axes based upon
whether a given node is a source node, manager node or sink node. This latter option is designed to create hive plots
similar to those featured by Krzywinski for the E. coli data set, and is demonstrated later. The final option removes any
orphaned nodes (these have no edges). In addition, function manipAxis can also be used to modify a HivePlotData

object by scaling or inverting axes.

2.6 Making Hive Plots

In a hive plot, because the position of the node along an axis (the radius) is quantitative, the nodes can be plotted at
their absolute value (native units), normalized to run between 0. . . 1, plotted by rank or by a combination of ranking
and norming. Some aspects of the plot that depend upon these options are shown in Table 3. These different ways of
plotting the same data often look dramatically different, and for a particular data set, some methods of plotting nodes
may provide more insight. Functions plotHive and plot3dHive have an argument method which controls node plotting
on the fly; function manipAxis is used in the background and can be called independently if desired.

4

https://secure.wikimedia.org/wikipedia/en/wiki/DOT_language

●● ●● ●●● ● ●●● ● ●● ●●●

Figure 3: A randomly generated hive plot with 2 axes (native units)

method axis length center hole other

native units (abs) varies (∝ no. nodes) asymmetric nodes may overlap
ranked units (rank) varies (∝ rank(no. nodes)) circular nodes evenly spaced (1, 2, 3 . . .)

and don’t overlap
normed units (norm) all equal circular nodes may overlap
ranked & normed (ranknorm) all equal circular nodes evenly spaced (1, 2, 3 . . .)

and don’t overlap

Table 3: Comparison of methods for plotting node radii

2.6.1 Type 2D Hive Plots

Figures 3 shows a 2 axis hive plot using randomly generated data and the function plotHive. Figure 4 shows a hive
plot of a random 3 axis network using absolute scaling; Figure 5 shows the 3 axis example with the nodes displayed by
rank and Figure 6 the same data normed. FIgure 7 shows a 5 axis example. plotHive places axis number 1 at the top
(vertical) except in the 2 axis case where it is on the right. Nodes are drawn in these examples, however, drawing nodes
is optional and the more nodes there are, the less likely you will want to draw them. As these plots show, depending upon
their size and radii, nodes may overlap. The nodes ”on top” will be those drawn last (also true of edges). In some cases
users may wish to sort the nodes and edges so that certain nodes and edges are drawn last and thus ”show”. Nodes and
edges with various characteristics can also be subsetted and recombined if simple sorting won’t do the job. This method
is used in some of the examples which follow.

2.6.2 Type 3D Hive Plots

With type 3D and 4 to 6 axes, plots are interactive and cannot be shown here. See the help page for plot3dHive for
an example you can run when have the package installed (?plot3dHive). Note that plot3dHive has an argument LA
which controls whether antialiasing is used when drawing the edges. LA defaults to FALSE which plots quickly. Further
testing and optimization is needed, but LA = TRUE should probably be reserved for making final plots, as it is at least
20 times slower.

2.6.3 Performance

HiveR draws hive plots very quickly when using either plotHive or plot3dHive. As of version 0.1-5, the bottlenecks
holding plot3dHive back have been eliminated. Figure 8 shows the performance of this function on a MacBook Pro
running OSX 10.6.8 using 8 Mb RAM and an Intel i7 chip at 2 GHz. As of version 0.1-6, speed improvements have been
made to plotHive and Figure 9 shows the performance on the same hardware. These benchmarks were determined
before byte compiling was turned on and so the performance is likely even better.

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

Figure 4: A randomly generated hive plot with 3 axes (native units)

2.7 Some Things to Keep in Mind

1. As currently implemented in HiveR, hive plots are agnostic graphs in that they are not necessarily directed or
undirected. However, some of the functions actually do draw edges in a way that could readily be converted into
a directed graph in the future. For example, plotHive draws edges between axes 1 and 2 in a separate step from
those starting on 2 and ending on 1. This is so that the correct curvature of the splines is used, but it could be
used to encode directionality. Further, some options in mineHPD assume that the HivePlotData object represents
a directed graph, and while dot2HPD currently doesn’t distinguish between directed and non-directed graphs, it
could in the future.

2. linnet creates hive plots that are essentially parallel coordinate plots[5] that have been wrapped into a radial
arrangement. HiveR plots of type 2D are essentially the same thing. As with any parallel coordinate plot, the order
of the axes affects what you see. With 2 or 3 axes this isn’t a problem. For 4-6 axes and type 2D, the user has to
give some thought as to how to assign the axes. One should assign the axes in a way that avoids edges jumping
over or crossing an axis when using type 2D. Edges should be arranged 1 → 2, 2 → 3, . . . 5 → 6 but not 1 →
4 for example. Function sumHPD with chk.ax.jump = TRUE will tell you if any edges cross. For type 3D, one
doesn’t have to worry about this, but must guard against edges that start and end on the same axis or start and
end on colinear axes. ranHiveData takes care of these exceptions automatically. By they way, these conditions
don’t cause errors, but they overdraw the axes and it doesn’t look good.

3. On the other hand, HiveR plots using type 3D are not a parallel coordinate plots. For 4 axes plotted as a tetrahedron,
any pair of axes are intrinsically next to each other and it is not possible for an edge to cross another axis. For 5
and 6 axes, crossings are a potential problem but generally it is possible to connect axes in more combinations than
for type 2D. For instance, with 5 axes and type 2D, any one axis is between only 2 other axes, and hence can be
connected to at most 2 other axes. But for type 2D and 5 axes, an axis in the apical position can be connected to
3 other axes, and an axis in the equatorial position can be connected to 4 other axes (could use a diagram showing
this).

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●●

Figure 5: A randomly generated hive plot with 3 axes (nodes by rank)

4. Some ideas for network parameters that might be mapped to node radii (see Table 1):

(a) Ecology: see various species descriptors computed by function specieslevel in package bipartite.

(b) Social networks: see the section ”Node-level indices” in the article describing package sna.[6] Briefly, degree,
betweeness and closeness are the key ideas.

(c) See Table 1 in the article by Krzywinski.[1]

3 A Simple Example Using a Plant-Pollinator Network

HiveR currently contains the built-in data sets, Safari and Arroyo which provide a useful demonstration of HiveR.1

These are plant-pollinator data sets which were derived from Vasquez and Simberloff, 2003 [7]. These describe two-trophic
level systems that consist of almost exactly the same suite of plants and pollinators. Safari is based upon observations
of an undisturbed area, while Arroyo is from a nearby location grazed by cattle. The original data is composed of
plant-pollinator pairs and a count of visits for each pair.

Figures 10 and 11 show two means of plotting Safari using package bipartite.2 Figure 10 is a simple diagram giving
plant-pollinator visits as a gray scale heat map. There are two parameters encoded here: the pairings and the number
of visits (arguably, the dimensions of the matrix give the number of species involved as well). Figure 11 displays plants
across the bottom and pollinators across the top. The width of the connecting bands in the middle encodes the number
of visits for a given plant-pollinator pair. The width of the top or bottom panel for a species is the total number of visits
in which that species participates. Thus there are three parameters shown in this figure: the pairings, the total visits for
a single species, and visits between a given pair. This second plot makes it pretty clear that four plant-pollinator pairs
have by far the most number of visits.

1Be warned: I am not an ecologist and these data sets and plots are merely a demonstration of HiveR.
2Note that we are using the data set Safariland from package bipartite; Safari was derived from Safariland.

7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

Figure 6: A randomly generated hive plot with 3 axes (nodes normed)

Another approach to presenting this network graphically would be to use function gplot in the very powerful social
network analysis package sna. gplot is flexible and has many options. Figure 12 shows one possible display of Safari
(actually, Safariland). In this plot, plant nodes are colored green and insect nodes red. The width of the edges is
proportional to the number of visits between a pair of species. Figure 13 shows the same data using a different layout
algorithm, one which shows that there are actually two networks present (and which is not apparent from the hive plots
below). Edge width here is the same as before, but because high traffic pair nodes are close to each other, the connecting,
wide edge looks a bit odd (clearly, one could experiment to improve this detail).

Figures 14 and 15 show Safari and Arroyo respectively, using plotHive (instrinically type 2D since there are only 2
axes in the data set). In these plots, plants are on one axis, and pollinators are on the other. Each organism was assigned
a radius on its axis based by calculating d′ using function dfun in package bipartite. d’ is an index of specialization;
higher values mean the plant or pollinator is more specialized.3 Edge weights were assigned proportional to the square
root of the normalized number of visits of a pollinator to a plant. Thus the width of the edge drawn is an indication of
the visitation rate. The transformed number of visits was divided manually into 4 groups and used to assign edge colors
ranging from white to red. The redder colors represent greater numbers of visits, and the color-coding is comparable for
each figure. Thus both the edge color and the edge weight encode the same information. It would of course be possible
to encode an additional variables by changing either edge color or weight, or node size. These plots show a rich amount
of information not available from the more standard plots and show that the networks are fundamentally different:

• The degree of specialization with each network is different. A greater number of visits (wider, redder edges) occur
between more specialized species (nodes at larger radii) in Safari than Arroyo.

• There are more plant species in Arroyo: the plant axis is longer.

• The huge number of visits encoded in red in Safari (the ungrazed site) is missing in Arroyo, which was an
interesting aspect of the study.

3These plots use the absolute value of d′ for the node radii.

8

●

●

●

●●

●

●

●

● ●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

Figure 7: A randomly generated hive plot with 5 axes (native units; edges along the same
axis permitted)

9

 0

 50

100

150

200

●
●

●

●

●

 0 1000 2000 3000

plot3dHive Performance

no. edges drawn

tim
e

(s
ec

)

Figure 8: Performance of plot3dHive

4 The E. coli Gene Regulatory Network

HiveR includes the E. coli gene regulatory network, discussed in Yan et. al.[3] and based upon the RegulonDB[4] and
extended by Krzywinski. It is contained in a file called ecoli.dot in the extdata/E_coli directory. It can be read
in with dot2HPD and further processed with mineHPD as shown below. dot2HPD relies on two external .csv files which
tell the function how to map node and edge information in the .dot file to the HivePlotData object. Tables 4 and
5 show the contents of the files used in this case. If you choose to draw the nodes, persistent nodes will be red and
non-persistent nodes grey. The type of edge (1. . . 4) is also encoded by color. Gene pairs (edges) that are closer physically
and genetically are colored gray → yellow → orange → red with red being the most related pairs.

dot.tag dot.val hive.tag hive.val
label persistent color red
label nonpersistent color black

Table 4: Contents of NodeInst.csv

First, read in the data set and process it using the two external files (this assumes your working directory is set to the
folder with the relevant files).

> EC1 <- dot2HPD(file = "ecoli.dot",

+ node.inst = "NodeInst.csv",

+ edge.inst = "EdgeInst.csv",

+ desc = "E coli gene regulatory network (Yan et al PNAS vol 107 pg 9186 (2010)) ",

+ axis.cols = rep("grey", 3))

Next, assign the node radius based upon the edge degree. Then assign the nodes to axes based upon their role as
source, manager or sink. Finally, let’s remove any orphaned nodes (nodes that have no edges). Note that if desired, >

10

 0

 5

10

●

●

●

●

●

 0 1000 2000 3000 4000 5000

plotHive Performance

no. edges drawn

tim
e

(s
ec

)

Figure 9: Performance of plotHive

dot.tag dot.val hive.tag hive.val
type 0 color grey
type 1 color yellow
type 2 color orange
type 3 color red

Table 5: Contents of EdgeInst.csv

sumHPD(EC3, chk.orphan.node = TRUE) could be used to preview the list of orphans.

> EC2 <- mineHPD(EC1, option = "rad <- tot.edge.count")

> EC3 <- mineHPD(EC2, option = "axis <- source.man.sink")

> EC4 <- mineHPD(EC3, option = "remove orphans")

No orphaned nodes were found

If you try to plot this now (> plotHive(EC4)), you encounter an error because two edges start and end on the same
node (so they are on the same axis with the same radius). This would result in an edge length of zero, which is not
possible (see ?sumHPD for more details). We can use sumHPD to find out where the problem is. It turns out that two
nodes are common to both problem edges. To avoid this problem, we’ll nudge one node to a different value.

> sumHPD(EC4, chk.sm.pt = TRUE)

E coli gene regulatory network (Yan et al PNAS vol 107 pg 9186 (2010))

This hive plot data set contains 1378 nodes on 3 axes and 2966 edges.

It is a 2D data set.

Axis 1 has 64 nodes spanning radii from 1 to 214

11

P
ol

ic
an

a
al

bo
pi

lo
sa

B
om

bu
s

da
hl

bo
m

ii
R

ui
za

nt
he

da
 m

ut
ab

ili
s

Ic
hn

eu
m

on
id

ae
4

S
yr

ph
us

 o
ct

om
ac

ul
at

us
P

ht
hi

ria
To

ry
m

id
ae

2
F

or
m

ic
id

ae
3

M
an

ue
lia

 g
ay

i
A

llo
gr

ap
ta

.T
ox

om
er

us
S

ta
ph

ili
ni

da
e

S
va

st
rid

es
 m

el
an

ur
a

P
la

ty
ch

ei
ru

s1
V

es
pu

la
 g

er
m

an
ic

a
C

or
yn

ur
a

pr
ot

hy
st

er
es

Ic
hn

eu
m

on
id

ae
2

R
ui

za
nt

he
da

 p
ro

xi
m

a
Tr

ic
ho

ph
th

al
m

a
ja

ffu
el

i
C

ha
le

po
ge

nu
s

ca
er

ul
eu

s
Tr

ic
ho

ph
th

al
m

a
am

oe
na

B
ra

co
ni

da
e3

S
ap

ro
m

yz
a.

M
in

et
tia

N
iti

du
lid

ae
P

ht
hi

ria
1

S
ph

ec
id

ae
T

ho
m

is
id

ae
B

ra
co

ni
da

e2

Mutisia decurrens
Calceolaria crenatiflora

Ribes magellanicum
Rosa eglanteria

Schinus patagonicus
Cynanchum diemii

Berberis darwinii
Alstroemeria aurea
Aristotelia chilensis

Figure 10: Safariland data set using visweb

Axis 2 has 1243 nodes spanning radii from 1 to 9

Axis 3 has 71 nodes spanning radii from 2 to 402

The following edges start and end at the same point and the

corresponding nodes should be deleted, offset or

jittered (or the edge deleted) before plotting:

n1.id n1.ax n1.lab n1.rad n2.id n2.ax n2.lab n2.rad e.wt e.col

1149 3 srlr 9 547 3 gutm 9 1 grey

547 3 gutm 9 1149 3 srlr 9 1 grey

> EC4$nodes$radius[1149] <- 9.5

Finally, we’ll need to organize the edge list so that the reddest edges are drawn last, which will make the plots a bit easier
to interpret (see later for another approach).

> edges <- EC4$edges

> gray_edges <- subset(edges, color == "gray")

> yel_edges <- subset(edges, color == "yellow")

> or_edges <- subset(edges, color == "orange")

> red_edges <- subset(edges, color == "red")

> edges <- rbind(gray_edges, yel_edges, or_edges, red_edges)

> EC4$edges <- edges

Now we’re ready to plot!

Figures 16, 17, and 18 shows the hive plot of this network using methods absolute, rank and norm respectively. Each
plot takes about 10 seconds to draw. Figure 19 is the same as Figure 17 but adds the nodes: red nodes are persistent
meaning they are common to a group of about 200 bacterial species. When plotting with method = "rank" (as here)

12

Bombus dahlbomii
Phthiria

Sapromyza.Minettia
Vespula germanica

Phthiria1
Sphecidae
Thomisidae

Ichneumonidae2
Ruizantheda proxima

Manuelia gayi
Trichophthalma jaffueli

Svastrides melanura
Syrphus octomaculatus

Staphilinidae
Corynura prothysteres
Chalepogenus caeruleus

Trichophthalma amoena
Allograpta.Toxomerus

Platycheirus1
Ruizantheda mutabilis

Braconidae2 Policana albopilosa Ichneumonidae4
Formicidae3

Nitidulidae
Braconidae3

Torymidae2

Mutisia decurrens
Berberis darwinii

Alstroemeria aurea
Calceolaria crenatiflora

Ribes magellanicum
Rosa eglanteria

Aristotelia chilensis Schinus patagonicus
Cynanchum diemii

Figure 11: Safariland data set using plotweb

each gene gets a unique node (the other two method overlap nodes if more than one is present, and thus the last node
plotted determines the color). With this many nodes, overplotting is a problem, so we shrank the node size and sorted the
nodes so that the red nodes were drawn last (a strategy documented in more detail in an upcoming example). Another
approach might be to expand the axis length, but that’s probably not realistic: there are 1,274 nodes on this axis. Note
that the manager axis nodes all appear to be persistent (red).

5 Further Explorations of the E. coli Network

In this section we’ll demonstrate some slightly more advanced manipulations of the E. coli network data, including how
one can make hive panels which are useful in comparing multiple hive plots. In some of the manipulations below, data
types are coerced away from the definition found in a HivePlotData object and must be restored. It might be helpful
to study the description of the required structure at ?HPD.

First, we are going to re-code some of the information in the network. In the original publication, nodes were classified
as either persistent or non-persistent. This classification was based upon comparison of the E. coli genome to roughly
200 other bacterial genomes. A gene was considered persistent if it was present in these other genomes, otherwise it
is non-persistent and unique to E. coli. In our processing above, genes (nodes) that are persistent are red, while non-
persistent nodes are black. We can use the existing axis assignments, based upon role as source, manager or sink, along
with the persistence information, to display the network taking this information into account. In principle, there are six
possible combinations: (persistent, non-persistent) x (source, manager, sink). However, it turns out that one of these
combinations doesn’t exist (persistent sources), so we’ll re-code this information into a five axis hive plot.4 Here’s the
first step, starting from where we left off above:

> EC5 <- EC4

4Not only am I not an ecologist, I am not a molecular biologist. I have no idea if this analysis is actually worthwhile, I just thought it would
be interesting to see these relationships. Plus, it also permits further manipulations to be demonstrated.

13

Figure 12: Safariland data set using gplot (mode = circle)

> nodes2 <- nodes <- EC5$nodes

> nn <- length(nodes$axis)

> #

> for (n in 1:nn) {

+ if ((nodes$axis[n] == 1) & (nodes$color[n] == "black")) nodes2$axis[n] <- 1

+ if ((nodes$axis[n] == 2) & (nodes$color[n] == "black")) nodes2$axis[n] <- 2

+ if ((nodes$axis[n] == 3) & (nodes$color[n] == "black")) nodes2$axis[n] <- 3

+ if ((nodes$axis[n] == 2) & (nodes$color[n] == "red")) nodes2$axis[n] <- 4

+ if ((nodes$axis[n] == 3) & (nodes$color[n] == "red")) nodes2$axis[n] <- 5

+ }

> #

> # Final assembly & checking...

> #

> nodes2$axis <- as.integer(nodes2$axis)

> EC5$nodes <- nodes2

> EC5$axis.cols <- rep("gray", 5) # we added 2 more axes!

> #

> sumHPD(EC5)

E coli gene regulatory network (Yan et al PNAS vol 107 pg 9186 (2010))

This hive plot data set contains 1378 nodes on 5 axes and 687 edges.

It is a 2D data set.

Axis 1 has 64 nodes spanning radii from 1 to 214

Axis 2 has 1172 nodes spanning radii from 1 to 9

Axis 3 has 70 nodes spanning radii from 2 to 402

Axis 4 has 71 nodes spanning radii from 1 to 7

14

Figure 13: Safariland data set using gplot (mode = Fruchterman-Reingold)

●● ●●● ●●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ●

plants
po

lli
na

to
rs

Figure 14: Safari data set using plotHive

15

● ●● ●● ● ●● ● ●●● ●●● ● ●●● ● ●●● ●●● ●● ● ●●● ●● ●●●● ●

plants
po

lli
na

to
rs

Figure 15: Arroyo data set using plotHive

source

sink

manager

degree

Figure 16: Hive plot of E. coli gene regulatory network (native node units)

16

source

sink

manager

Figure 17: Hive plot of E. coli gene regulatory network (nodes ranked)

Axis 5 has 1 nodes spanning radii from 10 to 10

> # sumHPD(EC5, chk.all = TRUE) # not run, the output is long

With sumHPD, one can use chk.all = TRUE which runs some additional checks on the data (see ?sumHPD for full details).
Had we done so in this case, we would find that some edges start and stop on the manager axis; perhaps you noticed
this earlier. These are managers that call other managers. Also, somewhat miraculously, there are no edges crossing axes
in this particular partitioning of nodes (chk.all also looks for this condition). In the basic summary that we did run,
axis five has only one node on it. This will plot fine except for the case where one uses method = "norm" which will fail
because to normalize the node radii, there has to be more than one radius value. To fix this, we’ll add in a phantom,
invisible node to anchor axis five as follows:

> EC6 <- EC5

> tmp <- data.frame(id = 1379, lab = "axis_5_anchor",

+ axis = 5, radius = 1, size = 1, color = "grey")

> EC6$nodes <- rbind(EC6$nodes, tmp)

> #

> # Clean up, re-size nodes, sort nodes so

> # persistent (red) ones are drawn last & check:

> #

> EC6$nodes$axis <- as.integer(EC6$nodes$axis)

> EC6$nodes$id <- as.integer(EC6$nodes$id)

> EC6$nodes$size <- EC6$nodes$size * 0.1

> #

> nodes <- EC6$nodes

> nodes <- sort_df(nodes, vars = "color")

> EC6$nodes <- nodes

> #

17

source

sink manager

Figure 18: Hive plot of E. coli gene regulatory network (nodes normed)

> sumHPD(EC6)

E coli gene regulatory network (Yan et al PNAS vol 107 pg 9186 (2010))

This hive plot data set contains 1379 nodes on 5 axes and 687 edges.

It is a 2D data set.

Axis 1 has 64 nodes spanning radii from 1 to 214

Axis 2 has 1172 nodes spanning radii from 1 to 9

Axis 3 has 70 nodes spanning radii from 2 to 402

Axis 4 has 71 nodes spanning radii from 1 to 7

Axis 5 has 2 nodes spanning radii from 1 to 10

Next, we are going to copy the current version of the network (EC6) and scale the axes of the copy, because the summary
above shows that the axis lengths are quite different and the shorter axes will be nearly invisible if we don’t scale them
up at least a bit.

> EC7 <- manipAxis(EC6, method = "scale", action = c(1, 10, 1, 10, 10))

> sumHPD(EC6)

E coli gene regulatory network (Yan et al PNAS vol 107 pg 9186 (2010))

This hive plot data set contains 1379 nodes on 5 axes and 687 edges.

It is a 2D data set.

Axis 1 has 64 nodes spanning radii from 1 to 214

Axis 2 has 1172 nodes spanning radii from 1 to 9

Axis 3 has 70 nodes spanning radii from 2 to 402

Axis 4 has 71 nodes spanning radii from 1 to 7

Axis 5 has 2 nodes spanning radii from 1 to 10

18

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●

●

●●

●●

●●

●●●●

●

●●●

●
●

●

●
●

●

●●
●

●
●

●

●

●●
●●

●

●
●●

●

●●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●
●

●●

●●●

●

●

●

●●

●

●
●

●

●●

●

●●
●

●

●

●

source

sink

manager

Figure 19: Hive plot of E. coli gene regulatory network (nodes ranked)

Now we’ll make a hive panel showing this same network displayed using different methods. The code follows; it uses
the grid graphics systems and associated viewport concepts to create a 2 x 2 hive panel. The resulting hive panel is
Figure 20.

Finally, the lower right hive plot in Figure 20 can serve as a starting point for teasing out even more information. Instead
of drawing all the edges in one hive plot, we’ll make a hive panel showing each edge category in a different panel. The
steps are given below; the resulting panel is Figure 21 (the steps to produce the panel are not shown here, but are the
same as before).

> EC11 <- EC10 <- EC9 <- EC8 <- EC7

> edges <- EC7$edges

> gray_edges <- subset(edges, color == "gray")

> yel_edges <- subset(edges, color == "yellow")

> or_edges <- subset(edges, color == "orange")

> red_edges <- subset(edges, color == "red")

> EC8$edges <- gray_edges

> EC9$edges <- yel_edges

> EC10$edges <- or_edges

> EC11$edges <- red_edges

6 Comparison to linnet

linnet (for linear networks) is the Perl program written by Krzywinski that draws hive plots. Here are some notes about
how HiveR compares to linnet.

1. To show more information, in linnet one can clone an axis to specifically show connections that would start and
end on the same axis (if it isn’t cloned). Cloned axes appear a bit on either side of where the original axis would

19

> vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)

> #

> grid.newpage()

> pushViewport(viewport(layout = grid.layout(2, 2)))

> #

> pushViewport(vplayout(1, 1)) # upper left plot

> plotHive(EC6, ch = 20, np = FALSE)

> popViewport(2)

> #

> pushViewport(vplayout(1, 2)) # upper right plot

> plotHive(EC7, ch = 0.1, method = "norm", np = FALSE,

+ axLabs = c("non-persistent\nsource", "non-persistent\nsink",

+ "non-persistent\nmanager", "persistent\nmanager", "persistent \nsink"),

+ axLab.pos = rep(0.2, 5), axLab.gpar = gpar(fontsize = 10, col = "white"),

+ rot = c(0, 72, 0, 0, -72), anNode.gpar = gpar(fontsize = 10, col = "pink", lwd = 0.5),

+ anNodes = system.file("extdata", "E_coli", "NodeLabels.csv", package = "HiveR"))

> popViewport(2)

> #

> pushViewport(vplayout(2,1)) # lower left plot

> plotHive(EC7, ch = 100, method = "rank", np = FALSE)

> popViewport(2)

> #

> pushViewport(vplayout(2,2)) # lower right plot

> plotHive(EC7, ch = 20, np = FALSE)

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●
●

●

●●●●●● ●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●● ●●

● ●●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●

●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●

●
● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●●

●●●●●●●
●●

●

●
●●●

●●●
●

●●
●●●●●●●●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●

●●●●
●

●●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●
●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●●
●

●

●

●
●●

●

●
●

●

●●

●

●●
●

●

● ●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●

●

●●

●●

●●

●●●●

●

●●●

●

●

non−persistent
source

no
n−

pe
rs

is
te

nt
si

nk

non−persistent
manager

persistent
manager

persistent

sink

dnaa

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●
●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●
●

●●

●

●●

●●●●●●●●●●●●●●●
●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●
●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●
●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●●
●●

●

●
●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●●

●●●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●●
●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●
●

●●

●●

●●

●●●●

●

●●●

●●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●
●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●

●

●●

●●

●●

●●●●

●

●●●

●

●

Figure 20: Hive panel showing E. coli regulatory network with different display options

20

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●
●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●

●

●●

●●

●●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●
●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●

●

●●

●●

●●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●
●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●

●

●●

●●

●●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●●

●
●

●

●

●●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●●●

●●

●

●●●●

●●

●●

●

●

●●●●●

●●

●●

●●●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●

●●

●●●

●●●●

●

●●●

●●●

●

●

●●●●●

●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●●●●

●●●

●●●

●

●●●●●●

●●

●●

●

●●

●

●

●

●●

●●●●●●●

●

●

●

●●

●●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●

●●

●●●

●●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●●●

●●●●●●●

●

●

●●●●●●

●

●

●●●●

●

●●

●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●

●

●●●●●●

●●●●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●

●

●●●●

●

●●

●

●

●●●●●●●

●●●●

●

●

●

●

●●

●

●●●●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●●●●●

●

●

●

●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●

●●●

●

●●●

●●●●

●

●

●

●●●●●●

●●●

●

●●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●

●

●

●

●●

●●●

●●●●

●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●

●●●●●●

●●●●

●●●●

●●●●●●

●●●●●●

●

●●●

●●●

●●

●●●

●●

●●●

●●●●●●

●

●●

●

●●●

●●

●●

●●●●●●●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●●●●●●

●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●

●

●●

●

●

●●●

●●●

●●●

●

●

●●

●●●●

●

●

●

●●

●●

●●

●●●●

●

●●●

●

●

Figure 21: Hive panel showing E. coli regulatory network with edges encoded by genetic
distance (Red edges are the closest; each set of edges plotted separately)

21

have been. In HiveR, the same notion can be implemented, but rather than clone an existing axis, one can simply
add a new axis based upon some property of the system. Alternatively, for 2D hive plots, HiveR is able to show
edges that start and end on the same axis (linnet does not do this).

2. No segmentation of an axis is currently possible with HiveR.

3. linnet uses bezier curves to create the edges; HiveR uses splines with a single control point.

7 Features Planned and Under Consideration

1. Add the ability to subtract 2 hive plots and display the result.

2. Set up animations for the 3D mode. Perhaps include the possibility of running two animations of related hives side
by side.

3. Set up a mechanism to automatically permute the axes in 3D mode when nx = 5 or 6 so that the best option can
be selected. Might also be worth doing in 2D mode for 4-6 axes, except in this case it’s not a question of how you
display but how you import the data. Wegman[5] has a formula describing all possible combinations that would be
needed.

4. Set up mouse controls in 3D mode.

5. Smallish items

(a) The current 3D spline calculation produces an asymmetric spline. It could be made symmetric.

(b) The current splines could be converted to Bezier curves.

(c) Could add line type as an edge parameter. This might be simple, or not.

8 Acknowledgements

Naturally, I thank Martin Krzywinski for numerous helpful communications. I also appreciate helpful discussions on gene
ontology concepts with my colleague Professor Chet Fornari.

References

[1] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra, “Hive plots – rational approach to visualizing networks,”
Briefings in Bioinformatics, 2011.

[2] M. Suderman and M. Hallett, “Tools for visually exploring biological networks,” Bioinformatics, vol. 23,
pp. 2651–2659, Oct 15 2007.

[3] K.-K. Yan, G. Fang, N. Bhardwaj, R. P. Alexander, and M. Gerstein, “Comparing genomes to computer operating
systems in terms of the topology and evolution of their regulatory control networks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 107, pp. 9186–9191, May 18 2010.

[4] S. Gama-Castro, H. Salgado, M. Peralta-Gil, A. Santos-Zavaleta, L. Muniz-Rascado, H. Solano-Lira,
V. Jimenez-Jacinto, V. Weiss, J. S. Garcia-Sotelo, A. Lopez-Fuentes, L. Porron-Sotelo, S. Alquicira-Hernandez,
A. Medina-Rivera, I. Martinez-Flores, K. Alquicira-Hernandez, R. Martinez-Adame, C. Bonavides-Martinez,
J. Miranda-Rios, A. M. Huerta, A. Mendoza-Vargas, L. Collado-Torres, B. Taboada, L. Vega-Alvarado, M. Olvera,
L. Olvera, R. Grande, E. Morett, and J. Collado-Vides, “RegulonDB version 7.0: transcriptional regulation of
Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units),” Nucleic Acid Research,
vol. 39, pp. D98–D105, January 2011.

[5] E. J. Wegman, “Hyperdimensional data-analysis using parallel coordinates,” Journal of the American Statistical
Association, vol. 85, pp. 664–675, Sep 1990.

[6] C. T. Butts, “Social network analysis with sna,” Journal of Statistical Software, vol. 24, pp. 1–51, 5 2008.

22

[7] D. P. Vazquez and D. Simberloff, “Changes in interaction biodiversity induced by an introduced ungulate,” Ecology
Letters, vol. 6, pp. 1077–1083, 2003.

23

	Background, Inspiration and Motivation
	HiveR Features
	Internal Storage
	Generation of Random Network Data Sets
	Built-in Data Sets
	Importing Real Data Sets
	Modifying HivePlotData Sets
	Making Hive Plots
	Type 2D Hive Plots
	Type 3D Hive Plots
	Performance

	Some Things to Keep in Mind

	A Simple Example Using a Plant-Pollinator Network
	The E. coli Gene Regulatory Network
	Further Explorations of the E. coli Network
	Comparison to linnet
	Features Planned and Under Consideration
	Acknowledgements
	References

